Earthquake Disaster Risk Mitigation for Northeast India

Size: px
Start display at page:

Download "Earthquake Disaster Risk Mitigation for Northeast India"

Transcription

1 ISSN Keanean Journal of Science Vol Earthquake Disaster Risk Mitigation for Northeast India A.C. Lyngdoh Central Seismological Observatory, India Meteorological Department, Shillong ac.lyngdoh@imd.gov.in Abstract The Northeastern region of India has witnessed several devastating earthquakes such as the 1869, 1897, 1950 great earthquakes and some high magnitude earthquakes ranging from 6.0 to 8.7. In the light of scientific earthquake predictions given for the region, urgent measures need to be taken for earthquake disaster risk mitigation, both structural as well as non-structural, in addition to efforts made so far.national disasters policies and programmes are yielding results in generating awarenessand increasing the level of preparedness, which are vital for mitigation of disasters.in this paper some aspects are discussed in specific areas of Capacity Building,Techno-Legal Framework, Techno-Financial Regime., and enforcement of Rules &Regulations to further strengthen the institution of disaster management in carrying out structural and non-structural mitigation measures. Keywords Earthquake, Northeast India, Meghalaya, Shillong Introduction The Northeastern part of India is one of the most seismically active regions in the world. The North eastern region of India is tectonically very active due to the collision of the Indian plate with the Tibetan landmass in the north and the ongoing subduction process between the Indian plate and the Shan-Tenasserim block in the east. The Shillong plateau and the neighbouring areas being subjected between two mobile belts, are under immense stress which when strained generates a number of earthquakes along the existing faults and thrusts. This Northeastern region of India has witnessed several devastating earthquakes such as the 1869, 1897, 1950 great earthquakes and some high magnitude earthquakes ranging from 6.0 to 8.7. The Shillong plateau, a part of the peninsular Indian shield, is bounded between 300 km long east west Dauki fault system to the south, the north-south trending Jamuna and Dhubri faults to the west and northwest-southeast Kopili fault which separates the Shillong plateau from the Mikir hills to the east. Some other major structures such as the northeast-southwest lineament of Tyrsad- Barapani shear zone also traverse the Shillong plateau. A northwest-southeast trending thrust which is about km dipping towards the northeast within the plateau is the northwest extension of the Dauki fault named the Dapsi thrust. Shillong plateau behaves as an independent tectonic entity, with its own style of faulting, seismic productivity and hazard potential. While renowned scientists and seismologists have been predicting earthquakes of Magnitude 8 or more (with an intensity of IX MSK and above) in the North- Eastern region of India, for quite some time now, urgent measures need to be taken for earthquake disaster risk mitigation, both structural as well as non-structural, in addition to efforts made so far. The distribution of earthquake events in the northeastern region of India are generally co-related with known Regional Thrusts, The Main Boundary Thrust and The 75

2 Main Central Thrust. Dr. Harsh K Gupta stated that Moderate magnitude to great earthquakes in the northeast India region is found to be preceded, generally, by well defined earthquake swarms and quiescence periods. There is no denying the inevitable. Realistic mitigation measures need to be taken up urgently, for which certain policy decisions are to be made. Presently, there is no scientific technique available anywhere in the world to predict occurrence of earthquakes with reasonable degree of accuracy with regard to space, time and magnitude. It is, therefore suggested that appropriate steps may be taken to ensure that the dwellings and other structures in the region are designed and constructed as per guidelines laid down by the Bureau of Indian Standards(BIS) to minimize the losses caused by earthquakes. The choice of seismic factor to be adopted for designing and engineering the structures depends on the horizontal ground acceleration and various other factors including type of structures, the ground conditions and also importance of structures. For important and critical structure, site specific spectral studies have to be carried out before assessing the seismic design parameters. Suitable seismic design parameters may be adopted as per recommendations of National Committee on Seismic Design Parameters (NCSDP) for designing and engineering Hydroelectric Projects. Efforts made so far Great strides have been made in the country towards achieving the goals of Disaster Risk Mitigation. However, the shift in focus towards Risk Management is yet to make its mark. Some of the achievements are: The Disaster Management Act, 2005, has been made effective throughout the country, for institutionalizing disaster management. The National Policy came in 2010 with a vision of a safe and disaster resilient India, by developing a holistic, proactive, multi-disaster oriented strategy. The National State & District Disaster Management Authorities have been established with wide powers under the D.M. Act, and States have designated Department for Disaster Management. Guidelines have been issued by the NDMA covering various kinds of disasters, including one for Management of Earthquakes. Building Bye-Laws have been amended so as to ensure earthquake/disaster resistant structures in future. National programs for capacity building of Engineers and Architects in earthquake risk management have been completed. National Disaster Response Forces (NDRF) have been established in different regions of the country National Institute of Disaster Management and Institutes in the States have been established for imparting training in Disaster Risk management(drm) Increasing the level of preparedness of various stakeholders through DRM training programs has been continuing over the past eight or nine years, but is yet to be felt by the community at large Disaster Management Plans have been prepared from the State to the District to the Block, down to the village level, but most are response oriented and need updating Many schools have prepared School safety Plans, but, again, they are more response oriented Master Trainers have been trained in Medical First Responder Course, and training of Master Trainers in Incident Response System(IRS) has been started Capacity building of fire and Emergency service and of the Civil Defence & Home Guards is continuing, but both again are for crisis management The thrusts made so far in Disaster Management are still mostly response oriented as is evident from the creation of the NDRF, adoption of the IRS, conducting mock drills in localities and in schools for any disaster, and even conversion of the Calamity Relief Fund to the Disaster Response Fund. Mitigation measures such as amending Building Bye- Laws and training of Engineers & Architects or even of Masons in Earthquake Risk Management may lead to safer buildings in future, but special effort needs to be made to address the problem of existing built environment. Cities have been identified for Seismic Microzonation and in the North-East, work for cities of Guwahati and Gangtok have been completed. However, these studies will again provide some help only for future urban development by identifying hazard prone areas. For 76

3 existing structures, doubt will still remain about their seismic safety, since response of a building to any seismic wave is site specific. Studies done for Shillong city show that there are wide variations in resonance frequencies even at short distances, which indicate heterogeneity in soil layers. The northeastern region of India has plenty of exposures called Safety Valves according to their dynamics for releasing interior energy in a limited time interval which might otherwise form a great earthquake. Some states have taken up Vulnerability and Risk Assessment for the different Hazards, but can an acceptable of risk be defined, especially I view of the policy of Zero Tolerance? However, such Risk Assessments are essential for any meaningful mitigation strategy to be drawn up, but the methodology must be standardized and codified. Hazards and Disasters: The international Secretariat for Disaster Reduction (ISDR) defines a hazard as a potentially damaging physical event, phenomenon or human activity that may cause the loss of life or injury, property damage, social and economic disruption or environmental degradation. Hazards could be, natural (geological, hydro-meteorological and biological) or induced by human processes (environmental degradation and technological hazards). Hazards can be single, sequential or combined in their origin and effects. Accordingly, Hazard analysis entails the identification, study and monitoring of a hazard to determine its potential, origin and characteristics. A fine line separates environmental hazards and environmental resources, as between water out of control (flood hazard) and water under control (reservoir resources). Classification of Hazards Though hazards could be classified on many criteria; some of the general classifications described by S. Gopalakrishnan are as follows: Sudden onset hazards: geological and climatic hazards such as earthquakes, tsunamis, floods, tropical storms, volcanic eruption and landslides. Slow onset hazards: (environmental hazards) drought, famine, environmental degradation, desertification, deforestation and pest infestation. Industrial/Technological: system failures/accidents, spillages, explosions, and fires. Wars and civil strife: armed aggression, insurgency, terrorism, and other actions leading to displaced persons and refugees. Epidemics: water and/or food-born diseases, personto-person diseases (contact and respiratoryspread), vector-born diseases and complications from wounds. Hazards could also be classified as direct and indirect. For example, earthquake hazard would lead to direct and indirect consequences, tabulated as under(ibid): Direct Hazards Ground shaking Differential ground settlement Soil liquefaction Immediate landslides or mud slides, ground lurching and avalanches. Permanent ground displacement along faults Floods from tidal waves, sea surges & tsunamis Indirect Hazards Dam failures Pollution from damage to industrial plants Delayed landslides Site risks in an earthquake prone area, as explained by S. Gopalakrishnan, would be: Slope risks: slope instability, triggered by strong shaking may cause landslides. Rocks or boulders can roll considerable distances. Natural Dams: landslides in irregular topographic areas may create natural dams, which may collapse when they are filled. This can lead to potentially catastrophic avalanches after strong seismic shaking. Volcanic Activity: earthquakes may be associated with potential volcanic activity and may occasionally be considered as precursory phenomena. Ash falls and/ or pyroclastic flows, volcanic lava or mudflows, and volcanic gases normally follow explosive eruptions. 77

4 Besides, hazards can be of both short-term and long-term duration as per the classification proposed by K. Smith. Risk is precisely defined by the ISDR as the probability of harmful consequences, or expected losses (deaths, injuries, property, livelihoods, economic activity disrupted or environment damaged) resulting from interactions between natural or human induced hazards and vulnerable conditions. Conventionally, the notation expresses risk: Risk = Hazard x Vulnerability. Some disciplines also include the concept of exposure to refer particularly to the physical aspects of vulnerability. Disaster risk is seen as a function of the hazard, exposure and vulnerability, denoted by the mathematical function: Disaster Risk= function (hazard, exposure, vulnerability) where exposure refers to the element which is affected by natural disasters, people and/or property. Risk perception is understood as the awareness of risk, which differs in different cultures/societies. Seismic Hazard and Risk Mitigation Microzonation is the process of dividing a geographic domain into small units of likely uniform hazard level and nature. This classification is done based on Geoscientific, Geotechnical, Seismological and engineering seismological parameters. The hazard micro zone map is transformed into seismic risk microzonation map with inputs on vulnerability of built environment and Anthropological /Socialogical inputs. As earthquake prediction is not possible precisely in time and space, seismic Hazard microzonation provides an important tool for generating parameters for site specific structural designing, land use planning and disaster mitigation. Seismic microzonation studies have been completed for Delhi (1:50,000 scale), Guwahati (1:25,000 scale), Sikkim (1:25,000 scale) and Bangalore city (1:25,000 scale). Microzonation map for NCT of Delhi is further being refined at 1:10,000 scale. Disaster Mitigation Loss of lives during an earthquake is mostly due to damage or collapse of houses/structures. However, a structure can bear the vibration from an earthquake if it has enough strength and sturdiness. Bureau of Indian Standards (BIS) has published criterion for construction of earthquake resistant structures. The design of a structure should be such that the whole structure behaves as one unit at the time of vibration rather than like an assemblage of parts. Important structures like hospitals, fire stations, etc, should be made earthquake resistant to the highest probable intensity. In the existing environment, it is not economical to demolish and reconstruct most of the poorly built structures; for such poorly built structures, guidelines for their assessment and retrofitting have been prepared by the National Disaster Management Division in the Ministry of Home Affairs, under the Gol-UNDP Disaster Risk Management Programme. Guidelines for assessment and retrofitting of R.C.C are under preparation by the BIS. In addition to this, HUDCO & BMPTC have published also guidelines and brochures for construction and retrofitting of buildings. Efforts are being made to improve the understanding of earthquake processes and their impact towards better management and mitigation of the effects of earthquakes in future. Furthermore, losses due to earthquakes can be considerably reduced through proper planning and implementation of pre and post disaster preparedness and management strategies by respective state government agencies by working out the possible earthquake effects for various seismic zones. References Ahmed, S. and Lyngdoh, A.C Policy initiatives for earthquake disaster risk mitigation with special reference to Northeast India. Challenges and preparedness for earthquakes in India, Environmental Watch and Management Institute, Guwahati. Biswas, R. and Baruah, S : Site Response Estimation from H/V ratio based on Ambient Gopalakrishnan, S. Disaster, online at tn.gov.in/dengue/disaster.htm#eff Gupta, K.H Technophysics. 338(3-4): Lyngdoh, A.C. and Taid, M Earthquake Frequency, Magnitude and Energy Relation Scenario in Northeastern region of India, Seismic Hazards and Mitigation of North East India, Environmental Watch and Management Institute, Guwahati. Nandy, D.R Geodynamics of Northeastern India and the Adjoining Region, Kolkata, India,Abc Publications. National Disaster Management Guidelines, Management of Earthquakes NDMA,Govt. of India. pp. 78

5 Noise Measurements of Shillong City, National Workshop on Earthquake Risk Mitigation Strategy in the North East, Guwahati, Assam, NIDM & AASC. pp Rajendran, C.P., Kusala Rajendran, Duarah, B.P., Baruah, S. and Earnest, A Interpreting the style of faulting and paleoseismicity associated with the 1897 Shillong, northeast India, earthquake: Implications for regional tectonism. Tectonics, 23, TC Smith, K Environmental Hazards: Assessing risk and reducing disaster. London: Routledge. The Disaster Management Act, 2005, Govt. of India. Received 20 June 2014: Accepted 18 July

6

Tectonic Processes and Hazards Enquiry Question 1: Why are some locations more at risk from tectonic hazards?

Tectonic Processes and Hazards Enquiry Question 1: Why are some locations more at risk from tectonic hazards? Tectonic Processes and Hazards Enquiry Question 1: Why are some locations more at risk from tectonic hazards? Key words Basalt Andesite Rhyolite Benioff Zone Subduction zone Crustal fracturing Definition

More information

A Presentation By: Dr. G. M. Dar Centre for Disaster Management & Env. Studies, J&K IMPA, Srinagar

A Presentation By: Dr. G. M. Dar Centre for Disaster Management & Env. Studies, J&K IMPA, Srinagar A Presentation By: Dr. G. M. Dar Centre for Disaster Management & Env. Studies, J&K IMPA, Srinagar Introduction Disaster: Sudden or great misfortune. A catastrophe, a calamitous event. Hazards are a natural

More information

Assessing Hazards and Risk

Assessing Hazards and Risk Page 1 of 6 EENS 204 Tulane University Natural Disasters Prof. Stephen A. Nelson Assessing Hazards and Risk This page last updated on 07-Jan-2004 As discussed before, natural disasters are produced by

More information

Earthquake Disaster Management in India

Earthquake Disaster Management in India Earthquake Disaster Management in India Akshay B. Ahlawat JRF in Geography Abstract: The fact is that natural disasters are always unexpected events which affect human life as well as nature itself. Earthquakes

More information

SEISMIC RISK ASSESSMENT IN ARMENIA

SEISMIC RISK ASSESSMENT IN ARMENIA SEISMIC RISK ASSESSMENT IN ARMENIA Hovhannes Khangeldyan Head of National Crisis Management Center Rescue Service Ministry of Emergency Situations of the Republic of Armenia Tokyo, 2016 ARMENIA: GEOGRAPHICAL

More information

UGRC 144 Science and Technology in Our Lives/Geohazards

UGRC 144 Science and Technology in Our Lives/Geohazards UGRC 144 Science and Technology in Our Lives/Geohazards Session 1 Introduction to Hazards and Disasters Dr. Patrick Asamoah Sakyi Department of Earth Science, UG, Legon College of Education School of Continuing

More information

Earthquake Distribution in Northeast India from

Earthquake Distribution in Northeast India from Earthquake Distribution in Northeast India from 1961-2010 Abong A. A. 1, George A. M. 2, Awhuwhe E. A. 3 1 Department of Physics, Cross River University of Technology, P.M.B 1123, Calabar Nigeria 2 Department

More information

They include earthquakes, volcanic eruptions, floods, landslides, and other processes and occurrences. They are included in the broader concept of.

They include earthquakes, volcanic eruptions, floods, landslides, and other processes and occurrences. They are included in the broader concept of. They include earthquakes, volcanic eruptions, floods, landslides, and other processes and occurrences. They are included in the broader concept of. In general, natural processes are labeled hazardous only

More information

Earthquake Hazards. Tsunami

Earthquake Hazards. Tsunami Earthquake Hazards Tsunami Review: What is an earthquake? Earthquake is the vibration (shaking) and/or displacement of the ground produced by the sudden release of energy. The point inside the Earth where

More information

Earthquake Hazards. Tsunami

Earthquake Hazards. Tsunami Earthquake Hazards Tsunami Measuring Earthquakes Two measurements that describe the power or strength of an earthquake are: Intensity a measure of the degree of earthquake shaking at a given locale based

More information

Disaster Prevention and Management in Asia: The Context of Human Security and Its Relevance to Infrastructure Planning and Management

Disaster Prevention and Management in Asia: The Context of Human Security and Its Relevance to Infrastructure Planning and Management Disaster Prevention and Management in Asia: The Context of Human Security and Its Relevance to Infrastructure Planning and Management Rajib Shaw http://www.iedm.ges.kyoto-u.ac.jp/ Contents Background and

More information

Disaster Management and Spatial Data An Experience of Sri Lanka for Joint project team meeting 2012

Disaster Management and Spatial Data An Experience of Sri Lanka for Joint project team meeting 2012 Disaster Management and Spatial Data An Experience of Sri Lanka for Joint project team meeting 2012 1 by Padma Kumara Withana Provincial Surveyor General Uva Province 2 Out line ü Introduction ü Natural

More information

Syllabus Post Graduate Diploma in Disaster Management (PGDDM)

Syllabus Post Graduate Diploma in Disaster Management (PGDDM) Syllabus Post Graduate Diploma in Disaster Management (PGDDM) Programme Objective: The Programme has been framed with an intention to provide a general concept in the dimensions of disasters caused by

More information

The Third UN-GGIM-AP Plenary Meeting. Use of Geospatial Information in Disaster and Coordination among NDMA and Relevant Organizations/Stakeholders

The Third UN-GGIM-AP Plenary Meeting. Use of Geospatial Information in Disaster and Coordination among NDMA and Relevant Organizations/Stakeholders The Third UN-GGIM-AP Plenary Meeting Use of Geospatial Information in Disaster and Coordination among NDMA and Relevant Organizations/Stakeholders Bali Indonesia 10 November 2014 Bernardus Wisnu Widjaja

More information

MULTI-HAZARD RISK ASSESSMENT AND DECISION MAKING

MULTI-HAZARD RISK ASSESSMENT AND DECISION MAKING MULTI-HAZARD RISK ASSESSMENT AND DECISION MAKING JULINDA KEÇI Epoka University Logo of the institution CONTENT: Introduction Multi Hazard Risks Multi-Hazard Risk Assessment Quantitative Assessment Event

More information

KNOWLEDGE NOTE 5-1. Risk Assessment and Hazard Mapping. CLUSTER 5: Hazard and Risk Information and Decision Making. Public Disclosure Authorized

KNOWLEDGE NOTE 5-1. Risk Assessment and Hazard Mapping. CLUSTER 5: Hazard and Risk Information and Decision Making. Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized KNOWLEDGE NOTE 5-1 CLUSTER 5: Hazard and Risk Information and Decision Making Risk Assessment

More information

DIPLOMA IN DISASTER MANAGEMENT. (Non-Semester) (With effect from the academic year )

DIPLOMA IN DISASTER MANAGEMENT. (Non-Semester) (With effect from the academic year ) DIPLOMA IN DISASTER MANAGEMENT (Non-Semester) (With effect from the academic year 2013-14) Eligibility for the Course Candidate should have passed the Higher Secondary Examination conducted by the Board

More information

Important Concepts. Earthquake hazards can be categorized as:

Important Concepts. Earthquake hazards can be categorized as: Lecture 1 Page 1 Important Concepts Monday, August 17, 2009 1:05 PM Earthquake Engineering is a branch of Civil Engineering that requires expertise in geology, seismology, civil engineering and risk assessment.

More information

12/05/2016. The First step in Adaptation to future climate change Reduce Vulnerability and Exposure to present Climate Variability (IPCC 2014)

12/05/2016. The First step in Adaptation to future climate change Reduce Vulnerability and Exposure to present Climate Variability (IPCC 2014) Integrating CCA, DRR and L+D to Address Emerging Challenges due to Slow Onset Processes Joy Jacqueline Pereira (Project Leader), SEADPRI-Universiti Kebangsaan Malaysia, Nguyen Van Thang (Collaborator),

More information

Project on Seismic Hazard & Vulnerability. areas, Bangladesh. Mohammad Ashraful Kamal (Geologist)

Project on Seismic Hazard & Vulnerability. areas, Bangladesh. Mohammad Ashraful Kamal (Geologist) Project on Seismic Hazard & Vulnerability Assessment in Dhaka, Chittagong & Sylhet city areas, Bangladesh By Mohammad Ashraful Kamal (Geologist) Tectonic & Seismic zoning map of Bangladesh Geological map

More information

INTEGRATING CLIMATE VULNERABILITY & RISK ASSESSMENT INTO URBAN SPATIAL PLANNING PROCESS

INTEGRATING CLIMATE VULNERABILITY & RISK ASSESSMENT INTO URBAN SPATIAL PLANNING PROCESS INTEGRATING CLIMATE VULNERABILITY & RISK ASSESSMENT INTO URBAN SPATIAL PLANNING PROCESS (CASE STUDY: BLITAR CITY, EAST JAVA, INDONESIA) SHINTA MICHIKO PUTERI, ST, MT. DR. IR. DENNY ZULKAIDI, MUP. WRITER

More information

Disaster Risk Management in India. Kamal Kishore New Delhi, 27 October 2016

Disaster Risk Management in India. Kamal Kishore New Delhi, 27 October 2016 Disaster Risk Management in India Kamal Kishore New Delhi, 27 October 2016 Hazard, Exposure and Vulnerability Disaster Prevention Mitigation Hurricane Matthew: Cuba & Haiti Emergency Response Coordination

More information

Oregon APA Legal Issues Workshop December 7, Tricia Sears, DLCD With information from Bill Burns, DOGAMI

Oregon APA Legal Issues Workshop December 7, Tricia Sears, DLCD With information from Bill Burns, DOGAMI Oregon APA Legal Issues Workshop December 7, 2018 Tricia Sears, DLCD With information from Bill Burns, DOGAMI How this Topic Arrived WE FREQUENTLY HEAR CONCERNS ABOUT LIABILITY AND TAKINGS. Current federal

More information

An entire branch of Earth science, called, is devoted to the study of earthquakes.

An entire branch of Earth science, called, is devoted to the study of earthquakes. Lesson One Essential Question Where do earthquakes take place? What causes earthquakes? What are three different types of faults that occur at plate boundaries? How does energy from earthquakes travels

More information

Earthquake Hazards. Tsunami

Earthquake Hazards. Tsunami Earthquake Hazards Tsunami Review: What is an earthquake? Earthquake is the vibration (shaking) and/or displacement of the ground produced by the sudden release of energy. The point inside the Earth where

More information

Update on the It s Our Fault project

Update on the It s Our Fault project Report 12.552 Date 29 October 2012 File 12/01/01 Committee Author CDEM Group Bruce Pepperell, Regional Manager, WREMO Update on the It s Our Fault project 1. Purpose To inform the CDEM Group of progress

More information

Downtown Anchorage Seismic Risk Assessment & Land Use Regulations to Mitigate Seismic Risk

Downtown Anchorage Seismic Risk Assessment & Land Use Regulations to Mitigate Seismic Risk Prepared for: The Municipality of Anchorage Planning Department and the Geotechnical Advisory Commission Downtown Anchorage Seismic Risk Assessment & Land Use Regulations to Mitigate Seismic Risk Prepared

More information

APPLICATIONS OF EARTHQUAKE HAZARD MAPS TO LAND-USE AND EMERGENCY PLANNING EXAMPLES FROM THE PORTLAND AREA

APPLICATIONS OF EARTHQUAKE HAZARD MAPS TO LAND-USE AND EMERGENCY PLANNING EXAMPLES FROM THE PORTLAND AREA APPLICATIONS OF EARTHQUAKE HAZARD MAPS TO LAND-USE AND EMERGENCY PLANNING EXAMPLES FROM THE PORTLAND AREA O. Gerald Uba Metro, Portland, Oregon OVERVIEW The extent to which we understand "below ground"

More information

NPTEL Video Course on Geotechnical Earthquake Engineering

NPTEL Video Course on Geotechnical Earthquake Engineering NPTEL Video Course on Geotechnical Earthquake Engineering by Prof. Deepankar Choudhury Professor, Dept. of Civil Engg., Indian Institute of Technology (IIT) Bombay Powai, Mumbai 400076, India. Email: dc@civil.iitb.ac.in

More information

ENGINEERING-SEISMOLOGICAL ASPECTS OF EARTHQUAKE SCENARIO DEVELOPMENT ON THE EXAMPLE OF TASHKENT, UZBEKISTAN

ENGINEERING-SEISMOLOGICAL ASPECTS OF EARTHQUAKE SCENARIO DEVELOPMENT ON THE EXAMPLE OF TASHKENT, UZBEKISTAN International Journal of Geology, Earth & Environmental Sciences ISSN: 2277-281 (Online) 218 Vol. 8 (2) May-August, pp. 3-35/Alixanovich ENGINEERING-SEISMOLOGICAL ASPECTS OF EARTHQUAKE SCENARIO DEVELOPMENT

More information

Georeferencing and Satellite Image Support: Lessons learned, Challenges and Opportunities

Georeferencing and Satellite Image Support: Lessons learned, Challenges and Opportunities Georeferencing and Satellite Image Support: Lessons learned, Challenges and Opportunities Shirish Ravan shirish.ravan@unoosa.org UN-SPIDER United Nations Office for Outer Space Affairs (UNOOSA) UN-SPIDER

More information

Session 1 1. Define hazard? o Hazard means an event which has the potential to cause a disaster, and can be either natural or man-made.

Session 1 1. Define hazard? o Hazard means an event which has the potential to cause a disaster, and can be either natural or man-made. Session 1 1. Define hazard? o Hazard means an event which has the potential to cause a disaster, and can be either natural or man-made. 2. In what form can hazards be classified? o natural hazards and

More information

Guidelines for Site-Specific Seismic Hazard Reports for Essential and Hazardous Facilities and Major and Special-Occupancy Structures in Oregon

Guidelines for Site-Specific Seismic Hazard Reports for Essential and Hazardous Facilities and Major and Special-Occupancy Structures in Oregon Guidelines for Site-Specific Seismic Hazard Reports for Essential and Hazardous Facilities and Major and Special-Occupancy Structures in Oregon By the Oregon Board of Geologist Examiners and the Oregon

More information

ERTH20001 Dangerous Earth Lecture Summaries

ERTH20001 Dangerous Earth Lecture Summaries ERTH20001 Dangerous Earth Lecture Summaries Introduction to Natural Hazards Natural Hazards: Geological and climatic events that pose a threat to human populations, property and activities. Typically uncontrollable

More information

Technical Article TRICOLITE. Pledged to Excellence SAFE, EFFICIENT, RELIABLE POWER DISTRIBUTION SOLUTIONS

Technical Article TRICOLITE. Pledged to Excellence SAFE, EFFICIENT, RELIABLE POWER DISTRIBUTION SOLUTIONS Technical Article SAFE, EFFICIENT, RELIABLE POWER DISTRIBUTION SOLUTIONS EARTHQUAKES & SEISMIC COMPLIANCE OF LV SWITCHGEAR ASSEMBLY Random vibrations, such as those caused by an earthquake, cause shocks

More information

Natural Hazards Mitigation in Iceland

Natural Hazards Mitigation in Iceland Natural Hazards Mitigation in Iceland With special emphasis on earthquake risk Júlíus Sólnes Professor of civil and environmental engineering Dept. of engineering, University of Iceland Cambridge, 19th

More information

ADDITIONAL RESOURCES. Duration of resource: 30 Minutes. Year of Production: Stock code: VEA Resource written by: Andrew Clarke BA Dip Tchg

ADDITIONAL RESOURCES. Duration of resource: 30 Minutes. Year of Production: Stock code: VEA Resource written by: Andrew Clarke BA Dip Tchg ADDITIONAL RESOURCES The destructive and unexpected nature of earthquakes has remained a constant threat since civilisation began. Suitable for all secondary audiences, this two-part program firstly examines

More information

We greatly appreciate the review of the manuscript by the anonymous referee#3. We hereby put forth the clarifications as follows.

We greatly appreciate the review of the manuscript by the anonymous referee#3. We hereby put forth the clarifications as follows. Point by point response to the observations & comments of Anonymous Reviewer # 3 on the manuscript titled Seismic Vulnerability & Risk Assessment of Kolkata City, India (ms# nhess-2013-467) We greatly

More information

EARTHQUAKE HAZARD ASSESSMENT IN KAZAKHSTAN

EARTHQUAKE HAZARD ASSESSMENT IN KAZAKHSTAN EARTHQUAKE HAZARD ASSESSMENT IN KAZAKHSTAN Dr Ilaria Mosca 1 and Dr Natalya Silacheva 2 1 British Geological Survey, Edinburgh (UK) imosca@nerc.ac.uk 2 Institute of Seismology, Almaty (Kazakhstan) silacheva_nat@mail.ru

More information

Landslide Hazard Assessment Methodologies in Romania

Landslide Hazard Assessment Methodologies in Romania A Scientific Network for Earthquake, Landslide and Flood Hazard Prevention SciNet NatHazPrev Landslide Hazard Assessment Methodologies in Romania In the literature the terms of susceptibility and landslide

More information

SCENARIO DESIGN ON THE IMPACT OF A HIGH-MAGNITUDE EARTHQUAKE IN THE CITY OF LIMA, PERU

SCENARIO DESIGN ON THE IMPACT OF A HIGH-MAGNITUDE EARTHQUAKE IN THE CITY OF LIMA, PERU SCENARIO DESIGN ON THE IMPACT EARTHQUAKE IN THE CITY OF LIMA, Methodology Determination of the characteristics of the probable earthquake (magnitude, intensity, acceleration). Seismic geotechnical soil

More information

Wainui Beach Management Strategy (WBMS) Summary of Existing Documents. GNS Tsunami Reports

Wainui Beach Management Strategy (WBMS) Summary of Existing Documents. GNS Tsunami Reports Wainui Beach Management Strategy (WBMS) Summary of Existing Documents GNS Tsunami Reports a) Review of Tsunami Hazard and Risk in New Zealand ( National Risk Report ) b) Review of New Zealand s Preparedness

More information

9. GEOLOGY, SOILS, AND MINERALS

9. GEOLOGY, SOILS, AND MINERALS June 28, 2018 Page 9-1 9. GEOLOGY, SOILS, AND MINERALS This EIR chapter describes the existing geological, soil, and mineral conditions in the planning area. The chapter includes the regulatory framework

More information

Lesson 8. Natural Disasters

Lesson 8. Natural Disasters Lesson 8 Natural Disasters 1 Reading is NOT a spectator sport! 2 Reading requires active participation! 3 PREDICT Try to figure out what information will come next and how the selection might end. 4 Natural

More information

CHAPTER 3 METHODOLOGY

CHAPTER 3 METHODOLOGY 32 CHAPTER 3 METHODOLOGY 3.1 GENERAL In 1910, the seismological society of America identified the three groups of earthquake problems, the associated ground motions and the effect on structures. Indeed

More information

What is an Earthquake?

What is an Earthquake? Earthquakes What is an Earthquake? Earthquake - sometimes violent shaking of ground caused by movement of Earth s tectonic plates; creates seismic waves Often followed by smaller earthquakes (aftershocks);

More information

RISK OF PRINCIPAL DISASTERS IN INDIA AND IMPACTS OF DISASTERS ON ECONOMIC DEVELOPMENT

RISK OF PRINCIPAL DISASTERS IN INDIA AND IMPACTS OF DISASTERS ON ECONOMIC DEVELOPMENT RISK OF PRINCIPAL DISASTERS IN INDIA AND IMPACTS OF DISASTERS ON ECONOMIC DEVELOPMENT At the Himachal Pradesh Institute of Public Administration Shimla 05. 05.2012 Improve Disaster Management with the

More information

Why Are Communities at Risk from Coastal Hazards?

Why Are Communities at Risk from Coastal Hazards? Chapter 2 Why Are Communities at Risk from Coastal Hazards? The Indian Ocean Tsunami of December 2004 raised awareness worldwide of the potentially devastating impacts of tsunamis. Coastal communities

More information

What Are Disasters? The Rescue Kids Trio!

What Are Disasters? The Rescue Kids Trio! The Rescue Kids Trio! What Are Disasters? This manual was made possible through funding by the Council of Local Authorities for International Relations. Disasters and emergency preparedness Emergency preparedness

More information

Disaster RISK Management : Bhutanese Scenario

Disaster RISK Management : Bhutanese Scenario Disaster RISK Management : Bhutanese Scenario Expert Group Meeting (EGM) on Geo-referenced Information Systems for Disaster Risk Management (Geo-DRM) and sustaining the Community of Practice (COP), Bangkok,

More information

Disaster Risk Assessment: Opportunities for GIS and data management with Open DRI

Disaster Risk Assessment: Opportunities for GIS and data management with Open DRI Disaster Risk Assessment: Opportunities for GIS and data management with Open DRI Jacob Opadeyi Department of Geomatics Engineering and Land Management, The University of the West Indies, St. Augustine,

More information

Evidence for plate tectonics

Evidence for plate tectonics Evidence for plate tectonics See class powerpoint Printed tables 2x essay Qs markschemes Discuss/Evaluate the evidence for plate tectonics Discuss/evaluate the evidence for plate tectonics Essay: To what

More information

4/22/2011. Skill sharing session AVC what makes the ground tremble? What to do before. What to do during. What to do after

4/22/2011. Skill sharing session AVC what makes the ground tremble? What to do before. What to do during. What to do after Skill sharing session AVC 2011 Session Objectives what makes the ground tremble? What to do before What to do during What to do after Definition of earthquake Earthquake causes Characteristic of earthquake

More information

Interpretive Map Series 24

Interpretive Map Series 24 Oregon Department of Geology and Mineral Industries Interpretive Map Series 24 Geologic Hazards, and Hazard Maps, and Future Damage Estimates for Six Counties in the Mid/Southern Willamette Valley Including

More information

Status and Challenges on Geo-DRM Information Systems in Tonga

Status and Challenges on Geo-DRM Information Systems in Tonga Name: Mafua- i-vai utukakau Maka Status and Challenges on Geo-DRM Information Systems in Tonga 1 Roles and Relationships Land and Geographic Information Systems (LGIS) Unit: Establish updated high-resolution

More information

UGRC 144 Science and Technology in Our Lives/Geohazards

UGRC 144 Science and Technology in Our Lives/Geohazards UGRC 144 Science and Technology in Our Lives/Geohazards Session 3 Understanding Earthquakes and Earthquake Hazards Lecturer: Dr. Patrick Asamoah Sakyi Department of Earth Science, UG Contact Information:

More information

Country Report Nepal Geospatial Data Sharing Initiatives of Survey Department Supporting Disaster Management

Country Report Nepal Geospatial Data Sharing Initiatives of Survey Department Supporting Disaster Management Third JPTM Step 2 for Sentinel Asia 6-8 July, 2010 Manila, The Philippines Country Report Nepal Geospatial Data Sharing Initiatives of Survey Department Supporting Disaster Management Durgendra M Kayastha

More information

National Drought Mitigation Center

National Drought Mitigation Center School of Natural Resources National Drought Mitigation Center Mission: To lessen societal vulnerability to drought by promoting planning and the adoption of appropriate risk management techniques. University

More information

PROTECTING MONUMENTS AND HISTORICAL SETTINGS FROM THE NEXT EARTHQUAKE

PROTECTING MONUMENTS AND HISTORICAL SETTINGS FROM THE NEXT EARTHQUAKE PROTECTING MONUMENTS AND HISTORICAL SETTINGS FROM THE NEXT EARTHQUAKE R.PAPADHMHTRIOU, L.PELLI EUROPEAN CENTER OF PREVENTING & FORECASTING OF EARTHQUAKES Confronting the problem SEISMIC RISK R SEISMIC

More information

Natural Disasters & Assessing Hazards and Risk. Natural Hazards and Natural Disasters

Natural Disasters & Assessing Hazards and Risk. Natural Hazards and Natural Disasters Page 1 of 9 EENS 3050 Tulane University Natural Disasters Prof. Stephen A. Nelson Natural Disasters & Assessing Hazards and Risk This page last updated on 09-Jan-2018 Natural Hazards and Natural Disasters

More information

New A-Level Physical Geography

New A-Level Physical Geography Half Term 1 3.1 Physical Geography: 3.1.5 Hazards: Plate Tectonics This optional section of our specification focuses on the lithosphere and the atmosphere, which intermittently but regularly present natural

More information

National Public Weather and Warning Services in the Swaziland Meteorological Service Dennis S.Mkhonta /

National Public Weather and Warning Services in the Swaziland Meteorological Service Dennis S.Mkhonta / National Public Weather and Warning Services in the Swaziland Meteorological Service Dennis S.Mkhonta dennis.mkhonta@gmail.com / dennis@swazimet.gov.sz Introduction Swaziland s geographical position exposes

More information

Word Cards. 2 map. 1 geographic representation. a description or portrayal of the Earth or parts of the Earth. a visual representation of an area

Word Cards. 2 map. 1 geographic representation. a description or portrayal of the Earth or parts of the Earth. a visual representation of an area Name: Date: Hour: Word Cards 1 geographic representation a description or portrayal of the Earth or parts of the Earth Example: A map is a representation of an actual location or place. 2 map a visual

More information

The UN-GGIM: Europe core data initiative to encourage Geographic information supporting Sustainable Development Goals Dominique Laurent, France

The UN-GGIM: Europe core data initiative to encourage Geographic information supporting Sustainable Development Goals Dominique Laurent, France INSPIRE conference Strasbourg 6 September 2017 The UN-GGIM: Europe core data initiative to encourage Geographic information supporting Sustainable Development Goals Dominique Laurent, France Introduction

More information

5.2. IDENTIFICATION OF NATURAL HAZARDS OF CONCERN

5.2. IDENTIFICATION OF NATURAL HAZARDS OF CONCERN 5.2. IDENTIFICATION OF NATURAL HAZARDS OF CONCERN To provide a strong foundation for mitigation strategies considered in Sections 6 and 9, County considered a full range of natural hazards that could impact

More information

held on 4 June 2013 Prof. Yoshimori Honkura, Program Officer of Japan Science and Technology Agency (JST) Jakarta, Indonesia Pan Pacific Hotel)

held on 4 June 2013 Prof. Yoshimori Honkura, Program Officer of Japan Science and Technology Agency (JST) Jakarta, Indonesia Pan Pacific Hotel) Overview of the Outcomes from e-asia JRP Disaster Prevention Workshop held on 4 June 2013 Prof. Yoshimori Honkura, Program Officer of Japan Science and Technology Agency (JST) Jakarta, Indonesia (@Sari

More information

DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES WAYS & MEANS SUBCOMMITTEE ON NATURAL RESOURCES MARCH 2, 2017

DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES WAYS & MEANS SUBCOMMITTEE ON NATURAL RESOURCES MARCH 2, 2017 DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES WAYS & MEANS SUBCOMMITTEE ON NATURAL RESOURCES MARCH 2, 2017 1 ABOUT DOGAMI AGENCY MISSION, VISION & GOALS 2 Lidar image of a stream network along the Umpqua

More information

Chapter Introduction Lesson 1 Earthquakes Lesson 2 Volcanoes Chapter Wrap-Up

Chapter Introduction Lesson 1 Earthquakes Lesson 2 Volcanoes Chapter Wrap-Up Chapter Introduction Lesson 1 Earthquakes Lesson 2 Volcanoes Chapter Wrap-Up What causes earthquakes and volcanic eruptions? What do you think? Before you begin, decide if you agree or disagree with each

More information

GEO Geohazards Community of Practice

GEO Geohazards Community of Practice GEO Geohazards Community of Practice 1) Co-Chair of GHCP With input from: Stuart Marsh, GHCP Co-Chair Francesco Gaetani, GEO Secretariat and many GHCP contributors 1) Nevada Bureau of Mines and Geology

More information

Cascadia megathrust earthquakes: reducing risk through science, engineering, and planning

Cascadia megathrust earthquakes: reducing risk through science, engineering, and planning Cascadia megathrust earthquakes: reducing risk through science, engineering, and planning NSF Hazards SEES EAR-1331412 Urban Science and Engineering Workshop 21 July 2014 Everything to do with M9 Cascadia

More information

Building Disaster Resilience Community in Asia: Indonesian perspective

Building Disaster Resilience Community in Asia: Indonesian perspective Workshop C of the 7th Science Council of Asia (SCA) Conference Construction of Secure and Safe Society against Global Changes of Natural Disasters Okinawa, June 14 th, 2007 Building Disaster Resilience

More information

Jeopardy. Final Jeopardy $100 $100 $100 $100 $100 $200 $200 $200 $200 $200 $300 $300 $300 $300 $400 $400 $400 $500 $500 $500 $500 $500

Jeopardy. Final Jeopardy $100 $100 $100 $100 $100 $200 $200 $200 $200 $200 $300 $300 $300 $300 $400 $400 $400 $500 $500 $500 $500 $500 Jeopardy Earthquakes Volcanoes Tsunamis Wildfires Landslides/ Droughts $100 $100 $100 $100 $100 $200 $200 $200 $200 $200 $300 $300 $300 $300 $300 $400 $400 $400 $400 $400 $500 $500 $500 $500 $500 Final

More information

Natural Disasters in Member Countries (2002 Summary)

Natural Disasters in Member Countries (2002 Summary) 4.2 Member Countries and their Disaster Characteristics: Table 5: Natural Disasters in Member Countries (2002 Summary) (Country/Disaster Type/Disaster Characteristics) Data Country DisType Count of TotAff

More information

Bhutan Country Report for JPTM 2010 (July, 2010) Department of Disaster Management Ministry of Home & Cultural Affairs Royal Government of Bhutan

Bhutan Country Report for JPTM 2010 (July, 2010) Department of Disaster Management Ministry of Home & Cultural Affairs Royal Government of Bhutan Bhutan Country Report for JPTM 2010 (July, 2010) Department of Disaster Management Ministry of Home & Cultural Affairs Royal Government of Bhutan 1 Contents of Presentation 1. Disaster Hazards and Underlying

More information

- facilitate the preparation of landslide inventory and landslide hazard zonation maps for the city, - development of precipitation thresholds,

- facilitate the preparation of landslide inventory and landslide hazard zonation maps for the city, - development of precipitation thresholds, Date of Submission 29.03.2012 IPL Project Proposal Form 2012 (MAXIMUM: 3 PAGES IN LENGTH) 1. Project Title: (2 lines maximum)-introducing Community-based Early Warning System for Landslide Hazard Management

More information

The Magnitude 7.2 Earthquake from the West Valley Fault: Implications for Metro Manila and Nearby Provinces

The Magnitude 7.2 Earthquake from the West Valley Fault: Implications for Metro Manila and Nearby Provinces The Magnitude 7.2 Earthquake from the West Valley Fault: Implications for Metro Manila and Nearby Provinces First DRI Collegiate Conference in the Philippines 16 March 2017 Renato U. Solidum, Jr. Department

More information

World Meteorological Organization

World Meteorological Organization Appendix VI Presentation on disaster risk reduction brainstorming session (1) World Meteorological Organization WMO DRR Programme Dieter C. Schiessl Director, Weather and Disaster Risk Reduction Services

More information

Initiative. Country Risk Profile: papua new guinea. Better Risk Information for Smarter Investments PAPUA NEW GUINEA.

Initiative. Country Risk Profile: papua new guinea. Better Risk Information for Smarter Investments PAPUA NEW GUINEA. Pacific Catastrophe Risk Assessment And Financing Initiative PAPUA NEW GUINEA September 211 Country Risk Profile: papua new is expected to incur, on average, 85 million USD per year in losses due to earthquakes

More information

Pacific Catastrophe Risk Assessment And Financing Initiative

Pacific Catastrophe Risk Assessment And Financing Initiative Pacific Catastrophe Risk Assessment And Financing Initiative PALAU September is expected to incur, on average,.7 million USD per year in losses due to earthquakes and tropical cyclones. In the next 5 years,

More information

By Lillian Ntshwarisang Department of Meteorological Services Phone:

By Lillian Ntshwarisang Department of Meteorological Services Phone: By Lillian Ntshwarisang Department of Meteorological Services Phone: +267 3612200 Email: lntshwarisang@gov.bw/ lntshwarisang@gmail.com Introduction Mandate of DMS Function of the Department Services to

More information

Volcanoes. Introduction

Volcanoes. Introduction Volcanoes Introduction Display Slide V-0 Explain that a volcano is a vent through which molten rock escapes to the Earth s surface. Unlike other mountains, which are pushed up from below, volcanoes are

More information

Also, when Cascade volcanoes do erupt, high-speed avalanches of pyroclastic flows

Also, when Cascade volcanoes do erupt, high-speed avalanches of pyroclastic flows INTRODUCTION A volcano is a vent through which molten rock escapes to the Earth s surface. Unlike other mountains, which are pushed up from below, volcanoes are built by surface accumulation of their eruptive

More information

Chapter: Earthquakes and Volcanoes

Chapter: Earthquakes and Volcanoes Table of Contents Chapter: Earthquakes and Volcanoes Section 1: Earthquakes Section 2: Volcanoes Section 3: Earthquakes, Volcanoes, and Plate Tectonics 1 Earthquakes What causes earthquakes? Elastic Rebound

More information

Introduction to Environmental Geology, 5e Case History: Indonesian Tsunami Indonesian Tsunami (2) Introduction Historic Tsunamis

Introduction to Environmental Geology, 5e Case History: Indonesian Tsunami Indonesian Tsunami (2) Introduction Historic Tsunamis 1 2 3 4 5 6 7 8 9 Introduction to Environmental Geology, 5e Chapter 7 Tsunami Case History: Indonesian Tsunami December 26, 2004, within a few hours, close to 250,000 people were killed With no warning

More information

Report on Disaster statistics of Nepal

Report on Disaster statistics of Nepal Report on Disaster statistics of Nepal Submitted by Altaf Rehman Submitted to Dr. Naveed Ahmed University of engineering and technology Peshawar Assignment 1 Section A Registration id 14PWCIV456 Page 1

More information

2014 Russell County Hazard Mitigation Plan Update STAKEHOLDERS AND TECHNICAL ADVISORS MEETING 2/6/14

2014 Russell County Hazard Mitigation Plan Update STAKEHOLDERS AND TECHNICAL ADVISORS MEETING 2/6/14 2014 Russell County Hazard Mitigation Plan Update STAKEHOLDERS AND TECHNICAL ADVISORS MEETING 2/6/14 Welcome and Introductions We cannot direct the wind, but we can adjust our sails. 44 CFR 201.6; Local

More information

Report of the Working Group 2 Data Sharing and Integration for Disaster Management *

Report of the Working Group 2 Data Sharing and Integration for Disaster Management * UNITED NATIONS E/CONF.104/6 ECONOMIC AND SOCIAL COUNCIL Twentieth United Nations Regional Cartographic Conference for Asia and the Pacific Jeju, 6-9 October 2015 Item 5 of the provisional agenda Report

More information

CapacityAssessmentofNational MeteorologicalandHydrological ServicesinSupportof DisasterRiskReduction

CapacityAssessmentofNational MeteorologicalandHydrological ServicesinSupportof DisasterRiskReduction CapacityAssessmentofNational MeteorologicalandHydrological ServicesinSupportof DisasterRiskReduction Analysisofthe2006WMO DisasterRiskReduction Country-levelSurvey Capacity Assessment of National Meteorological

More information

GLIDE: Global Unique Disaster Identifier for Effective Sharing of Disaster Information

GLIDE: Global Unique Disaster Identifier for Effective Sharing of Disaster Information 2018/SOM1/EPWG/023 Agenda Item: 12.1 GLIDE: Global Unique Disaster Identifier for Effective Sharing of Disaster Information Purpose: Information Submitted by: Japan 13 th Emergency Preparedness Working

More information

World Meteorological Organization

World Meteorological Organization World Meteorological Organization Opportunities and Challenges for Development of Weather-based Insurance and Derivatives Markets in Developing Countries By Maryam Golnaraghi, Ph.D. Head of WMO Disaster

More information

World Geography. WG.1.1 Explain Earth s grid system and be able to locate places using degrees of latitude and longitude.

World Geography. WG.1.1 Explain Earth s grid system and be able to locate places using degrees of latitude and longitude. Standard 1: The World in Spatial Terms Students will use maps, globes, atlases, and grid-referenced technologies, such as remote sensing, Geographic Information Systems (GIS), and Global Positioning Systems

More information

Name Date Class. radiate in all directions, carrying some of the. of plate boundaries have different usual patterns of.

Name Date Class. radiate in all directions, carrying some of the. of plate boundaries have different usual patterns of. Chapter Outline Earthquakes CHAPTER 6 Lesson 1: Earthquakes and Plate Boundaries A. What is an earthquake? 1. A(n) is the rupture and sudden movement of rocks along a fault. A fault is a fracture surface

More information

Pacific Catastrophe Risk Assessment And Financing Initiative

Pacific Catastrophe Risk Assessment And Financing Initiative Pacific Catastrophe Risk Assessment And Financing Initiative TIMOR-LESTE September Timor-Leste is expected to incur, on average, 5.9 million USD per year in losses due to earthquakes and tropical cyclones.

More information

Global Atmospheric Circulation. Past climate change and natural causes. Global climate change and human activity

Global Atmospheric Circulation. Past climate change and natural causes. Global climate change and human activity GCSE Geography Edexcel B Revision Checklist Paper 1. Global Geographical Issues Topic 1. Hazardous Earth Key Idea I know/ understand The world s climate system Global Atmospheric Circulation Past climate

More information

Earthquake hazards. Aims 1. To know how hazards are classified 2. To be able to explain how the hazards occur 3. To be able to rank order hazards

Earthquake hazards. Aims 1. To know how hazards are classified 2. To be able to explain how the hazards occur 3. To be able to rank order hazards Earthquake hazards Aims 1. To know how hazards are classified 2. To be able to explain how the hazards occur 3. To be able to rank order hazards Types of hazard Primary A direct result of the earthquake

More information

Baldwin County, Alabama

Baldwin County, Alabama 2015 Baldwin County, Alabama Multi-Hazard Mitigation Plan I. Comprehensive Plan A multi-jurisdiction plan City of Bay Minette City of Daphne Town of Elberta City of Fairhope City of Foley City of Gulf

More information

Title: Concepts of Flood Risk

Title: Concepts of Flood Risk Title: Concepts of Flood Risk Title Prepared by: Dr. Mohammed Abdulkadir and Dr. Micha Werner Outline of presentation Hazards Flood Event Flood losses Classification of floods Flood management Concepts

More information

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes Section 19.1 - Forces Within Earth 8 th Grade Earth & Space Science - Class Notes Stress and Strain Stress - is the total force acting on crustal rocks per unit of area (cause) Strain deformation of materials

More information

Use of geo-referenced data for DRM in Central Asia, problems and prospective

Use of geo-referenced data for DRM in Central Asia, problems and prospective Use of geo-referenced data for DRM in Central Asia, problems and prospective Dr. Akylbek Chymyrov Director, Kyrgyz Center of Geoinformation Systems Member of the Public Supervisory Board MES KR KSUCTA,

More information

Hazard Resilience Index (HRI) Earthquakes, Tsunamis, and Volcanoes

Hazard Resilience Index (HRI) Earthquakes, Tsunamis, and Volcanoes Hazard Index (HRI) Earthquakes, Tsunamis, and Volcanoes Earthquakes Tsunamis Volcano-Ash Falls, Projectiles and Lateral Blasts, Pyroclastic Flows and Lava Flows Earthquakes, Tsunamis and Volcanoes Please

More information