USE OF UNDERWATER RESISTIVITY IN THE ASSESSMENT OF GROUNDWATER-SURFACE WATER INTERACTION WITHIN THE BURD RUN WATERSHED. Abstract

Size: px
Start display at page:

Download "USE OF UNDERWATER RESISTIVITY IN THE ASSESSMENT OF GROUNDWATER-SURFACE WATER INTERACTION WITHIN THE BURD RUN WATERSHED. Abstract"

Transcription

1 USE OF UNDERWATER RESISTIVITY IN THE ASSESSMENT OF GROUNDWATER-SURFACE WATER INTERACTION WITHIN THE BURD RUN WATERSHED Paul A. Freyer, Temple University Geology, Philadelphia, PA Jonathan E. Nyquist, Temple University Geology, Philadelphia, PA Laura E. Toran, Temple University Geology, Philadelphia, PA Abstract Characterizing groundwater interaction with streams is essential for understanding contaminant transport. We are investigating the use of multielectrode resistivity to improve the detection of seepage points, and the mapping of gaining and losing stream reaches. Our field area is the Burd Run watershed, Shippensburg, PA. Burd Run is of interest as a geophysical test case because the stream is dilute where it flows from the metasedimentary ridge of South Mountain across a colluvium wedge. Fluid conductivity increases from 35 µs/cm to 440 µs/cm in three abrupt increments as the stream flows across the steeply dipping carbonate units of the Great Valley before discharging into Mill Spring Creek. The increases can be attributed to the introduction of carbonate groundwater, both from municipal discharge and from vertical seeps within the streambed. Continuous dipole-dipole surveys were conducted over a 107 m reach using a 28-electrode cable with a 1-m electrode spacing deployed on the streambed. The survey resolved the conductivity contrast of the streambed sediments over the carbonate bedrock and detected a vertical zone of higher electrical conductivity that correlates with observed streambed seeps. Introduction The quantification of groundwater-surface water interactions is vital to understanding contaminant movement and distribution, in addition to improving the management of water supplies (Wroblicky et al., 1998, Conant, 2004, Oxtobee et al., 2002). These interactions along streams and rivers can be quantified using point source monitoring equipment such as mini-piezometers, seepage meters and temperature surveys (Oxtobee et al., 2002). Exchange between groundwater-surface water regimes depends on many complex factors. Because these factors include bedrock topography, temporal climatic variations, sediment types, and hydrologic properties of the materials (Oxtobee et al., 2002, Cey et al., 1998), it can be problematic deciding where to deploy monitoring equipment and how to interpolate between point measurements. Conant (2004) used a grid of temperature sensors and mini-piezometers over a 60 m stretch of the Pine River in Ontario to quantify hydraulic flux through the streambed sediments overlying a contaminated aquifer. Over 400 temperature sensors were used in the study. Most of the streambed area covered by the temperature sensor grid experienced little or no groundwater contribution. Conant (2004) was able to delineate three discharge areas and showed evidence of fine-scale seepage variations. The region of intense study, however, represented only a fraction of the total stream length. Applying these point source measurement techniques over large areas would be prohibitively expensive and time consuming. The distribution of monitoring equipment needs to be guided by an understanding of the subsurface geology. Electromagnetic and 2D electrical resistivity techniques have been used on land to identify points of accelerated contaminant transport in karst terrain. Ahmed and Carpenter (2003)

2 focused on geophysical signals that are likely to result from geologic heterogeneities that yield preferential hydraulic conduits or barriers. Zhou et al. (2000) discussed the difficulties in determining the depth to bedrock, thickness of resistivity horizons and the need for calibration with core data. In our previous work using land-based resistivity surveys to characterize karst (Jenkins and Nyquist, 1999; Mackey et al., 1999; Roth et al., 2000: Roth et al., 2002; Nyquist and Roth, 2005), we found that resistivity tomography surveys in areas with limestone bedrock are sensitive to changes in the thickness of overlying, electrically-conductive clay sediments. Thickness and distribution of clay sediments are also important factors controlling seepage in streams. The goal of our current research is to investigate whether 2D electrical resistivity tomography surveys can aid in the delineation of groundwater-surface water exchange points, either directly, by detecting the upwelling of conductive groundwater, or indirectly, by mapping geologic heterogeneities that control the streambed s hydraulic transmissivity. Background The Burd Run Watershed is located in Shippensburg, PA 150 miles west of Philadelphia in Cumberland County, as shown in Figure 1. The stream flows northwest from South Mountain down into Great Valley. Metasedimentary, metaigneous, and carbonate complexes underlie Burd Run. The metasedimentary and metaigneous formations are topographically expressed as South Mountain. Fractured, steeply dipping, Cambrian and Ordovician carbonates dominate the Great Valley. A prominent sedimentary feature affecting regional hydrologic flow is the presence of a colluvium wedge between South Mountain and the valley floor. The majority of the carbonate units are mantled by variable thicknesses of clays and fluvial sediments, limiting the bedrock exposures (Lindsay, 2005). Lindsay (2005) presented fluid conductivity measurements around the region in association with groundwater modeling of local and regional flow systems. The increase of stream water conductivity between the headwaters of Burd Run (30 µs/cm) and the discharge point in Middle Spring Creek (500 µs/cm) implied the influx of groundwater throughout the valley. We collected additional fluid conductivity measurements to constrain the losing and gaining reaches of Burd Run. This allowed us to focus our resistivity tests on stream reaches most likely to have groundwater-surface water exchange. The results presented here cover a stretch of Burd Run that we refer to as Craig s Reach. Craig s Reach is a channelized portion of Burd Run bounded by soy fields and landscaped private property. The geology provided a significant contrast in resistivity values. The geologic setting combined with the visual confirmation of seeps along the reach made it an ideal study location. Field Methods Preliminary Conductivity Survey To discern segments of Burd Run that experience the greatest influx of groundwater, we collected fluid conductivity measurements using a handheld conductivity and temperature meter (Figures 2 and 3). All measurement values were recorded in µs/cm and degrees Centigrade. We began with a reconnaissance conductivity survey using a coarse distribution of sampling points across the watershed. For convenience, conductivity measurements were primarily collected where Burd Run intersected a road, driveway, or railroad bed, which resulted in measurements roughly 500 m apart. We also collected water samples at each conductivity measurement point for analysis of major cations and anions using ion chromatography. We identified the reaches of Burd Run with the greatest increases in fluid conductivity values by plotting measurements in ArcGIS. Stream segments that showed fluid conductivity increases greater than 50 µs/cm between measurement points in the reconnaissance survey

3 Figure 1. (a) General outline of Pennsylvania with a black box highlighting the Shippensburg area between Cumberland and Franklin Counties. (b) Combined portions of the Walnut Bottom Quad and Shippensburg Quad. The numbers on the topographic map represent: (1) Shippensburg University, (2) South Mountain, (3) piped well water discharging into Burd Run, (4) spring water that flows through a ditch into Burd Run, and (5) Craig s Reach. Note: The colluvium cover extends from the slope of South Mountain (near 3) to the valley floor (near 4). (c) Aerial photograph over a segment of Burd Run highlighting Craig s Reach. were then surveyed on a meter scale by walking down those reaches. We combined a visual inspection of the streambed and banks with the results of the refined conductivity survey to locate seeps and springs. Underwater Resistivity Surveys A Marine SuperSting R8/IP (Advance Geosciences Inc.) was used to carry out a 107 m dipoledipole tomography survey along Craig s Reach. For this survey we employed a waterproof cable with 28 passive stainless steel electrodes spaced 1 m apart (Figure 3). Current and voltage switching was controlled within the SuperSting. The resulting profile depth for a dipole-dipole sounding was roughly 6 m. To produce a continuous 107-m profile, we overlapped each successive sounding by 17 m.

4 EarthImager2D was used to invert the composite pseudosection, yielding the continuous resistivity profile along Craig s Reach. We measured water depths above each electrode, so the water layer thickness and conductivity was included in the data inversion process. Bed forms, spring locations, and notable channel features were recorded while each profile was being sounded. Sediment samples were collected to determine the resistivities of the fluvial sediments and the mantle of clay over the carbonate bedrock. EM31 Conductivity Survey We collected terrain conductivity data using a Geonics EM31 (Figure 3) for comparison to the dipole-dipole survey. The EM31 was kept at a height of 1 m above the water surface, with the exception of one deep pool where the instrument was close to the water surface. The penetration depth of the EM31 is roughly 6 m, which is comparable to the maximum depth of investigation for the dipole-dipole configuration used in the resistivity survey. 500 Surface-water Conductivity Variability Along Burd Run 450 Fluid Conductivity (µs/cm) a b c Distance (km) Figure 2. Plot of fluid conductivity values collect along Burd Run during our preliminary survey. (a) Increase in conductivity attributed to the addition of well water from unfinished subdivision piped into Burd Run. (b) Increase in conductivity resulting from a spring that discharges via a ditch into Burd Run. (c) Contributions made by springs and seeps along Craig s Reach.

5 Figure 3. Field photographs: (a) Fluid conductivity and temperature data being collected at Shippensburg University. (b) EM31 survey line at Craig s Reach in the deep pool seen in the resistivity profile. (c) Dipole-dipole 2D resistivity sounding along Craig s Reach. The inset in the bottom left corner shows a magnification of the electrode.

6 Results and Discussion Surface Water Conductivity Results The reconnaissance fluid conductivity survey yielded conductivity values that ranged from 35 µs/cm near the headwaters of South Mountain to 440 µs/cm at Shippensburg University before Burd Run discharges into Middle Spring Creek. The primary increase in conductivity along the flank of South Mountain is attributed to a pipe that discharges groundwater from a well in a subdivision development project into Burd Run. A second jump in fluid conductivity occurs where a spring-fed pond discharges into Burd Run via a drainage ditch. This is located southwest of the intersection of Pennsylvania State Route 174 and Airport Road. The third notable increase in fluid conductivity results from a series of springs located in a stretch of Burd Run that begins at Craig s Reach and extends to Shippensburg University. Consequently, we targeted this area for our investigation. Underwater Resistivity Results The resistivity profile in Figure 4a shows that the resistivity of the shallow streambed sediments ranges from 100 ohm-m to 400 ohm-m. Based on auger samples, this shallow, relatively resistive layer is a sandy-clay loam with coarse gravel at the stream/sediment interface. Beneath this layer is a significantly less resistive unit, with resistivity values ranging from 20 ohm-m to 60 ohm-m. This corresponds to a clay unit we encountered while augering. Below the clay layer, from positions 11 m to 56 m along the line, there is a more resistive unit at the base of the resistivity section. We were not able to hand auger down to the bedrock, but this resistive feature (Figure 4a) is probably a bedrock pinnacle with a subvertical expression of the dip in the Stonehenge and Shady Grove Formations. The lowerresistivity vertical features within the pinnacle might be attributed to downward translocation of clays along the bedding planes, weathering of micritic limestone, or the vertical flow of conductive fluids. The seeps that were discovered along Craig s Reach during the investigation correlated to this bedrock high in the resistivity profile. EM31 Results Figure 4b shows EM31 data plotted as resistivity versus distance along the line for the same stretch as the underwater resistivity profile. In general, the apparent resistivity values ranged from 60 ohm-m to 90 ohm-m. The data collected from the first 5 m of the line were omitted from the plot. The anomaly removed was due to a rebar-enforced bridge at the start of the Craig s Reach survey line that exceeded the operating range of the EM31. The EM31 profile failed to differentiate the location of the seeps within the first 60 m of the line. The signal seems most sensitive to the depth of the clay layer, returning lower resistivity values at the east end of the profile line and higher resistivity values at the west end of the profile line. Conclusions Using fluid conductivity values on a coarse interval throughout a watershed identified stretches where groundwater contributions to the surface water were being made on a scale of m. The change in fluid conductivity in the surface waters did not help in identifying the losing stretches of Burd Run. Furthermore, meter-scale mapping revealed that the groundwater discharge into the stream was occurring at distinct points controlled by geologic heterogeneity. The continuous dipole-dipole resistivity survey along Craig s Reach shows the variation of sediment types with depth beneath Burd Run. Given the large contrast in resistivity between the sediment and rock units, resistivity is highly sensitive to the thickness of the sediments and depth to

7 carbonate bedrock. Two lower resistivity zones within the carbonate bedrock correspond to the seeps observed in the streambed above. The vertical orientation of these zones is parallel to the dip of the bedding of the Stonehenge and Shady Grove Formations. Underwater 2D electrical resistivity tomography was successful in locating an interaction point along Craig s Reach. Consequently, this method has the potential for application in other such similar settings, particularly in guiding the placement of seepage point monitoring equipment. We plan to collect additional ground truth information to ascertain the layer thickness in the resistivity section, including a tile probe survey of bedrock depths and three sediment cores along Craig s Reach. We will also install a series of temperature loggers to detect inflow or outflow for comparison with the resistivity results. The resistivity survey along Craig s reach was conducted under base flow conditions. In the spring of 2006, when the stream conductivity falls due to increased rainwater and snowmelt, we will repeat the resistivity line to determine if the increase between the fluid conductivity of the stream and groundwater improves seepage detection. Figure 4. (a) Continuous dipole-dipole survey over Craig s Reach. Vertical exaggeration is 3x. (b) EM31 profile of the first 100 m of Craig s Reach. The gray shaded area represents the section of the reach where seeps are known to be. We interpreted the low resistivity layer starting at a depth of 1.6 m to be clay. More resistive sandy-clay loam lies above the clay layer. The resistive body at the base of the resistivity profile, between 11 m and 56 m, is interpreted to be a limestone pinnacle that contains two vertical low-resistivity zones that correspond to the known seep locations on the surface.

8 References Ahmed, S., Carpenter, P.J., 2003, Geophysical response of filled sinkholes, soil pipes and associated bedrock fractures in thinly mantles karst, east-central Illinois, Environmental Geology, 44, Conant, B., 2004, Delineating and quantifying ground water discharge zones using streambed temperatures, Ground Water, 42, Jenkins, S. A., and Nyquist, J. E., 1999, An investigation into the factors causing sinkhole development at a site in Northampton County, Pennsylvania, in Proceedings of the Seventh Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst, Lindsay, B., 2005, Hydrogeology and simulation of source areas of water to production wells in a colluvium-mantled carbonate-bedrock aquifer near Shippensburg, Cumberland and Franklin Counties, Pennsylvania, USGS Scientific Investigations Report Mackey, J.R., Roth, M.J.S., and Nyquist, J.E., 1999, Case study: Site characterization methods in karst, in Geo-Engineering for Underground Facilities, in Geotechnical Special Publication No. 90, G. Fernandez and R. Bauer, eds., ASCE, Reston, VA, Nyquist, J. E. and M. J. S. Roth, 2005, Improved 3D pole-dipole resistivity surveys using radial measurement pairs, Geophy. Res. Lett., 32, no. 21, L Oxtobee, J.P.A., Novakowski, K., 2002, A field investigation of groundwater/surface water interaction in a fractured bedrock environment, Journal of Hydrology, 269, Roth, M. J. S., Mackey, J.R., Mackey, C., and Nyquist, J.E., 2002, A case study of the reliability of multielectrode earth resistivity testing for geotechnical investigations in karst terrains: Engineering Geology, 65, Roth, M.J.S, Nyquist J.E., and Guzas B., 2000, Locating subsurface voids in karst: a comparison of multi-electrode earth resistivity testing and gravity testing: Proceedings of the Symposium on the Application of Geophysics to Environmental and Engineering Problems (SAGEEP 2000), Washington, D.C., February 20-24, Wroblicky, G.J., Campana, M.E., Valett, H.M., Dahm, C.N., 2002, Seasonal variation in a surfacesubsurface exchange and lateral hyporheic area of two stream-aquifer systems, Water Resources Research, 34, Zhou, W., Stephenson, J.B., 2000, Reliability of dipole-dipole electrical resistivity tomography for defining depth to bedrock in covered karst terranes, Environmental Geology, 39, Acknowledgements We thank the National Science Foundation for funding that allowed us to purchase the Marine SuperSting used in this project (Grant EAR ). We also thank the Craig family for permission to work on their property. Invaluable information on the Shippensburg area and updates on the stage conditions of Burd Run were provided by Dr. Christopher Woltemade of Shippensburg University. Bruce Lindsey of the USGS introduced us to the study site and provided extremely useful background data.

Comparison of an optimized resistivity array with dipole-dipole soundings in karst terrain

Comparison of an optimized resistivity array with dipole-dipole soundings in karst terrain GEOPHYSICS, VOL. 7, NO. JULY-AUGUST 7 ; P. F19 F1, 8 FIGS. 1.119/1.799 Comparison of an optimized resistivity array with dipole-dipole soundings in karst terrain Jonathan E. Nyquist 1, John S. Peake, and

More information

Geophysical Exploration in Water Resources Assessment. John Mundell, P.E., L.P.G., P.G. Ryan Brumbaugh, L.P.G. Mundell & Associates, Inc.

Geophysical Exploration in Water Resources Assessment. John Mundell, P.E., L.P.G., P.G. Ryan Brumbaugh, L.P.G. Mundell & Associates, Inc. Geophysical Exploration in Water Resources Assessment John Mundell, P.E., L.P.G., P.G. Ryan Brumbaugh, L.P.G. Mundell & Associates, Inc. Presentation Objective Introduce the use of geophysical survey methods

More information

Seismic Reflection Imaging across the Johnson Ranch, Valley County, Idaho

Seismic Reflection Imaging across the Johnson Ranch, Valley County, Idaho Seismic Reflection Imaging across the Johnson Ranch, Valley County, Idaho Report Prepared for the Skyline Corporation Lee M. Liberty Center for Geophysical Investigation of the Shallow Subsurface (CGISS)

More information

KARST MAPPING WITH GEOPHYSICS AT MYSTERY CAVE STATE PARK, MINNESOTA

KARST MAPPING WITH GEOPHYSICS AT MYSTERY CAVE STATE PARK, MINNESOTA KARST MAPPING WITH GEOPHYSICS AT MYSTERY CAVE STATE PARK, MINNESOTA By Todd A. Petersen and James A. Berg Geophysics Program Ground Water and Climatology Section DNR Waters June 2001 1.0 Summary A new

More information

Case Study: University of Connecticut (UConn) Landfill

Case Study: University of Connecticut (UConn) Landfill Case Study: University of Connecticut (UConn) Landfill Problem Statement:» Locate disposal trenches» Identify geologic features and distinguish them from leachate and locate preferential pathways in fractured

More information

Essentials of Geology, 11e

Essentials of Geology, 11e Essentials of Geology, 11e Groundwater Chapter 10 Instructor Jennifer Barson Spokane Falls Community College Geology 101 Stanley Hatfield Southwestern Illinois Co Jennifer Cole Northeastern University

More information

Applied Geophysics for Environmental Site Characterization and Remediation

Applied Geophysics for Environmental Site Characterization and Remediation Applied Geophysics for Environmental Site Characterization and Remediation MSECA Webinar September 24, 2015 John Mundell, P.E., L.P.G. Ryan Brumbaugh, L.P.G. MUNDELL & ASSOCIATES, INC. Webinar Objective

More information

MARINE RESISTIVITY AS A TOOL FOR CHARACTERIZING ZONES OF SEEPAGE AT LAKE LACAWAC, PA. Abstract

MARINE RESISTIVITY AS A TOOL FOR CHARACTERIZING ZONES OF SEEPAGE AT LAKE LACAWAC, PA. Abstract MARINE RESISTIVITY AS A TOOL FOR CHARACTERIZING ZONES OF SEEPAGE AT LAKE LACAWAC, PA Matthew J. Heaney, Temple University, Philadelphia, PA Jonathan E. Nyquist, Temple University, Philadelphia, PA Laura

More information

Geophysics for Environmental and Geotechnical Applications

Geophysics for Environmental and Geotechnical Applications Geophysics for Environmental and Geotechnical Applications Dr. Katherine Grote University of Wisconsin Eau Claire Why Use Geophysics? Improve the quality of site characterization (higher resolution and

More information

IMAGING OF DEEP SINKHOLES USING THE MULTI-ELECTRODE RESISTIVITY IMPLANT TECHNIQUE (MERIT) CASE STUDIES IN FLORIDA

IMAGING OF DEEP SINKHOLES USING THE MULTI-ELECTRODE RESISTIVITY IMPLANT TECHNIQUE (MERIT) CASE STUDIES IN FLORIDA IMAGING OF DEEP SINKHOLES USING THE MULTI-ELECTRODE RESISTIVITY IMPLANT TECHNIQUE (MERIT) CASE STUDIES IN FLORIDA David Harro The G3 Group, 2509 Success Drive, Suite 1, Odessa, FL 33556, david.harro@geo3group.com

More information

APPLICATION OF RESISTIVITY SURVEY TO INVESTIGATE SINKHOLE AND KARST FEATURES IN SOUTHERN THAILAND : A CASE STUDY OF PAKJAM AREA

APPLICATION OF RESISTIVITY SURVEY TO INVESTIGATE SINKHOLE AND KARST FEATURES IN SOUTHERN THAILAND : A CASE STUDY OF PAKJAM AREA GEOTHAI 07 International Conference on Geology of Thailand: Towards Sustainable Development and Sufficiency Economy APPLICATION OF RESISTIVITY SURVEY TO INVESTIGATE SINKHOLE AND KARST FEATURES IN SOUTHERN

More information

12 10 8 6 4 2 0 40-50 50-60 60-70 70-80 80-90 90-100 Fresh Water What we will cover The Hydrologic Cycle River systems Floods Groundwater Caves and Karst Topography Hot springs Distribution of water in

More information

TRACKING TRACER BREAKTHROUGH IN THE HYPORHEIC ZONE USING TIME-LAPSE DC RESISTIVITY, CRABBY CREEK, PENNSYLVANIA. Abstract

TRACKING TRACER BREAKTHROUGH IN THE HYPORHEIC ZONE USING TIME-LAPSE DC RESISTIVITY, CRABBY CREEK, PENNSYLVANIA. Abstract TRACKING TRACER BREAKTHROUGH IN THE HYPORHEIC ZONE USING TIME-LAPSE DC RESISTIVITY, CRABBY CREEK, PENNSYLVANIA Jonathan E. Nyquist, Temple University, Philadelphia, PA Laura Toran, Temple University, Philadelphia,

More information

Geophysical Characterization and Monitoring of Groundwater/Surface-Water Interaction in the Hyporheic Corridor at the Hanford 300 Area

Geophysical Characterization and Monitoring of Groundwater/Surface-Water Interaction in the Hyporheic Corridor at the Hanford 300 Area Geophysical Characterization and Monitoring of Groundwater/Surface-Water Interaction in the Hyporheic Corridor at the Hanford 300 Area L. Slater 1, F. Day-Lewis 2, R. Versteeg 3, A. Ward 4, J. Lane 2,

More information

REPORT OF GEOPHYSICAL SURVEY

REPORT OF GEOPHYSICAL SURVEY REPORT OF GEOPHYSICAL SURVEY KARST IMAGING STUDY CADIZ INDUSTRIAL PARK CADIZ, TRIGG COUNTY, KY MUNDELL PROJECT NO. M NOVEMBER, South Downey Avenue, Indianapolis, Indiana - Telephone --, Facsimile -- www.mundellassociates.com

More information

RESISTIVITY IMAGING IN EASTERN NEVADA USING THE AUDIOMAGNETOTELLURIC METHOD FOR HYDROGEOLOGIC FRAMEWORK STUDIES. Abstract.

RESISTIVITY IMAGING IN EASTERN NEVADA USING THE AUDIOMAGNETOTELLURIC METHOD FOR HYDROGEOLOGIC FRAMEWORK STUDIES. Abstract. RESISTIVITY IMAGING IN EASTERN NEVADA USING THE AUDIOMAGNETOTELLURIC METHOD FOR HYDROGEOLOGIC FRAMEWORK STUDIES Darcy K. McPhee, U.S. Geological Survey, Menlo Park, CA Louise Pellerin, Green Engineering,

More information

Surface Processes Focus on Mass Wasting (Chapter 10)

Surface Processes Focus on Mass Wasting (Chapter 10) Surface Processes Focus on Mass Wasting (Chapter 10) 1. What is the distinction between weathering, mass wasting, and erosion? 2. What is the controlling force in mass wasting? What force provides resistance?

More information

High Resolution Geophysics: A Better View of the Subsurface. By John Jansen, P.G., Ph.D., Aquifer Science and Technology

High Resolution Geophysics: A Better View of the Subsurface. By John Jansen, P.G., Ph.D., Aquifer Science and Technology High Resolution Geophysics: A Better View of the Subsurface By John Jansen, P.G., Ph.D., Aquifer Science and Technology Geologist Use Only Part of the Information Available To Them Most Geologist rely

More information

GEOPHYSICAL IMAGING TO ENHANCE ANALYSIS, DESIGN AND DRILLING OF LARGE-SCALE GEOTHERMAL SYSTEMS. Abstract

GEOPHYSICAL IMAGING TO ENHANCE ANALYSIS, DESIGN AND DRILLING OF LARGE-SCALE GEOTHERMAL SYSTEMS. Abstract GEOPHYSICAL IMAGING TO ENHANCE ANALYSIS, DESIGN AND DRILLING OF LARGE-SCALE GEOTHERMAL SYSTEMS John A. Mundell, Mundell & Associates, Inc., Indianapolis, Indiana Gabriel Hebert, Mundell & Associates, Inc.,

More information

Chapter 14. Groundwater

Chapter 14. Groundwater Chapter 14 Groundwater Importance of groundwater! Groundwater is water found in the pores of soil and sediment, plus narrow fractures in bedrock! Groundwater is the largest reservoir of fresh water that

More information

Florida s Karst Geology

Florida s Karst Geology Florida s Karst Geology Orange Creek Basin Interagency Working Group Public Workshop, November 5 th, 2015 Harley Means, P.G. Assistant State Geologist Florida Geological Survey Karst Karst a type of topography

More information

Mustafa Saribudak Environmental Geophysics Associates, 2000 Cullen Avenue, Number 7, Austin, TX, 78757, USA,

Mustafa Saribudak Environmental Geophysics Associates, 2000 Cullen Avenue, Number 7, Austin, TX, 78757, USA, THE MILLION DOLLAR QUESTION: WHICH GEOPHYSICAL METHODS LOCATE CAVES BEST OVER THE EDWARDS AQUIFER? A POTPOURRI OF CASE STUDIES FROM SAN ANTONIO AND AUSTIN, TEXAS, USA Mustafa Saribudak Environmental Geophysics

More information

Impact of the Danube River on the groundwater dynamics in the Kozloduy Lowland

Impact of the Danube River on the groundwater dynamics in the Kozloduy Lowland GEOLOGICA BALCANICA, 46 (2), Sofia, Nov. 2017, pp. 33 39. Impact of the Danube River on the groundwater dynamics in the Kozloduy Lowland Peter Gerginov Geological Institute, Bulgarian Academy of Sciences,

More information

http://dx.doi.org/10/1061/40698(2003)19 Green, J., Pavlish, J., Leete, J., and Alexander, Jr., E. (2003) Quarrying Impacts on Groundwater Flow Paths. Sinkholes and the Engineering and Environmental Impacts

More information

Application of geophysical results to designing bridge. over a large fault

Application of geophysical results to designing bridge. over a large fault Application of geophysical results to designing bridge over a large fault Ho-Joon Chung 1, Jung-Ho Kim 2, Keun-Pil Park 2, Hyoung-Seok Kwon 1, Ho-Sik Choi 3, Ki-Seog Kim 4, Jong-Soo Kim 5 1 Manager, HeeSong

More information

PHASE 1 STUDIES UPDATE EROSION WORKING GROUP

PHASE 1 STUDIES UPDATE EROSION WORKING GROUP PHASE 1 STUDIES UPDATE EROSION WORKING GROUP Presented By MICHAEL WOLFF, PG Erosion Study Area Manager West Valley Demonstration Project Quarterly Public Meeting February 24, 2016 OUTLINE Study 1 Terrain

More information

2 Geology. 2.1 Elements of Terrane Analysis. Terrane or Terrain? Potential receptors

2 Geology. 2.1 Elements of Terrane Analysis. Terrane or Terrain? Potential receptors 2 Geology Knowledge of fractured rock geology, or terrane, provides important context for investigating contaminated sites. Tectonic forces impart characteristic structures on rock formations that influence

More information

Mitigation of Gypsum Mine Voids Under SR-2 in Ottawa County, Ohio

Mitigation of Gypsum Mine Voids Under SR-2 in Ottawa County, Ohio Subsurface Investigation and Conceptual Alternatives Mitigation of Gypsum Mine Voids Under SR-2 in Ottawa County, Ohio Presented By: Ohio Department of Transportation CH2M HILL CTL Engineering Technos,

More information

A Case Study of High-Resolution Gravity and Wenner-Schlumberger Resistivity for Geotechnical Engineering: An Example from North Jordan

A Case Study of High-Resolution Gravity and Wenner-Schlumberger Resistivity for Geotechnical Engineering: An Example from North Jordan Research Journal of Applied Sciences, Engineering and Technology 5(4): 1377-1382-, 2013 ISSN: 2040-7459; e-issn: 2040-7467 Maxwell Scientific Organization, 2013 Submitted: July 09, 2012 Accepted: August

More information

Simulating the groundwater discharge to wetlands. Mukwonago Basin Example and Potential Application in Dane County

Simulating the groundwater discharge to wetlands. Mukwonago Basin Example and Potential Application in Dane County Simulating the groundwater discharge to wetlands Mukwonago Basin Example and Potential Application in Dane County Conceptual Model Topography is major control on flow to wetlands Land Surface Water Table

More information

EMERGENCY INVESTIGATION OF EXTREMELY LARGE SINKHOLES, MAOHE, GUANGXI, CHINA

EMERGENCY INVESTIGATION OF EXTREMELY LARGE SINKHOLES, MAOHE, GUANGXI, CHINA EMERGENCY INVESTIGATION OF EXTREMELY LARGE SINKHOLES, MAOHE, GUANGXI, CHINA Mingtang Lei, Xiaozhen Jiang, Zhende Guan Institute of Karst Geology, CAGS, Guilin, China, mingtanglei@hotmail.com Yongli Gao

More information

Section 4: Model Development and Application

Section 4: Model Development and Application Section 4: Model Development and Application The hydrologic model for the Wissahickon Act 167 study was built using GIS layers of land use, hydrologic soil groups, terrain and orthophotography. Within

More information

Subsurface Geology of the Kennebec River

Subsurface Geology of the Kennebec River Maine Geologic Facts and Localities July, 1998 Subsurface Geology of the Kennebec River 43 54 40.75 N, 69 48 29.01 W Text by Daniel B. Locke, Department of Agriculture, Conservation & Forestry 1 Map by

More information

USE OF GEOPHYSICAL SURVEYS FOR FILL CHARACTERIZATION AND QUANTITY ESTIMATION AT BROWNFIELD SITES A CASE HISTORY. Abstract

USE OF GEOPHYSICAL SURVEYS FOR FILL CHARACTERIZATION AND QUANTITY ESTIMATION AT BROWNFIELD SITES A CASE HISTORY. Abstract USE OF GEOPHYSICAL SURVEYS FOR FILL CHARACTERIZATION AND QUANTITY ESTIMATION AT BROWNFIELD SITES A CASE HISTORY John A. Mundell, Mundell & Associates, Inc., Indianapolis, IN Gregory B. Byer, Mundell &

More information

GROUNDWATER PATHWAY MAPPING USING AIRBORNE GEOPHYSICS: TWO CASE STUDIES

GROUNDWATER PATHWAY MAPPING USING AIRBORNE GEOPHYSICS: TWO CASE STUDIES GROUNDWATER PATHWAY MAPPING USING AIRBORNE GEOPHYSICS: TWO CASE STUDIES Wayne Mandell 1, T. Jeffrey Gamey 2, William Doll 2 1 U.S. Army Environmental Center, Aberdeen Proving Ground, Maryland, 21010 (wayne.mandell@aec.apgea.army.mil)

More information

Geophysical Methods for Screening and Investigating Utility Waste Landfill Sites in Karst Terrain

Geophysical Methods for Screening and Investigating Utility Waste Landfill Sites in Karst Terrain Geophysical Methods for Screening and Investigating Utility Waste Landfill Sites in Karst Terrain Gary Pendergrass, PE, RG, F.NSPE Principal Geological Engineer Kansas City Geotechnical Conference 2017

More information

Geological Mapping using Geophysics

Geological Mapping using Geophysics Geological Mapping using Geophysics Pugin, A.J.M. and T.H. Larson Illinois State Geological Survey, 615 E Peabody Dr., Champaign, IL 61820; E-mail: A.J.M. Pugin at pugin@isgs.uiuc.edu Mapping Techniques.

More information

UTC R161. Geotechnical Site Characterization of Transportation Construction Sites and Structures. Neil L. Anderson. Derek B. Apel.

UTC R161. Geotechnical Site Characterization of Transportation Construction Sites and Structures. Neil L. Anderson. Derek B. Apel. Geotechnical Site Characterization of Transportation Construction Sites and Structures Assessment Of Karst Activity At Highway Construction Sites In Greene And Jefferson Counties, Missouri, Using The Electrical

More information

DEEP KARST CONDUITS, FLOODING, AND SINKHOLES: LESSONS FOR THE AGGREGATES INDUSTRY

DEEP KARST CONDUITS, FLOODING, AND SINKHOLES: LESSONS FOR THE AGGREGATES INDUSTRY DEEP KARST CONDUITS, FLOODING, AND SINKHOLES: LESSONS FOR THE AGGREGATES INDUSTRY James L. Lolcama, Harvey A. Cohen, & Matthew J. Tonkin, S.S. Papadopulos & Associates, Inc., 7944 Wisconsin Ave., Bethesda,

More information

Soils, Hydrogeology, and Aquifer Properties. Philip B. Bedient 2006 Rice University

Soils, Hydrogeology, and Aquifer Properties. Philip B. Bedient 2006 Rice University Soils, Hydrogeology, and Aquifer Properties Philip B. Bedient 2006 Rice University Charbeneau, 2000. Basin Hydrologic Cycle Global Water Supply Distribution 3% of earth s water is fresh - 97% oceans 1%

More information

ambiguity in earth sciences IESO Geophysics Section Eddy hartantyo, Lab Geofisika FMIPA UGM

ambiguity in earth sciences IESO Geophysics Section Eddy hartantyo, Lab Geofisika FMIPA UGM ambiguity in earth sciences IESO Geophysics Section Eddy hartantyo, Lab Geofisika FMIPA UGM Pelatihan Tahap II IESO Teknik Geologi UGM Februari 2009 1 Introduction Photos from http://www.eegs.org/whatis/

More information

11/22/2010. Groundwater in Unconsolidated Deposits. Alluvial (fluvial) deposits. - consist of gravel, sand, silt and clay

11/22/2010. Groundwater in Unconsolidated Deposits. Alluvial (fluvial) deposits. - consist of gravel, sand, silt and clay Groundwater in Unconsolidated Deposits Alluvial (fluvial) deposits - consist of gravel, sand, silt and clay - laid down by physical processes in rivers and flood plains - major sources for water supplies

More information

Geophysical Case studies From Texas

Geophysical Case studies From Texas Geophysical Case studies From Texas 1 PRESENTATION OUTLINE Active Growth Faults in Metropolitan Houston 1. Hockley 2. Tomball 3. Long Point 4. Pearland Foundation Case Studies Karst Geophysics in Austin:

More information

Hydrogeology of Karst NE Wisconsin. Dr. Maureen A. Muldoon UW-Oshkosh Geology Department

Hydrogeology of Karst NE Wisconsin. Dr. Maureen A. Muldoon UW-Oshkosh Geology Department Hydrogeology of Karst NE Wisconsin Dr. Maureen A. Muldoon UW-Oshkosh Geology Department WI Bedrock Outline Karst Landscapes Existing WQ Data Flow in Karst Aquifers Overview of Silurian Aquifer Water Level

More information

KRIS wsbssm. IBHiiilll

KRIS wsbssm. IBHiiilll KRIS wsbssm IBHiiilll Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/engineeringaspec34ekbl STATE OF ILLINOIS HENRY HORNER,

More information

FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 241 TO 235, SACRAMENTO RIVER

FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 241 TO 235, SACRAMENTO RIVER FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 241 TO 235, SACRAMENTO RIVER Eric W. Larsen University of California, Davis With the assistance of Evan Girvetz REPORT

More information

FRACTURE TRACES AND PRODUCTIVITY OF MUNICIPAL WELLS IN THE MADISON LIMESTONE, RAPID CITY, SOUTH DAKOTA

FRACTURE TRACES AND PRODUCTIVITY OF MUNICIPAL WELLS IN THE MADISON LIMESTONE, RAPID CITY, SOUTH DAKOTA Proceedings of the South Dakota Academy of Science, Vol. 87 (2008) 261 FRACTURE TRACES AND PRODUCTIVITY OF MUNICIPAL WELLS IN THE MADISON LIMESTONE, RAPID CITY, SOUTH DAKOTA Perry H. Rahn Department of

More information

Geophysical Surveys for Groundwater Modelling of Coastal Golf Courses

Geophysical Surveys for Groundwater Modelling of Coastal Golf Courses 1 Geophysical Surveys for Groundwater Modelling of Coastal Golf Courses C. RICHARD BATES and RUTH ROBINSON Sedimentary Systems Research Group, University of St. Andrews, St. Andrews, Scotland Abstract

More information

ELECTRICAL RESISTIVITY SURVEYS AT THE ANDERSON RESIDENCE SITE, PORT CLYDE, ME. For: St.Germain-Collins

ELECTRICAL RESISTIVITY SURVEYS AT THE ANDERSON RESIDENCE SITE, PORT CLYDE, ME. For: St.Germain-Collins ELECTRICAL RESISTIVITY SURVEYS AT THE ANDERSON RESIDENCE SITE, PORT CLYDE, ME For: St.Germain-Collins 4 Union Street, Suite 3 Bangor, Maine 441 July, 218 ELECTRICAL RESISTIVITY SURVEYS AT THE ANDERSON

More information

Development of geophysical investigation for verifying treatment efficiency of underground cavities

Development of geophysical investigation for verifying treatment efficiency of underground cavities Development of geophysical investigation for verifying treatment efficiency of underground cavities Hasan A. Kamal* Kuwait Institute for Scientific Research, Infrastructure Risk and Reliability Program,

More information

Prof. Stephen A. Nelson EENS 111. Groundwater

Prof. Stephen A. Nelson EENS 111. Groundwater Page 1 of 8 Prof. Stephen A. Nelson EENS 111 Tulane University Physical Geology This page last updated on 20-Oct-2003 is water that exists in the pore spaces and fractures in rock and sediment beneath

More information

Azimuthal Resistivity to Characterize Fractures in a Glacial Till. Mark Boris, University of Saskatchewan Jim Merriam, University of Saskatchewan

Azimuthal Resistivity to Characterize Fractures in a Glacial Till. Mark Boris, University of Saskatchewan Jim Merriam, University of Saskatchewan Azimuthal Resistivity to Characterize Fractures in a Glacial Till Mark Boris, University of Saskatchewan Jim Merriam, University of Saskatchewan Abstract Azimuthal resistivity was used to characterize

More information

INVESTIGATIONS OF LARGE SCALE SINKHOLE COLLAPSES, LAIBIN, GUANGXI, CHINA

INVESTIGATIONS OF LARGE SCALE SINKHOLE COLLAPSES, LAIBIN, GUANGXI, CHINA INVESTIGATIONS OF LARGE SCALE SINKHOLE COLLAPSES, LAIBIN, GUANGXI, CHINA Yongli Gao Department of Geological Sciences, Center for Water Research, University of Texas at San Antonio, TX 78249, USA, yongli.gao@utsa.edu

More information

Electrical Resistivity Survey for Delineating Seawater Intrusion in a Coastal Aquifer

Electrical Resistivity Survey for Delineating Seawater Intrusion in a Coastal Aquifer Electrical Resistivity Survey for Delineating Seawater Intrusion in a Coastal Aquifer Sung-Ho Song*, Gyu-Sang Lee*, Jin-Sung Kim*, Baekuk Seong*, Young-gyu Kim*, Myung-Ha Woo* and Namsik Park** Abstract

More information

Influence of Paleochannels on Seepage

Influence of Paleochannels on Seepage Study 4 Influence of Paleochannels on Seepage Public Draft 2014 Monitoring and Analysis Plan September 2013 August 2012 Influence of Paleochannels on Seepage 1. Statement of Need Historical maps, aerial

More information

DATA ACQUISITION METHODS FOR GROUNDWATER INVESTIGATION AND THE SITING OF WATER SUPPLY WELLS

DATA ACQUISITION METHODS FOR GROUNDWATER INVESTIGATION AND THE SITING OF WATER SUPPLY WELLS DATA ACQUISITION METHODS FOR GROUNDWATER INVESTIGATION AND THE SITING OF WATER SUPPLY WELLS M.B.J. Foster Tetra Tech EM Inc., San Francisco, CA, USA Keywords: Groundwater, water wells, drilled wells, geophysical

More information

CONTENTS 1. INTRODUCTION. 2. THE D.C. RESISTIVITY METHOD 2.1 Equipment 2.2 Survey Procedure 2.3 Data Reduction

CONTENTS 1. INTRODUCTION. 2. THE D.C. RESISTIVITY METHOD 2.1 Equipment 2.2 Survey Procedure 2.3 Data Reduction (i) CONTENTS 1. INTRODUCTION page 1 2. THE D.C. RESISTIVITY METHOD 2.1 Equipment 2.2 Survey Procedure 2.3 Data Reduction 3 3 3 3 3. GEOPHYSICAL RESULTS 3.1 General 3.2 Discussion 4 4 4 4. LIMITATIONS 5

More information

FINAL REPORT GEOPHYSICAL INVESTIGATION VILLAGE ALHAMBRA RETENTION POND SITE THE VILLAGES, FLORIDA

FINAL REPORT GEOPHYSICAL INVESTIGATION VILLAGE ALHAMBRA RETENTION POND SITE THE VILLAGES, FLORIDA FINAL REPORT GEOPHYSICAL INVESTIGATION VILLAGE ALHAMBRA RETENTION POND SITE THE VILLAGES, FLORIDA Prepared for Andreyev Engineering, Inc. Oxford, FL Prepared by GeoView, Inc. St. Petersburg, FL August

More information

An Introduction to Field Explorations for Foundations

An Introduction to Field Explorations for Foundations An Introduction to Field Explorations for Foundations J. Paul Guyer, P.E., R.A. Paul Guyer is a registered mechanical engineer, civil engineer, fire protection engineer and architect with over 35 years

More information

Chapter 2. Regional Landscapes and the Hydrologic Cycle

Chapter 2. Regional Landscapes and the Hydrologic Cycle Chapter 2. Regional Landscapes and the Hydrologic Cycle W. Lee Daniels Department of Crop and Soil Environmental Sciences, Virginia Tech Table of Contents Introduction... 23 Soils and landscapes of the

More information

Ground Penetrating Radar Survey of a Portion of East End Cemetery, Cadiz, Kentucky

Ground Penetrating Radar Survey of a Portion of East End Cemetery, Cadiz, Kentucky Ground Penetrating Radar Survey of a Portion of East End Cemetery, Cadiz, Kentucky January 2011 Report prepared by Anthony L. Ortmann, Ph.D. Assistant Professor Department of Geosciences Murray State University

More information

Name: Which rock layers appear to be most resistant to weathering? A) A, C, and E B) B and D

Name: Which rock layers appear to be most resistant to weathering? A) A, C, and E B) B and D Name: 1) The formation of soil is primarily the result of A) stream deposition and runoff B) precipitation and wind erosion C) stream erosion and mass movement D) weathering and biological activity 2)

More information

FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 200 TO 191 OF THE SACRAMENTO RIVER PHASE III REPORT

FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 200 TO 191 OF THE SACRAMENTO RIVER PHASE III REPORT FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 200 TO 191 OF THE SACRAMENTO RIVER PHASE III REPORT Eric W. Larsen REPORT FOR DUCKS UNLIMITED March 31, 2006-1 - Contents

More information

10. GEOTECHNICAL EXPLORATION PROGRAM

10. GEOTECHNICAL EXPLORATION PROGRAM Geotechnical site investigations should be conducted in multiple phases to obtain data for use during the planning and design of the tunnel system. Geotechnical investigations typically are performed in

More information

WATER ON AND UNDER GROUND. Objectives. The Hydrologic Cycle

WATER ON AND UNDER GROUND. Objectives. The Hydrologic Cycle WATER ON AND UNDER GROUND Objectives Define and describe the hydrologic cycle. Identify the basic characteristics of streams. Define drainage basin. Describe how floods occur and what factors may make

More information

This material is part of the collection of the Philadelphia Water Department and was downloaded from the website Please contact the

This material is part of the collection of the Philadelphia Water Department and was downloaded from the website  Please contact the This material is part of the collection of the Philadelphia Water Department and was downloaded from the website www.phillyh2o.org Please contact the PhillyH2O webmaster for more information about this

More information

The Niagara Escarpment extends from western New York, through the GTA all the way up to Manitoulin Island and into Michigan and Wisconsin.

The Niagara Escarpment extends from western New York, through the GTA all the way up to Manitoulin Island and into Michigan and Wisconsin. is southern Ontario s most prominent topographic feature, extending more than 500 kilometres from western New York, through Niagara Falls and the western part of the Greater Toronto Area (GTA), and north

More information

GEOTECHNICAL ENGINEERING II. Subject Code : 06CV64 Internal Assessment Marks : 25 PART A UNIT 1

GEOTECHNICAL ENGINEERING II. Subject Code : 06CV64 Internal Assessment Marks : 25 PART A UNIT 1 GEOTECHNICAL ENGINEERING II Subject Code : 06CV64 Internal Assessment Marks : 25 PART A UNIT 1 1. SUBSURFACE EXPLORATION 1.1 Importance, Exploration Program 1.2 Methods of exploration, Boring, Sounding

More information

MAPPING BEDROCK: Verifying Depth to Bedrock in Calumet County using Seismic Refraction

MAPPING BEDROCK: Verifying Depth to Bedrock in Calumet County using Seismic Refraction MAPPING BEDROCK: Verifying Depth to Bedrock in Calumet County using Seismic Refraction Revised December 13, 2011 Dave Hart Wisconsin Geological and Natural History Survey INTRODUCTION Seismic refraction

More information

Monitoring and Characterization of the Meadowview Lane Landslide: Boyd County, KY

Monitoring and Characterization of the Meadowview Lane Landslide: Boyd County, KY Monitoring and Characterization of the Meadowview Lane Landslide: Boyd County, KY Matt Crawford Appalachian Coalition for Geologic Hazards in Transportation 13 th Annual Technical Forum Harrisonburg, VA

More information

What we will cover. The Hydrologic Cycle. River systems. Floods. Groundwater. Caves and Karst Topography. Hot springs

What we will cover. The Hydrologic Cycle. River systems. Floods. Groundwater. Caves and Karst Topography. Hot springs Fresh Water What we will cover The Hydrologic Cycle River systems Floods Groundwater Caves and Karst Topography Hot springs On a piece of paper, put these reservoirs of water in to order from largest to

More information

ERDC/GSL TN-14-1 August 2014 Electromagnetic Induction Survey of the Mississippi River in Cleveland, Mississippi

ERDC/GSL TN-14-1 August 2014 Electromagnetic Induction Survey of the Mississippi River in Cleveland, Mississippi Electromagnetic Induction Survey of the Mississippi River in Cleveland, Mississippi By Joseph B. Dunbar and Maureen K. Corcoran PURPOSE: This study was conducted in support of Mississippi State University

More information

Electrical prospecting involves detection of surface effects produced by electrical current flow in the ground.

Electrical prospecting involves detection of surface effects produced by electrical current flow in the ground. Electrical Surveys in Geophysics Electrical prospecting involves detection of surface effects produced by electrical current flow in the ground. Electrical resistivity method Induced polarization (IP)

More information

Susquehanna River Basin A Research Community Hydrologic Observatory. NSF-Funded Infrastructure Proposal in Support of River Basin Hydrologic Sciences

Susquehanna River Basin A Research Community Hydrologic Observatory. NSF-Funded Infrastructure Proposal in Support of River Basin Hydrologic Sciences Susquehanna River Basin A Research Community Hydrologic Observatory NSF-Funded Infrastructure Proposal in Support of River Basin Hydrologic Sciences Fundamental Problem: How Do Humans and Climate Impact

More information

A Preliminary Geophysical Reconnaissance Mapping of Emirau Ground Water Resource, Emirau Island, New Ireland Province, PNG

A Preliminary Geophysical Reconnaissance Mapping of Emirau Ground Water Resource, Emirau Island, New Ireland Province, PNG A Preliminary Geophysical Reconnaissance Mapping of Emirau Ground Water Resource, Emirau Island, New Ireland Province, PNG Geological Survey Division of Mineral Resources Authority (MRA) Papua New Guinea

More information

KARST LANDSCAPES Geology & Hydrology. Dr. Gerald E. Weber

KARST LANDSCAPES Geology & Hydrology. Dr. Gerald E. Weber KARST LANDSCAPES Geology & Hydrology Dr. Gerald E. Weber Aerial Oblique Photograph of the UCSC Campus looking northwest Karst A type of topography that is formed on limestone, gypsum, and other soluble

More information

BUFFALO RIVER COALITION PO Box 101, Jasper, AR (870)

BUFFALO RIVER COALITION PO Box 101, Jasper, AR (870) BUFFALO RIVER COALITION PO Box 101, Jasper, AR 72641 (870) 446-5783 buffalowatershed@gmail.com Presentation before Arkansas Pollution Control and Ecology Commission, April 29, 2016 by Richard Mays on behalf

More information

The subject paper is being submitted for approval for publication in the annual volume entitled Geological Survey Research.

The subject paper is being submitted for approval for publication in the annual volume entitled Geological Survey Research. Water Resources Division 345 Middlefield Road Menlo Park, California January 12, 1965 Memorandum To: Mr. Frank E. Clark, Chief, General Hydrology Branch Thru: Area Hydrologist PCA From: Valmore C. LaMarche

More information

Study of heterogeneous vertical hyporheic flux via streambed temperature at different depths

Study of heterogeneous vertical hyporheic flux via streambed temperature at different depths 168 Remote Sensing and GIS for Hydrology and Water Resources (IAHS Publ. 368, 2015) (Proceedings RSHS14 and ICGRHWE14, Guangzhou, China, August 2014). Study of heterogeneous vertical hyporheic flux via

More information

Electrical imaging techniques for hydrological and risk assessment studies

Electrical imaging techniques for hydrological and risk assessment studies Séminaire IPG le 9 mars 2006 Strasbourg Institute of Geophysics ETH Hoenggerberg CH-8093 Zurich Electrical imaging techniques for hydrological and risk assessment studies Laurent Marescot laurent@aug.ig.erdw.ethz.ch

More information

Which map shows the stream drainage pattern that most likely formed on the surface of this volcano? A) B)

Which map shows the stream drainage pattern that most likely formed on the surface of this volcano? A) B) 1. When snow cover on the land melts, the water will most likely become surface runoff if the land surface is A) frozen B) porous C) grass covered D) unconsolidated gravel Base your answers to questions

More information

Hydraulic Impacts of Limestone Quarries and Gravel Pits. Jeff Green Minnesota DNR-Division of Ecological & Water Resources

Hydraulic Impacts of Limestone Quarries and Gravel Pits. Jeff Green Minnesota DNR-Division of Ecological & Water Resources Hydraulic Impacts of Limestone Quarries and Gravel Pits Jeff Green Minnesota DNR-Division of Ecological & Water Resources The Hydraulic Impacts of Limestone Quarries and Gravel Pits Study was funded by

More information

LOCATED IN INDIAN RIVER COUNTY PREPARED FOR S.J.R.W.M.D. AND F.W.C.D. DECEMBER, 2003 Updated 2007 Updated May 2014 PREPARED BY

LOCATED IN INDIAN RIVER COUNTY PREPARED FOR S.J.R.W.M.D. AND F.W.C.D. DECEMBER, 2003 Updated 2007 Updated May 2014 PREPARED BY FELLSMERE WATER CONTROL DISTRICT EAST MASTER DRAINAGE PLAN AND STORMWATER HYDROLOGIC ANALYSIS OF THE GRAVITY DRAINAGE SYSTEM LOCATED BETWEEN THE EAST BOUNDARY, LATERAL U, THE MAIN CANAL, AND DITCH 24 LOCATED

More information

ELECTRICAL RESISTIVITY SURVEY OF INTREPID POTASH INJECTION WELL SITE: EDDY COUNTY, NEW MEXICO

ELECTRICAL RESISTIVITY SURVEY OF INTREPID POTASH INJECTION WELL SITE: EDDY COUNTY, NEW MEXICO NCKRI REPORT OF INVESTIGATION 3 ELECTRICAL RESISTIVITY SURVEY OF INTREPID POTASH INJECTION WELL SITE: EDDY COUNTY, NEW MEXICO www.nckri.org NATIONAL CAVE AND KARST RESEARCH INSTITUTE REPORT OF INVESTIGATION

More information

3.12 Geology and Topography Affected Environment

3.12 Geology and Topography Affected Environment 3 Affected Environment and Environmental Consequences 3.12 Geology and Topography 3.12.1 Affected Environment 3.12.1.1 Earthquakes Sterling Highway MP 45 60 Project Draft SEIS The Kenai Peninsula is predisposed

More information

Tu Olym 01 Quantitative Depth to Bedrock Extraction from AEM Data

Tu Olym 01 Quantitative Depth to Bedrock Extraction from AEM Data Tu Olym 01 Quantitative Depth to Bedrock Extraction from AEM Data H. Anschütz (NGI), C. Christensen (Queen's University) & A.A. Pfaffhuber* (NGI) SUMMARY A new road segment is being planned northeast of

More information

Big Rivers Electric Corporation Disposal of Coal Combustion Residuals (CCR) from Electric Utilities Final Rule CCR Impoundment Liner Assessment Report

Big Rivers Electric Corporation Disposal of Coal Combustion Residuals (CCR) from Electric Utilities Final Rule CCR Impoundment Liner Assessment Report Big Rivers Electric Corporation Disposal of Coal Combustion Residuals (CCR) from Electric Utilities Final Rule CCR Impoundment Liner Assessment Report CCR Surface Impoundment Information Name: Operator:

More information

Buried-valley Aquifers: Delineation and Characterization from Reflection Seismic and Core Data at Caledon East, Ontario

Buried-valley Aquifers: Delineation and Characterization from Reflection Seismic and Core Data at Caledon East, Ontario Buried-valley Aquifers: Delineation and Characterization from Reflection Seismic and Core Data at Caledon East, Ontario Russell, H.A.J. 1, S.E. Pullan 1, J.A. Hunter 1, D.R. Sharpe 1, and S. Holysh 2 1

More information

Characterizing lakebed seepage and geologic heterogeneity using resistivity imaging and temperature measurements

Characterizing lakebed seepage and geologic heterogeneity using resistivity imaging and temperature measurements Near Surface Geophysics, 2009, 487-498 Characterizing lakebed seepage and geologic heterogeneity using resistivity imaging and temperature measurements Jonathan E. Nyquist *, Matthew J. Heaney and Laura

More information

Instructional Objectives

Instructional Objectives GE 6477 DISCONTINUOUS ROCK 8. Fracture Detection Dr. Norbert H. Maerz Missouri University of Science and Technology (573) 341-6714 norbert@mst.edu Instructional Objectives 1. List the advantages and disadvantages

More information

Hydrogeological Assessment for Part of Lots 2 and 3, Concession 5, Township of Thurlow, County of Hastings 1.0 INTRODUCTION. 1.

Hydrogeological Assessment for Part of Lots 2 and 3, Concession 5, Township of Thurlow, County of Hastings 1.0 INTRODUCTION. 1. February 10,2017 25506400 Ontario Ltd. Foxboro, ON Attention: Brad Newbatt Re: Hydrogeological Assessment for Part of Lots 2 and 3, Concession 5, Township of Thurlow, County of Hastings 1.0 INTRODUCTION

More information

Scholars Research Library

Scholars Research Library Available online at www.scholarsresearchlibrary.com Scholars Research Library Archives of Physics Research, 2010, 1 (2):37-45 (http://scholarsresearchlibrary.com/archive.html) ISSN 0976-0970 2-D Resistivity

More information

HISTORY OF CONSTRUCTION FOR EXISTING CCR SURFACE IMPOUNDMENT PLANT GASTON ASH POND 40 CFR (c)(1)(i) (xii)

HISTORY OF CONSTRUCTION FOR EXISTING CCR SURFACE IMPOUNDMENT PLANT GASTON ASH POND 40 CFR (c)(1)(i) (xii) HISTORY OF CONSTRUCTION FOR EXISTING CCR SURFACE IMPOUNDMENT PLANT GASTON ASH POND 40 CFR 257.73(c)(1)(i) (xii) (i) Site Name and Ownership Information: Site Name: E.C. Gaston Steam Plant Site Location:

More information

URBAN HYDROLOGY: WATER IN THE CITY OF TSHWANE Plant Sciences Auditorium, University of Pretoria January 2014 URBAN HYDROGEOLOGY

URBAN HYDROLOGY: WATER IN THE CITY OF TSHWANE Plant Sciences Auditorium, University of Pretoria January 2014 URBAN HYDROGEOLOGY URBAN HYDROLOGY: WATER IN THE CITY OF TSHWANE Plant Sciences Auditorium, University of Pretoria 23 24 January 2014 URBAN HYDROGEOLOGY MATTHYS A. DIPPENAAR DEPARTMENT GEOLOGY, UNIVERSITY OF PRETORIA HYDROGEOLOGY

More information

Mountain Valley Pipeline, LLC Mountain Valley Pipeline Project FERC Docket No. CP

Mountain Valley Pipeline, LLC Mountain Valley Pipeline Project FERC Docket No. CP Mountain Valley Pipeline, LLC Mountain Valley Pipeline Project FERC Docket No. CP16-10-000 Attachment 64 Site-specific Water Crossing and Restoration Plans Mountain Valley Pipeline, LLC Mountain

More information

EXTREMELY FAST IP USED TO DELINEATE BURIED LANDFILLS. Norman R. Carlson, Cris Mauldin Mayerle, and Kenneth L. Zonge

EXTREMELY FAST IP USED TO DELINEATE BURIED LANDFILLS. Norman R. Carlson, Cris Mauldin Mayerle, and Kenneth L. Zonge EXTREMELY FAST IP USED TO DELINEATE BURIED LANDFILLS Norman R. Carlson, Cris Mauldin Mayerle, and Kenneth L. Zonge Zonge Engineering and Research Organization, Inc. 3322 East Fort Lowell Road Tucson, Arizona,

More information

4. The map below shows a meandering stream. Points A, B, C, and D represent locations along the stream bottom.

4. The map below shows a meandering stream. Points A, B, C, and D represent locations along the stream bottom. 1. Sediment is deposited as a river enters a lake because the A) velocity of the river decreases B) force of gravity decreases C) volume of water increases D) slope of the river increases 2. Which diagram

More information

J.H. Campbell Generating Facility Pond A - Location Restriction Certification Report

J.H. Campbell Generating Facility Pond A - Location Restriction Certification Report J.H. Campbell Generating Facility Pond A - Location Restriction Certification Report Pursuant to: 40 CFR 257.60 40 CFR 257.61 40 CFR 257.62 40 CFR 257.63 40 CFR 257.64 Submitted to: Consumers Energy Company

More information

Delineation of Zones at Risk from Groundwater Inflows at an Underground Platinum Mine in South Africa

Delineation of Zones at Risk from Groundwater Inflows at an Underground Platinum Mine in South Africa Delineation of Zones at Risk from Groundwater Inflows at an Underground Platinum Mine in South Africa Mr Andreas Stoll andreas.stoll@erm.com Environmental Resources Management Swiss GmbH (ERM), Switzerland

More information

Cattaraugus Creek: A Story of Flowing Water and the Geology of the Channel It Flows Through Presentation to West Valley Citizen Task Force 4/27/16

Cattaraugus Creek: A Story of Flowing Water and the Geology of the Channel It Flows Through Presentation to West Valley Citizen Task Force 4/27/16 Cattaraugus Creek: A Story of Flowing Water and the Geology of the Channel It Flows Through Presentation to West Valley Citizen Task Force 4/27/16 Raymond C. Vaughan, Ph.D. What happens if you drop a

More information