Changes in sediment loads in rivers of the Atlantic drainage of the United States since 1900

Size: px
Start display at page:

Download "Changes in sediment loads in rivers of the Atlantic drainage of the United States since 1900"

Transcription

1 Changes in sediment loads in rivers of the Atlantic drainage of the United States since 1900 Robert H. Meade and Stanley W. Trimble Abstract. Changes in sediment loads in the Atlantic drainage can be related to construction of reservoirs and changes in land use. Sediment loads have decreased immediately downstream from reservoirs but the persistence of large loads at points farther downstream indicates that the river channels themselves are now being degraded. The decline of crop farming and the improvement of soil-conservation practices has also decreased the sediment yields, but this is reflected mainly in the sediment loads of the tributary streams; as yet, there has been no correspondingly marked decrease in the sediment loads in most of the main-stem rivers. Les différences des charges sédimentaires des fleuves dans l'écoulement vers l'atlantique en les Etats-Unis, depuis 1900 Résumé. Les différences des charges sédimentaires dans l'écoulement vers l'atlantique peuvent être liées à la construction des réservoirs et aux changements dans l'utilisation de la terre. Les charges sédimentaires ont précisément diminué en aval des réservoirs mais la persistance de grandes charges plus en aval encore indique que les lits eux-mêmes sont en cours de dégradation. La diminution des surfaces cultivées et les progrès dans la conservation du sol se traduisent également par une décroissance des charges sédimentaires, mais ce changement apparaît surtout dans les rivières tributaires. Jusqu'à présent, il n'existait pas une diminution similaire dans les charges sédimentaires de la plupart des fleuves. INTRODUCTION Suspended-sediment loads have been measured daily in some rivers of the Atlantic drainage of the United States since about These measurements can be compared with those of a stream-sediment survey made in 19? to show changes since that time. Changes in stream-sediment loads can be partially related to construction of reservoirs or to changes in land use. In the reconnaissance study made during the water year (Dole, 1909), the concentration of suspended sediment was measured by filtering 10-day composite samples that had been collected regularly at 19 stations in 13 of the principal river basins of the Atlantic drainage. Dole and Stabler (1909) used these data and the runoff records that were available to estimate the total suspended-sediment loads carried by the rivers. Before these and more recent estimates could be compared, it was necessary to revise Dole and Stabler's estimates to correct for procedures and assumptions that have subsequently been shown to cause errors. The largest error was caused by their assumption that the sediment loads per unit drainage area in the Piedmont and other upland regions (where most of the samples were collected) applied also to the Coastal Plain; later studies have shown that the sediment loads from the Coastal Plain are substantially smaller. Other smaller adjustments (usually 20 per cent or less) were applied to reflect differences in techniques of measuring and calculating suspended sediment or to extend runoff records that were too short in 1909 to give an accurate long-term average. Estimates of more recent sediment loads are based on regularly-collected data, most of which are tabulated in the US Geological Survey-Water Supply Paper series on 'Quality of Surface Waters of the United States'. These records, which are taken here as representative of present-day sediment loads, are largely from daily observa-

2 100 Robert H. Meade and Stanley W. Trimble FIGURE 1. Average annual loads of suspended sediment carried by rivers of Atlantic drainage of United States during years near 1910 (left) and 1970 (right). tions made over periods ranging from 1 to 21 years. The most obvious changes in sediment loads between then and now are in the southern part of the Atlantic drainage (Fig.l). On average, the large southern rivers now discharge at their mouths half or less of the sediment discharged 50 to 60 years ago. Farther north, the change is much less marked. CHANGES IN RIVER BASINS THAT SHOULD AFFECT SEDIMENT LOADS The two factors most likely to affect the amounts of sediment being carried by the main-stem rivers of the Atlantic seaboard are the construction of reservoirs and changes inland use. The numerous reservoirs that have been built (mainly for hydroelectric power) on the major streams since the early 1900s have interrupted the seaward flow of sediment. Figure 2 shows the decrease in turbidity of the Roanoke River at Roanoke Rapids, N.C. (drainage area 21,800 km 2 ) that followed the construction of three dams upstream. This effect has been repeated on many rivers. Sediment-load data collected in the late 1960s from the Santee River showed that the two reservoirs furthest downstream trapped about 85 per cent of the incoming load an amount similar to that which would be predicted from Brune's (1953) curve of trap efficiency

3 Changes in sediment loads in rivers Kerr Reservoir 1952 l , TURBIDITY (Jackson units) Roanoke Rapids Lake WATER DISCHARGE (km3/mo) H f l g 0 -» Wkmm. 0 2 o l Lake Gaston , FMAMJJASONC mêèërélo JFMAMJJÛSOND FIGURE 2. Decrease in turbidity of Roanoke River at Roanoke Rapids, N.C., following construction of three reservoirs upstream. versus capacity-inflow ratio. The pattern of land use has changed in several ways since European colonists arrived here in the seventeenth century, and this has apparently changed the pattern of sediment yield. In the rapidly urbanizing areas north of the James River, the cycle is characterized by Wolman (1967) as: a tenfold increase in river sediment as FIGURE 3. Maps showing decrease in row-crop agriculture in southern Piedmont, Each dot equals 1000 acres (405 ha).

4 102 Robert H. Meade and Stanley W. Trimble land was converted from forest to cropland, which began in the seventeenth century and reached a peak of sediment production around the year 1900; a period of somewhat reduced sediment production as farming declined in the area and tracts of former cropland reverted to woods or pasture; a short-lived but several hundredfold increase in sediment production on relatively small areas during the rapid urbanization that followed World War II; and, finally, a sharp reduction in yield as lawns were planted and areas covered with pavement. South of the James River, the landscape has remained more rural, but the patterns and practices of agriculture have changed. In the Piedmont region, which has long been the primary source of sediment in the South Atlantic rivers, row-crop farming and other types of erosive land use have decreased (Fig.3) while soil-conserving land uses such as forest and pasture have significantly increased (Trimble, 1973). At the same time, soil conservation practices have been widely applied to both cultivated and uncultivated land. As a result erosion has been much reduced; Fig.4 shows the changes in erosive land use and sediment yield in the drainage basin of the Lloyd Shoals Reservoir (3600 km 2 ). This is on one of the main tributaries of the Altamaha River and is fairly typical of the Piedmont of South Carolina, Georgia, and Alabama. The erosive land use for the watershed was calculated by determining the different types of vegetative covers and conservation practices and assigning numerical 'cover factors' related to rates of erosion (Soil Conservation Service, 1968). A composite factor for the entire basin was calculated for each decade from 1860 to The highest erosion rate was reached between 1900 and 1920 when the composite factor was 0.6, equivalent to 60 per cent of the area being in row crops with poor conservation practices. The sediment yield during was determined mainly from the deposition in Lloyd Shoals Reservoir and averaged 218 tons km~ 2 year -1. The present composite cover factor has been reduced to one-seventh of its former magnitude, and the sediment yield (as estimated from stream data) has been reduced correspondingly to about 30 tons km -2 year -1. FIGURE 4. Changes in land use and sediment yield, Lloyd Shoals watershed.

5 Changes in sediment loads in rivers 103 DISCREPANCIES BETWEEN EXPECTED AND OBSERVED CHANGES IN SEDIMENT LOADS The changes that might have been predicted from a knowledge of the distribution of reservoirs and the changes in land use are not altogether apparent in the sediment loads of many of the major rivers. Reservoirs trap substantial amounts of sediment, but the sediment loads a few miles downstream from a reservoir may show less decrease than expected. The effects of the reservoirs either have not yet been felt very far downstream or are being offset by increased degradation of the channels below the reservoirs. This is supported by a comparison of Dole's (1909) data for one of the two main tributaries of the Altamaha River at Macon, Georgia (drainage area 5800 km 2 ) with similar measurements taken 31 years later by Lamar (1944). In 1910, the Lloyd Shoals Reservoir was completed above Macon. Although the total sediment load measured at Macon was essentially the same in as in , the seasonal distribution of sediment concentration was markedly different. Before the construction of the reservoir, the highest concentrations were measured in the low-discharge months of summer, suggesting that upland erosion outside the river channel had the greatest effect on the concentration of suspended sediment in the stream. After the reservoir was completed, the suspended concentrations at Macon were more closely coupled to discharge events, suggesting that the channel itself was the principal source of suspended sediment. The effects of changes in land use are shown even less clearly than the effects of reservoirs in the sediment loads of the main-stem rivers. Decreases in erosive land use are now beginning to reduce suspended sediment in tributaries while some main- 'stem rivers remain essentially unchanged. Many of the headwater streams that were over-steepened during the period of extreme agricultural erosion and sedimentation have recently been degrading because of decreased upland sediment production (Trimble, 1971). An example is the Mauldin Millsite on a small tributary of the FIGURE 5. Cross sections showing aggradation and degradation of stream bed at Mauldin Millsite,

6 104 Robert H. Meade and Stanley W. Trimble Altamaha (Fig.5) which has gone through a cycle of burial and excavation since The material is being eroded from channels and banks to become 'sediment yield' at some point downstream. Elsewhere in the southern Piedmont, observers have noticed that larger streams tend to be more turbid than tributary creeks during high flows. CONCLUSION Although many reservoirs have been built and although land use has changed markedly on the Atlantic slope of the United States since 1900, the loads of suspended sediment carried by the main-stem rivers have not been reduced as much as might be expected. The reason seems to be that the main-stem rivers are still receiving sediment from their larger tributaries that accumulated during the years of accelerated erosion following the deforestation and farming of the land. The time required to clear the stream bottoms of this man-induced accumulation is rather long. The work of Gilbert (1917) on the movement of hydraulic mining debris through the Sacramento River basin of California and later work on the accumulation of this debris in San Francisco Bay (Smith, 1965), suggest that the time scale of the process seen here is of the order of a century or more. Apparently at least several more decades of augmented sediment loads can be anticipated even after the land use has stabilized. REFERENCES Brune, G. M. (1953) Trap efficiency of reservoirs. Trans. Amer. Geophys. Union 34, Dole, R. B. (1909) The quality of surface waters in the United States. Part I - Analyses of waters east of the one hundredth meridian. US Geol. Survey Water-Supply Paper 236, 123 pp. Dole, R. B. and Stabler, H. (1909) Denudation. US Geol. Survey Water-Supply Paper 234, Gilbert, G. K. (1917) Hydraulic-mining debris in the Sierra Nevada. US Geol. Survey Prof. Paper 105, 154 pp. Lamar, W. L. (1944) Chemical character of surface waters of Georgia. US Geol. Survey Water- Supply Paper 889-E, Smith, B. J. (1965) Sedimentation in the San Francisco Bay system. USDA Misc. Pub. 970, Soil Conservation Service (1968) Guide to sedimentation investigations, South Regional Service Area. US Soil Conservation Service Engineering and Watershed Planning Unit Technical Guide, No.12, 104 pp.: Ft. Worth, Texas. Trimble, S. W. (1971) Culturally Accelerated Sedimentation on the Middle Georgia Piedmont: US Soil Conservation Service, Fort Worth, Texas, 110 pp. Trimble, S. W. (1973) A geographic analysis of erosive land use in the Southern Piedmont. PhD. dissertation, University Georgia, Athens, Georgia, 176 pp. Wolman, M. G. (1967) A cycle of sedimentation and erosion in urban river channels. Geografiska Annuler 49A,

How Do Human Impacts and Geomorphological Responses Vary with Spatial Scale in the Streams and Rivers of the Illinois Basin?

How Do Human Impacts and Geomorphological Responses Vary with Spatial Scale in the Streams and Rivers of the Illinois Basin? How Do Human Impacts and Geomorphological Responses Vary with Spatial Scale in the Streams and Rivers of the Illinois Basin? Bruce Rhoads Department of Geography University of Illinois at Urbana-Champaign

More information

Assessment of Lake Forest Lake Sediment Trapping Efficiency and Capacity. Marlon R. Cook Groundwater Assessment Program Geological Survey of Alabama

Assessment of Lake Forest Lake Sediment Trapping Efficiency and Capacity. Marlon R. Cook Groundwater Assessment Program Geological Survey of Alabama Assessment of Lake Forest Lake Sediment Trapping Efficiency and Capacity Marlon R. Cook Groundwater Assessment Program Geological Survey of Alabama Impacts of the Lake at Lake Forest on the connectivity

More information

Monitoring Headwater Streams for Landscape Response to

Monitoring Headwater Streams for Landscape Response to Monitoring Headwater Streams for Landscape Response to Climate Change Matthew Connor, PhD Connor nvironmental, nc. www.oe-i.com icom Healdsburg, California verview Headwater stream geomorphology Response

More information

Squaw Creek. General Information

Squaw Creek. General Information General Information is a tributary to the Salmon River. It enters the north side of the river about 0 miles downstream of North Fork, Idaho. The study reach is about a 30 ft length of stream about 2 miles

More information

Technical Memorandum No

Technical Memorandum No Pajaro River Watershed Study in association with Technical Memorandum No. 1.2.10 Task: Evaluation of Four Watershed Conditions - Sediment To: PRWFPA Staff Working Group Prepared by: Gregory Morris and

More information

GEOL 1121 Earth Processes and Environments

GEOL 1121 Earth Processes and Environments GEOL 1121 Earth Processes and Environments Wondwosen Seyoum Department of Geology University of Georgia e-mail: seyoum@uga.edu G/G Bldg., Rm. No. 122 Seyoum, 2015 Chapter 6 Streams and Flooding Seyoum,

More information

Sediment Deposition LET THE RIVER RUN T E A C H E R. Activity Overview. Activity at a Glance. Time Required. Level of Complexity.

Sediment Deposition LET THE RIVER RUN T E A C H E R. Activity Overview. Activity at a Glance. Time Required. Level of Complexity. Activity at a Glance Grade: 6 9 Subject: Science Category: Physical Science, Earth Science Topic: Deposition, River Systems Time Required Two 45-minute periods Level of Complexity Medium Materials* TI-73

More information

SPECIFIC DEGRADATION AND RESERVOIR SEDIMENTATION. By Renee Vandermause & Chun-Yao Yang

SPECIFIC DEGRADATION AND RESERVOIR SEDIMENTATION. By Renee Vandermause & Chun-Yao Yang SPECIFIC DEGRADATION AND RESERVOIR SEDIMENTATION By Renee Vandermause & Chun-Yao Yang Outline Sediment Degradation - Erosion vs Sediment Yield - Sediment Yield - Methods for estimation - Defining Sediment

More information

Surface Processes Focus on Mass Wasting (Chapter 10)

Surface Processes Focus on Mass Wasting (Chapter 10) Surface Processes Focus on Mass Wasting (Chapter 10) 1. What is the distinction between weathering, mass wasting, and erosion? 2. What is the controlling force in mass wasting? What force provides resistance?

More information

CAUSES FOR CHANGE IN STREAM-CHANNEL MORPHOLOGY

CAUSES FOR CHANGE IN STREAM-CHANNEL MORPHOLOGY CAUSES FOR CHANGE IN STREAM-CHANNEL MORPHOLOGY Chad A. Whaley, Department of Earth Sciences, University of South Alabama, MobileAL, 36688. E-MAIL: caw408@jaguar1.usouthal.edu The ultimate goal of this

More information

Sedimentation in the Nile River

Sedimentation in the Nile River Advanced Training Workshop on Reservoir Sedimentation Sedimentation in the Nile River Prof. Dr. Abdalla Abdelsalam Ahmed 10-16 Oct. 2007, IRTCES, Beijing, China CWR,Sudan 1 Water is essential for mankind

More information

The subject paper is being submitted for approval for publication in the annual volume entitled Geological Survey Research.

The subject paper is being submitted for approval for publication in the annual volume entitled Geological Survey Research. Water Resources Division 345 Middlefield Road Menlo Park, California January 12, 1965 Memorandum To: Mr. Frank E. Clark, Chief, General Hydrology Branch Thru: Area Hydrologist PCA From: Valmore C. LaMarche

More information

Legacy Sediment in the Piedmont: Past valley aggradation, modern stream erosion, and implications for stream water quality

Legacy Sediment in the Piedmont: Past valley aggradation, modern stream erosion, and implications for stream water quality Funding provided by grants from: NC WRRI (Grant # 2010-70254), Geological Society of America, Sigma Xi, and NCSU Undergrad Research funds Legacy Sediment in the Piedmont: Past valley aggradation, modern

More information

Illinois State Water Survey Division

Illinois State Water Survey Division Illinois State Water Survey Division SURFACE WATER SECTION SWS Miscellaneous Publication 108 SEDIMENT YIELD AND ACCUMULATION IN THE LOWER CACHE RIVER by Misganaw Demissie Champaign, Illinois June 1989

More information

Science EOG Review: Landforms

Science EOG Review: Landforms Mathematician Science EOG Review: Landforms Vocabulary Definition Term canyon deep, large, V- shaped valley formed by a river over millions of years of erosion; sometimes called gorges (example: Linville

More information

mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output

mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output strong interaction between streams & hillslopes Sediment Budgets for Mountain Rivers Little

More information

Bank Erosion and Morphology of the Kaskaskia River

Bank Erosion and Morphology of the Kaskaskia River Bank Erosion and Morphology of the Kaskaskia River US Army Corps Of Engineers St. Louis District Fayette County Soil and Water Conservation District Team Partners : Carlyle Lake Ecosystem Partnership Vicinity

More information

Diagnostic Geomorphic Methods for Understanding Future Behavior of Lake Superior Streams What Have We Learned in Two Decades?

Diagnostic Geomorphic Methods for Understanding Future Behavior of Lake Superior Streams What Have We Learned in Two Decades? Diagnostic Geomorphic Methods for Understanding Future Behavior of Lake Superior Streams What Have We Learned in Two Decades? Faith Fitzpatrick USGS WI Water Science Center, Middleton, WI fafitzpa@usgs.gov

More information

Laboratory Exercise #3 The Hydrologic Cycle and Running Water Processes

Laboratory Exercise #3 The Hydrologic Cycle and Running Water Processes Laboratory Exercise #3 The Hydrologic Cycle and Running Water Processes page - 1 Section A - The Hydrologic Cycle Figure 1 illustrates the hydrologic cycle which quantifies how water is cycled throughout

More information

Introduction Fluvial Processes in Small Southeastern Watersheds

Introduction Fluvial Processes in Small Southeastern Watersheds Introduction Fluvial Processes in Small Southeastern Watersheds L. Allan James Scott A. Lecce Lisa Davis Southeastern Geographer, Volume 50, Number 4, Winter 2010, pp. 393-396 (Article) Published by The

More information

Roger Andy Gaines, Research Civil Engineer, PhD, P.E.

Roger Andy Gaines, Research Civil Engineer, PhD, P.E. Roger Andy Gaines, Research Civil Engineer, PhD, P.E. Research Civil Engineer/Regional Technical Specialist Memphis District August 24, 2010 Objectives Where we have been (recap of situation and what s

More information

Decoupling of sediment sources in large river basins

Decoupling of sediment sources in large river basins Effects of Scale on Interpretation and Management of Sediment and Water Quality (Proceedings of a Boulder Symposium, July 1995). IAHS Publ. no. 226, 1995. 11 Decoupling of sediment sources in large river

More information

State Water Survey Division SURFACE WATER SECTION

State Water Survey Division SURFACE WATER SECTION State Water Survey Division SURFACE WATER SECTION AT THE UNIVERSITY OF ILLINOIS Illinois Department of Energy and Natural Resources SWS Miscellaneous Publication 88 SEDIMENTATION OF POOL 19 ON THE MISSISSIPPI

More information

3/3/2013. The hydro cycle water returns from the sea. All "toilet to tap." Introduction to Environmental Geology, 5e

3/3/2013. The hydro cycle water returns from the sea. All toilet to tap. Introduction to Environmental Geology, 5e Introduction to Environmental Geology, 5e Running Water: summary in haiku form Edward A. Keller Chapter 9 Rivers and Flooding Lecture Presentation prepared by X. Mara Chen, Salisbury University The hydro

More information

Big Wood River. General Information

Big Wood River. General Information General Information The flows out of the southern portion of the Sawtooth National Recreation Area in central Idaho. The study reach is about a,200 ft length of river about.5 miles upstream from the discontinued

More information

Surface Water and Stream Development

Surface Water and Stream Development Surface Water and Stream Development Surface Water The moment a raindrop falls to earth it begins its return to the sea. Once water reaches Earth s surface it may evaporate back into the atmosphere, soak

More information

low turbidity high turbidity

low turbidity high turbidity What is Turbidity? Turbidity refers to how clear the water is. The greater the amount of total suspended solids (TSS) in the water, the murkier it appears and the higher the measured turbidity. Excessive

More information

Erosion Surface Water. moving, transporting, and depositing sediment.

Erosion Surface Water. moving, transporting, and depositing sediment. + Erosion Surface Water moving, transporting, and depositing sediment. + Surface Water 2 Water from rainfall can hit Earth s surface and do a number of things: Slowly soak into the ground: Infiltration

More information

STREAM SYSTEMS and FLOODS

STREAM SYSTEMS and FLOODS STREAM SYSTEMS and FLOODS The Hydrologic Cycle Precipitation Evaporation Infiltration Runoff Transpiration Earth s Water and the Hydrologic Cycle The Hydrologic Cycle The Hydrologic Cycle Oceans not filling

More information

Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle. Runoff Transpiration

Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle. Runoff Transpiration STREAM SYSTEMS and FLOODS The Hydrologic Cycle Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle Runoff Transpiration The Hydrologic Cycle The Hydrologic Cycle Oceans not filling

More information

Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College

Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College Hydrologic Cycle The hydrologic cycle is a summary of the circulation of Earth s water supply. Processes involved in the hydrologic

More information

The effectiveness of check dams in controlling upstream channel stability in northeastern Taiwan

The effectiveness of check dams in controlling upstream channel stability in northeastern Taiwan Erosion, Debris Mows and Environment in Mountain Regions (Proceedings of the Chengdu Symposium, July 1992). IAHS Publ. no. 209, 1992. 423 The effectiveness of check dams in controlling upstream channel

More information

Upper Truckee River Restoration Lake Tahoe, California Presented by Brendan Belby Sacramento, California

Upper Truckee River Restoration Lake Tahoe, California Presented by Brendan Belby Sacramento, California Upper Truckee River Restoration Lake Tahoe, California Presented by Brendan Belby Sacramento, California Mike Rudd (Project Manager), Charley Miller & Chad Krofta Declines in Tahoe s Water Clarity The

More information

Recent changes of suspended sediment yields in the Upper Yangtze River and its headwater tributaries

Recent changes of suspended sediment yields in the Upper Yangtze River and its headwater tributaries Sediment Dynamics from the Summit to the Sea 297 (Proceedings of a symposium held in New Orleans, Louisiana, USA, 11 14 December 2014) (IAHS Publ. 367, 2014). Recent changes of suspended sediment yields

More information

Watershed concepts for community environmental planning

Watershed concepts for community environmental planning Purpose and Objectives Watershed concepts for community environmental planning Dale Bruns, Wilkes University USDA Rural GIS Consortium May 2007 Provide background on basic concepts in watershed, stream,

More information

The measurement and description of rill erosion

The measurement and description of rill erosion The hydrology of areas of low precipitation L'hydrologie des régions à faibles précipitations (Proceedings of the Canberra Symposium, December 1979; Actes du Colloque de Canberra, décembre 1979): IAHS-AISH

More information

National Hydrology committee of Afghanistan (NHCA) Sedimentation in Reservoire

National Hydrology committee of Afghanistan (NHCA) Sedimentation in Reservoire National Hydrology committee of Afghanistan (NHCA) Sedimentation in Reservoire OCt.2007 Prof. Mohammad Qasem Seddeqy KPU بسم االله الرحمن الرحيم وجعلنامن الماءکل شي ء حی 30 واز ا ب هر چيزی رازنده گردانيدیم

More information

Streams. Stream Water Flow

Streams. Stream Water Flow CHAPTER 14 OUTLINE Streams: Transport to the Oceans Does not contain complete lecture notes. To be used to help organize lecture notes and home/test studies. Streams Streams are the major geological agents

More information

Subcommittee on Sedimentation Draft Sediment Analysis Guidelines for Dam Removal

Subcommittee on Sedimentation Draft Sediment Analysis Guidelines for Dam Removal Subcommittee on Sedimentation Draft Sediment Analysis Guidelines for Dam Removal August 4, 2011 Jennifer Bountry, M.S., P.E. Tim Randle, M.S., P.E., D.WRE. Blair Greimann, Ph.D., P.E. Sedimentation and

More information

Application of SWAT Model to Estimate the Runoff and Sediment Load from the Right Bank Valleys of Mosul Dam Reservoir

Application of SWAT Model to Estimate the Runoff and Sediment Load from the Right Bank Valleys of Mosul Dam Reservoir Application of SWAT Model to Estimate the Runoff and Sediment Load from the Right Bank Valleys of Mosul Dam Reservoir Dr Mohammad Ezeel Deen Prof. Nadhir Al-Ansari Prof Sven Knutsson Figure 1.Map of Iraq

More information

Watershed Conservation Management Planning Using the Integrated Field & Channel Technology of AnnAGNPS & CONCEPTS

Watershed Conservation Management Planning Using the Integrated Field & Channel Technology of AnnAGNPS & CONCEPTS Watershed Conservation Management Planning Using the Integrated Field & Channel Technology of AnnAGNPS & CONCEPTS Eddy Langendoen Ron Bingner USDA-ARS National Sedimentation Laboratory, Oxford, Mississippi

More information

A distributed runoff model for flood prediction in ungauged basins

A distributed runoff model for flood prediction in ungauged basins Predictions in Ungauged Basins: PUB Kick-off (Proceedings of the PUB Kick-off meeting held in Brasilia, 2 22 November 22). IAHS Publ. 39, 27. 267 A distributed runoff model for flood prediction in ungauged

More information

Mountain Rivers. Gutta cavat lapidem. (Dripping water hollows out a stone) -Ovid, Epistulae Ex Ponto, Book 3, no. 10, 1. 5

Mountain Rivers. Gutta cavat lapidem. (Dripping water hollows out a stone) -Ovid, Epistulae Ex Ponto, Book 3, no. 10, 1. 5 Mountain Rivers Gutta cavat lapidem (Dripping water hollows out a stone) -Ovid, Epistulae Ex Ponto, Book 3, no. 10, 1. 5 Mountain Rivers Fixed channel boundaries (bedrock banks and bed) High transport

More information

Erosion Rate is a Function of Erodibility and Excess Shear Stress = k ( o - c ) From Relation between Shear Stress and Erosion We Calculate c and

Erosion Rate is a Function of Erodibility and Excess Shear Stress = k ( o - c ) From Relation between Shear Stress and Erosion We Calculate c and Equilibrium, Shear Stress, Stream Power and Trends of Vertical Adjustment Andrew Simon USDA-ARS, Oxford, MS asimon@msa-oxford.ars.usda.gov Non-Cohesive versus Cohesive Materials Non-cohesive: sands and

More information

Tarbela Dam in Pakistan. Case study of reservoir sedimentation

Tarbela Dam in Pakistan. Case study of reservoir sedimentation Tarbela Dam in Pakistan. HR Wallingford, Wallingford, UK Published in the proceedings of River Flow 2012, 5-7 September 2012 Abstract Reservoir sedimentation is a main concern in the Tarbela reservoir

More information

Suspended sediment yields of rivers in Turkey

Suspended sediment yields of rivers in Turkey Erosion and Sediment Yield: Global and Regional Perspectives (Proceedings of the Exeter Symposium, July 1996). IAHS Publ. no. 236, 1996. 65 Suspended sediment yields of rivers in Turkey FAZLI OZTURK Department

More information

Sediment Distribution and Characteristics

Sediment Distribution and Characteristics Sediment Distribution and Characteristics Sediments at the bottom of ponds are a source or sink for nutrients in relation to the water column, contribute to turbidity during storm events, serve as the

More information

Earth Science Chapter 6 Section 2 Review

Earth Science Chapter 6 Section 2 Review Name: Class: Date: Earth Science Chapter 6 Section Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Most streams carry the largest part of their

More information

Sediment and nutrient transport and storage along the urban stream corridor

Sediment and nutrient transport and storage along the urban stream corridor Sediment and nutrient transport and storage along the urban stream corridor Greg Noe, Cliff Hupp, Ed Schenk, Jackie Batson, Nancy Rybicki, Allen Gellis What is the role of floodplains everywhere? Noe 2013,

More information

Year 6. Geography. Revision

Year 6. Geography. Revision Year 6 Geography Revision November 2017 Rivers and World knowledge How the water cycle works and the meaning of the terms evaporation, condensation, precipitation, transpiration, surface run-off, groundwater

More information

Surface Water Short Study Guide

Surface Water Short Study Guide Name: Class: Date: Surface Water Short Study Guide Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The three ways in which a stream carries

More information

Dam Removal Analysis Guidelines for Sediment

Dam Removal Analysis Guidelines for Sediment A review of: Dam Removal Analysis Guidelines for Sediment Joe Rathbun (Retired) rathbunj@sbcglobal.net Some Potential Sediment Issues Reservoir restoration Downstream water quality Downstream deposition

More information

Sediment storage requirements for reservoirs

Sediment storage requirements for reservoirs Challenges in African Hydrology and Water Resources (Proceedings of the Harare Symposium, July 1984). IAHS Publ. no. 144. Sediment storage requirements for reservoirs INTRODUCTION T, C, KABELL The Hydrological

More information

Why Geomorphology for Fish Passage

Why Geomorphology for Fish Passage Channel Morphology - Stream Crossing Interactions An Overview Michael Love Michael Love & Associates mlove@h2odesigns.com (707) 476-8938 Why Geomorphology for Fish Passage 1. Understand the Scale of the

More information

Watershed Processes and Modeling

Watershed Processes and Modeling Watershed Processes and Modeling Pierre Y. Julien Hyeonsik Kim Department of Civil Engineering Colorado State University Fort Collins, Colorado Kuala Lumpur - May Objectives Brief overview of Watershed

More information

ADDRESSING GEOMORPHIC AND HYDRAULIC CONTROLS IN OFF-CHANNEL HABITAT DESIGN

ADDRESSING GEOMORPHIC AND HYDRAULIC CONTROLS IN OFF-CHANNEL HABITAT DESIGN ADDRESSING GEOMORPHIC AND HYDRAULIC CONTROLS IN OFF-CHANNEL HABITAT DESIGN Conor Shea - Hydrologist U.S. Fish and Wildlife Service Conservation Partnerships Program Arcata, CA Learning Objectives Examine

More information

THE CASPAR CREEK EXPERIMENTAL WATERSHED. Thomas Lisle, Hydrologist Pacific Southwest Forest and Range Experiment Station Arcata, Califorina

THE CASPAR CREEK EXPERIMENTAL WATERSHED. Thomas Lisle, Hydrologist Pacific Southwest Forest and Range Experiment Station Arcata, Califorina THE CASPAR CREEK EXPERIMENTAL WATERSHED Thomas Lisle, Hydrologist Pacific Southwest Forest and Range Experiment Station Arcata, Califorina The Caspar Creek Experimental Watershed was set up as a traditional

More information

Summary. Streams and Drainage Systems

Summary. Streams and Drainage Systems Streams and Drainage Systems Summary Streams are part of the hydrologic cycle and the chief means by which water returns from the land to the sea. They help shape the Earth s surface and transport sediment

More information

Landscape Development

Landscape Development Landscape Development Slopes Dominate Natural Landscapes Created by the interplay of tectonic and igneous activity and gradation Deformation and uplift Volcanic activity Agents of gradation Mass wasting

More information

REDWOOD VALLEY SUBAREA

REDWOOD VALLEY SUBAREA Independent Science Review Panel Conceptual Model of Watershed Hydrology, Surface Water and Groundwater Interactions and Stream Ecology for the Russian River Watershed Appendices A-1 APPENDIX A A-2 REDWOOD

More information

Stream Restoration and Environmental River Mechanics. Objectives. Pierre Y. Julien. 1. Peligre Dam in Haiti (deforestation)

Stream Restoration and Environmental River Mechanics. Objectives. Pierre Y. Julien. 1. Peligre Dam in Haiti (deforestation) Stream Restoration and Environmental River Mechanics Pierre Y. Julien Malaysia 2004 Objectives Brief overview of environmental river mechanics and stream restoration: 1. Typical problems in environmental

More information

Overview of fluvial and geotechnical processes for TMDL assessment

Overview of fluvial and geotechnical processes for TMDL assessment Overview of fluvial and geotechnical processes for TMDL assessment Christian F Lenhart, Assistant Prof, MSU Research Assoc., U of M Biosystems Engineering Fluvial processes in a glaciated landscape Martin

More information

Geography is the study of the earth, it s land, it s people and it s environments. When you study geography, you should be looking at five distinct

Geography is the study of the earth, it s land, it s people and it s environments. When you study geography, you should be looking at five distinct I.N pg. 9 Geography is the study of the earth, it s land, it s people and it s environments. When you study geography, you should be looking at five distinct themes. LOCATION PLACE REGION MOVEMENT HUMANENVIRONMENTAL

More information

Impacts of Upstream Disturbances on Downstream Sediment Yield and Morphology in the Presence of Best Management Practices

Impacts of Upstream Disturbances on Downstream Sediment Yield and Morphology in the Presence of Best Management Practices Impacts of Upstream Disturbances on Downstream Sediment Yield and Morphology in the Presence of Best Management Practices Ilkim Cavus M.S. Student Dr. Latif Kalin Professor Auburn University, School of

More information

Taunton River Salt Marsh Assessment Results from 2014 season

Taunton River Salt Marsh Assessment Results from 2014 season Taunton River Salt Marsh Assessment Results from 2014 season December, 2014 During the late summer and fall of 2014, Save The Bay evaluated salt marshes in Assonet Bay, Freetown and Broad Cove in Dighton

More information

ADAM ŁAJCZAK Jan Kochanowski University, Institute of Geography, ul. Świętokrzyska 15, Kielce, Poland

ADAM ŁAJCZAK Jan Kochanowski University, Institute of Geography, ul. Świętokrzyska 15, Kielce, Poland Erosion and Sediments Yields in the Changing Environment (Proceedings of a symposium held at the 49 Institute of Mountain Hazards and Environment, CAS-Chengdu, China, 11 15 October 2012) (IAHS Publ. 356,

More information

Which map shows the stream drainage pattern that most likely formed on the surface of this volcano? A) B)

Which map shows the stream drainage pattern that most likely formed on the surface of this volcano? A) B) 1. When snow cover on the land melts, the water will most likely become surface runoff if the land surface is A) frozen B) porous C) grass covered D) unconsolidated gravel Base your answers to questions

More information

Mercury and methylmercury transport in the Cache Creek Settling Basin, California, U.S.A.

Mercury and methylmercury transport in the Cache Creek Settling Basin, California, U.S.A. Mercury and methylmercury transport in the Cache Creek Settling Basin, California, U.S.A. Alpers, C.N. 1, Fleck, J.A. 1, Marvin- DiPasquale, M. 2, Beaulieu, E. 1, and Wright, S.A. 1 1 U.S. Geological Survey,

More information

Changes in Texas Ecoregions

Changes in Texas Ecoregions Comment On Lesson Changes in Texas Ecoregions The state of Texas can be divided into 10 distinct areas based on unique combinations of vegetation, topography, landforms, wildlife, soil, rock, climate,

More information

The Yellow River Initiative: The Birth of a System Approach to Challenges Facing the Everglades of the North

The Yellow River Initiative: The Birth of a System Approach to Challenges Facing the Everglades of the North The Yellow River Initiative: The Birth of a System Approach to Challenges Facing the Everglades of the North Robert Barr and Siavash Beik 2016 INAFSM Annual Conference Belterra Conference Center, Indiana

More information

SEARCHING FOR SEDIMENT SOURCES IN SPRING CREEK

SEARCHING FOR SEDIMENT SOURCES IN SPRING CREEK SEARCHING FOR SEDIMENT SOURCES IN SPRING CREEK Christopher Frederick, Department of Earth Sciences, University of South Alabama, Mobile, AL 36688. E-mail: cjf702@jaguar1.usouthal.edu. Sediment deposition

More information

River Restoration and Rehabilitation. Pierre Y. Julien

River Restoration and Rehabilitation. Pierre Y. Julien River Restoration and Rehabilitation Pierre Y. Julien Department of Civil and Environmental Engineering Colorado State University Fort Collins, Colorado River Mechanics and Sediment Transport Lima Peru

More information

Waterbury Dam Disturbance Mike Fitzgerald Devin Rowland

Waterbury Dam Disturbance Mike Fitzgerald Devin Rowland Waterbury Dam Disturbance Mike Fitzgerald Devin Rowland Abstract The Waterbury Dam was completed in October 1938 as a method of flood control in the Winooski Valley. The construction began in April1935

More information

Black Gore Creek 2013 Sediment Source Monitoring and TMDL Sediment Budget

Black Gore Creek 2013 Sediment Source Monitoring and TMDL Sediment Budget Black Gore Creek 2013 Sediment Source Monitoring and TMDL Sediment Budget Prepared for: Prepared By: - I. Introduction The Black Gore Creek Total Maximum Daily Load (TMDL) was developed in collaboration

More information

Assignment 1. Measuring River Characteristics- Vernon Creek. Applied Fluvial Geomorphology Field Techniques EESc 435

Assignment 1. Measuring River Characteristics- Vernon Creek. Applied Fluvial Geomorphology Field Techniques EESc 435 Assignment 1 Measuring River Characteristics- Vernon Creek Applied Fluvial Geomorphology Field Techniques EESc 435 Amanda Jardine 30100093 Jaime McDonald 14177083 Erica Massey 50870088 April 28, 2012 Introduction

More information

Dan Miller + Kelly Burnett, Kelly Christiansen, Sharon Clarke, Lee Benda. GOAL Predict Channel Characteristics in Space and Time

Dan Miller + Kelly Burnett, Kelly Christiansen, Sharon Clarke, Lee Benda. GOAL Predict Channel Characteristics in Space and Time Broad-Scale Models Dan Miller + Kelly Burnett, Kelly Christiansen, Sharon Clarke, Lee Benda GOAL Predict Channel Characteristics in Space and Time Assess Potential for Fish Use and Productivity Assess

More information

Rivers and Streams. Streams. Hydrologic Cycle. Drainage Basins and Divides. Colorado River Drainage Basin. Colorado Drainage Basins.

Rivers and Streams. Streams. Hydrologic Cycle. Drainage Basins and Divides. Colorado River Drainage Basin. Colorado Drainage Basins. Chapter 14 Hydrologic Cycle Rivers and Streams Streams A stream is a body of water that is confined in a channel and moves downhill under the influence of gravity. This definition includes all sizes of

More information

Environmental Geology Chapter 9 Rivers and Flooding

Environmental Geology Chapter 9 Rivers and Flooding Environmental Geology Chapter 9 Rivers and Flooding Flooding in Pakistan 2010-1600 killed/20000 affected The hydrologic cycle is powered by the Sun The cycle includes evaporation, precipitation, infiltration,

More information

Each basin is surrounded & defined by a drainage divide (high point from which water flows away) Channel initiation

Each basin is surrounded & defined by a drainage divide (high point from which water flows away) Channel initiation DRAINAGE BASINS A drainage basin or watershed is defined from a downstream point, working upstream, to include all of the hillslope & channel areas which drain to that point Each basin is surrounded &

More information

Solutions to Flooding on Pescadero Creek Road

Solutions to Flooding on Pescadero Creek Road Hydrology Hydraulics Geomorphology Design Field Services Photo courtesy Half Moon Bay Review Solutions to Flooding on Pescadero Creek Road Prepared for: San Mateo County Resource Conservation District

More information

The last three sections of the main body of this report consist of:

The last three sections of the main body of this report consist of: Threatened and Endangered Species Geological Hazards Floodplains Cultural Resources Hazardous Materials A Cost Analysis section that provides comparative conceptual-level costs follows the Environmental

More information

Nathaniel Weston. Department of Geography & the Environment Villanova University 30 January 2013 Delaware Estuary Science & Environmental Summit

Nathaniel Weston. Department of Geography & the Environment Villanova University 30 January 2013 Delaware Estuary Science & Environmental Summit Nathaniel Weston Department of Geography & the Environment Villanova University 30 January 2013 Delaware Estuary Science & Environmental Summit Land Use Change in Colonial Period Through 1900s Soil Erosion

More information

Floods Lecture #21 20

Floods Lecture #21 20 Floods 20 Lecture #21 What Is a Flood? Def: high discharge event along a river! Due to heavy rain or snow-melt During a flood, a river:! Erodes channel o Deeper & wider! Overflows channel o Deposits sediment

More information

Recent Changes of Suspended Sediment Yields in the Upper Yangtze River and Its Headwater Tributaries

Recent Changes of Suspended Sediment Yields in the Upper Yangtze River and Its Headwater Tributaries Modern Environmental Science and Engineering (ISSN 2333-2581) July 2015, Volume 1, No. 2, pp. 64-71 Doi: 10.15341/mese(2333-2581)/02.01.2015/002 Academic Star Publishing Company, 2015 www.academicstar.us

More information

MATHEMATICAL MODELING OF FLUVIAL SEDIMENT DELIVERY, NEKA RIVER, IRAN. S.E. Kermani H. Golmaee M.Z. Ahmadi

MATHEMATICAL MODELING OF FLUVIAL SEDIMENT DELIVERY, NEKA RIVER, IRAN. S.E. Kermani H. Golmaee M.Z. Ahmadi JOURNAL OF ENVIRONMENTAL HYDROLOGY The Electronic Journal of the International Association for Environmental Hydrology On the World Wide Web at http://www.hydroweb.com VOLUME 16 2008 MATHEMATICAL MODELING

More information

Evolution of the Po Delta, Italy

Evolution of the Po Delta, Italy Evolution of the Po Delta, Italy Albert Kettner & James Syvitski, Charles Vörösmarty Dynamics and Vulnerability of River Delta Systems workshop September, 2007 Outline 21,000 years ago Effects of the ever

More information

STUDY GUIDE FOR CONTENT MASTERY. Surface Water Movement

STUDY GUIDE FOR CONTENT MASTERY. Surface Water Movement Surface Water SECTION 9.1 Surface Water Movement In your textbook, read about surface water and the way in which it moves sediment. Complete each statement. 1. An excessive amount of water flowing downslope

More information

Technical Memorandum No Sediment Model

Technical Memorandum No Sediment Model Pajaro River Watershed Study in association with Technical Memorandum No. 1.2.9 Sediment Model Task: Development of Sediment Model To: PRWFPA Staff Working Group Prepared by: Gregory Morris and Elsie Parrilla

More information

SECTION G SEDIMENT BUDGET

SECTION G SEDIMENT BUDGET SECTION G SEDIMENT BUDGET INTRODUCTION A sediment budget has been constructed for the for the time period 1952-2000. The purpose of the sediment budget is to determine the relative importance of different

More information

Remaining Capacity in Great Lakes Reservoirs

Remaining Capacity in Great Lakes Reservoirs US Army Corps of Engineers Detroit District Remaining Capacity in Great Lakes Reservoirs Storage Capacity Behind Great Lakes Dams Field Data and Modeling Motivation for project Project overview Data and

More information

1258 LEOPOLD ON FUTURE OP RESERVOIRS

1258 LEOPOLD ON FUTURE OP RESERVOIRS 1258 LEOPOLD ON FUTURE OP RESERVOIRS irrigation. This project is being integrated by the Bureau of Reclamation and the Corps of Engineers of the U. S. Army and complies, in all respects, with the provisions

More information

5/4/2017 Fountain Creek. Gage Analysis. Homework 6. Clifton, Cundiff, Pour, Queen, and Zey CIVE 717

5/4/2017 Fountain Creek. Gage Analysis. Homework 6. Clifton, Cundiff, Pour, Queen, and Zey CIVE 717 5/4/2017 Fountain Creek Gage Analysis Homework 6 Clifton, Cundiff, Pour, Queen, and Zey CIVE 717 Introduction: The CIVE 717 class members, Nate Clifton, Susan Cundiff, Ali Reza Nowrooz Pour, Robbie Queen

More information

PREDICTING BACKGROUND AND RISK-BASED SEDIMENTATION FOR FOREST WATERSHED TMDLS

PREDICTING BACKGROUND AND RISK-BASED SEDIMENTATION FOR FOREST WATERSHED TMDLS This is not a peer-reviewed article. Watershed Management to Meet Water Quality Standards and TMDLS (Total Maximum Daily Load) Proceedings of the Fourth Conference 10-14 March 2007 (San Antonio, Texas

More information

The Equilibrium Channel & Channel Change. Peter Wilcock 3 August 2016

The Equilibrium Channel & Channel Change. Peter Wilcock 3 August 2016 The Equilibrium Channel & Channel Change Peter Wilcock 3 August 2016 1 The search for common empirical attributes of streams Luna B. Leopold M. Gordon ( Reds ) Wolman Watts Branch, MD A meandering stream

More information

LI Yong (1,2), FRIELINGHAUS Monika (1), BORK Hans-Rudolf (1), WU Shuxia (2), ZHU Yongyi (2)

LI Yong (1,2), FRIELINGHAUS Monika (1), BORK Hans-Rudolf (1), WU Shuxia (2), ZHU Yongyi (2) Scientific registration n : Symposium n : 31 Presentation : poster Spatial patterns of soil redistribution and sediment delivery in hilly landscapes of the Loess Plateau Motifs spaciaux de zones d'érosion

More information

Measuring Streambank Erosion Bank Profiles to more Robustly Estimate Recession Rates and Calibration of the AnnAGNPS-CEAP Model

Measuring Streambank Erosion Bank Profiles to more Robustly Estimate Recession Rates and Calibration of the AnnAGNPS-CEAP Model Measuring Streambank Erosion Bank Profiles to more Robustly Estimate Recession Rates and Calibration of the AnnAGNPS-CEAP Model Clare Prestwich, P.E. 1 & W. Barry Southerland, Ph.D. 2 Water Quality and

More information

Unit 1: Geography. For additional information, refer to this website: 1 G e o g r a p h y

Unit 1: Geography. For additional information, refer to this website:  1 G e o g r a p h y Unit 1: Geography For additional information, refer to this website: http://mryoungtms.weebly.com/ 1 G e o g r a p h y Continents and Oceans SOL USI. 2a Essential Understanding: Continents are large land

More information

Modeling Upland and Channel Sources of Sediment in the Le Sueur River Watershed, Minnesota

Modeling Upland and Channel Sources of Sediment in the Le Sueur River Watershed, Minnesota Modeling Upland and Channel Sources of Sediment in the Le Sueur River Watershed, Minnesota Solomon Folle and David Mulla Department of Soil, Water and Climate University of Minnesota August 6, 2009 5 th

More information

River Response. Sediment Water Wood. Confinement. Bank material. Channel morphology. Valley slope. Riparian vegetation.

River Response. Sediment Water Wood. Confinement. Bank material. Channel morphology. Valley slope. Riparian vegetation. River Response River Response Sediment Water Wood Confinement Valley slope Channel morphology Bank material Flow obstructions Riparian vegetation climate catchment vegetation hydrological regime channel

More information

Chapter 3 Erosion in the Las Vegas Wash

Chapter 3 Erosion in the Las Vegas Wash Chapter 3 Erosion in the Las Vegas Wash Introduction As described in Chapter 1, the Las Vegas Wash (Wash) has experienced considerable change as a result of development of the Las Vegas Valley (Valley).

More information