Organic Semiconductors (Molecular / Polymeric Materials)

Size: px
Start display at page:

Download "Organic Semiconductors (Molecular / Polymeric Materials)"

Transcription

1 Organic Semiconductors (Molecular / Polymeric Materials) Van-der-Waals Bonds no dangling bonds Conjugated Materials (extended (delocalized) π-electrons) Bandgap of 1.5 to 3 ev

2 Conducting Polymers Synthetic Metals Conjugated polymers Examples of Conducting Polymers * These materials are insulators or, at best, semiconductors. They become conductive after treatment with oxidizing or reducing agents Doping 2

3 Conducting Polymers 3

4 Conducting Polymers 4

5 Possible Applications of Conductive Polymers Doped conjugated polymers Antistatic materials Electromagnetic shielding Anticorrosion coatings Electrolytic capacitors Batteries Smart windows Sensors Undoped conjugated polymers Light-emitting diodes Photodiodes Solar cells Lasers Field-effect transistors Nonlinear optical material Sensors Processable polymer :PEDOT/PSS - Very stable in the doped state (1000 hrs in air at 100 gives no change in conductivity) Applications: Antistatic coating for photographic film : used in AGFA since 1995 Alternatives to ITO - AGFA s commercial product : Orgacon EL film, PEDOT paste, PEDOT solution Electrode for solid electrolyte capacitor Antistatic coating for CRT Corrosion protection Hole injection layer in LED 5

6 Conducting Polymers Polyacetylene(PA) is a planar molecule. There are three possible structures, i.e., Trans - transoid Trans - PA Cis - transoid Cis - PA Trans - cisoid Cis - cisoid cannot be realized The double bonds are shorter ones, while the single bonds are longer ones. At RT, cis-transoid is first synthesized, and then can be isomerized to trans transoid, a more stable configuration, by heat treatment or doping. The energy of trans cisoid is slightly higher than cis transoid Roughly speaking, the carbon bond angle is 120º the average bond length is 1.4Å 6

7 Conducting Polymers Synthesis of PA ( Polyacetylene )1958 by Mazzanti and Corradini n (CH CH) T 1 ( OBu) 4 / AlEt 3 gray or black semicrystalline powder insoluble in any solvent decompose before melting (CH CH)n 1974 Shirakawa & Coworkers Synthesized and formed strong, free standing film of PA Black, with metallic cluster does not melt until decomposition near 200 o C Micrographs Randomly oriented fibers ( diameter 200Å ) ρ : g/cm 3 can be oriented by stretching the film. 1977, MacDiamid s group & Shirakawa σ : increased via doping by 13 orders of ~ S/cm 7

8 Conjugational Defects In PA, there is strict bond alternation. For a chemist, this is trivial since dimers (pairs) were polymerized For a physicist, dimerization is a phase transition from a metallic to a semiconducting state The phase transition nucleates at several points of the chain with domains growing around these nucleation centers. finally misfits are created.. Domain A Domain B misfit Misfits can be neutral or positively or negatively charged Synonyms : conjugational defects, misfit, dangling bonds, solitons,, 16

9 Solitons : Quasi-particles corresponding to solitary waves *Intrinsic Solitons : as a consequence of synthesis ( 400 radicals per 10 6 carbon atoms ) by ESR results *Extrinsic Solitons : Creation is created in pairs, as soliton / anti-soliton pairs Conservation of particle number (c.f.) breaking of a bond two dangling bonds. Annihilation : closing the bond again Soliton migration A soliton moves by pairing to an adjacent electron and leaving its previous partner unbound. the soliton always occupies odd-numbered sites; the even numbered sites are reserved for anti-solitons. 17

10 Solitons : Quasi-particles corresponding to solitary waves A Soliton is free to move, because the total energy of the system does not depend on the position of the soliton if the chain is long enough. ( In short chains end effects will push the soliton to the center.) A more detailed analysis shows that the soliton has to over come an energy harrier when moving from one site to the next. So called Self-trapping of the soliton on the chain. Free Soliton motion is possible only in polyacetylene. degenerate ground state In the other polymers, motion of a soliton changes the energy. non-degenerate ground state polymers 18

11 Neutral, Positive & Negative Solitons Q = e, S = 0 Positive Q = 0, S = 1/2 Neutral Q = -e, S = 0 Negative +. The neutral soliton :Radical The positive soliton :Carbocation The negative soliton :Carbanion Spin : the neutral soliton : +1/2 or 1/2 ( unpaired electron ) the positive and negative solitons : 0 either no electron or paired electron. Spin charge inversion If the soliton bears a charge it has no spin vice versa... 19

12 Generation of Solitons There are very few solitons created during PA synthesis. ( 400 radicals / 10 6 carbon atoms ) Generation methods: (1) chemical doping (2) photogeneration (3) charge injection (1) chemical doping : a chemical redox reation doping level : up to several %, ppm in classical semi conductor saturation doping leads to a new material & new crystallographic structure. e.g. [(CH) 7 I 3 ]n *Similarity (e.g. Li in Si) 1. The dopants goes to interstitial sites of the crystalline states of the host. 2. charge is transferred from the dopant to the host, thus moving the Fermi level of the host. 20

13 Doping Process : Chemical Doping 1 st step : a double bond is broken 2 nd step : transfer of an electron from the polymer chain to the dopant As a result, two solitons are formed : one neutral and other positively charged. ( p-doping ) The next dopant will then react with the neutral soliton, because in most p-doping reactions. Stoichiometry requires the transfer of two electrons. [PA] + 3I 2 [PA] I 3 In n-doping only one electron will be transferred. [PA] + K [PA] + K + * Very few neutral solitons will survive migrate & annihilate with antisolitons 21

14 Doping Process : Chemical Doping By chemical doping σ : changes by many orders of magintude doping induced insulator-to-metal transition doping generate solitons ( mid gap states ) many solitons many midgap states interact the gap disappear doping reverses the Peierl distortion *Spatial extension of the soliton wave function over 7 lattice site the stoichiometry of 7:1 for the ratio of CH to I 3 in saturation doped PA seems quite plausible Conduction band Valence band Midgap state by chemical doping Large doping Metal:current can flow by hopping 22

15 Doping Process : Photo generation Undisturbed chain hv e h + electron - hole S S + Soliton & anti-soliton 23

16 Doping Process : Charge Injection Non Degenerate Ground State Polymers : Polarons Degenerate means that the energy does not change when single and double bonds are interchanged. Same energy Non - degenerate Polymers : interchange of single and double bond changes the energy. (ex. Poly (para-phenylene)) aromatic lower energy state < quinoidal higher energy state The soliton in polyphenylene seperates a low energy from a high energy region.. driven to the chain end, to lower the energy. 24

17 Polaron To stabilize conjugational defects in a non-degenerate ground state polymer, we have to create bound double defects polaron e.g. a neutral and a positive soliton these defects are pushed toward each other but can not recombine positive polaron Bipolaron : a defect composed of two positive solitons < If two polarons meet, the two neutral solitons can form the bond and only the two charged solitons are left over. > 25

18 Energy States of Polaron two states in the gap + Occupancy of the defect Polaron excitons : There are two possibilities of accomodating two electron (high spin & low spin) Positive =bipolaron Positive =polaron Singlet =polaron =exciton Triplet =polaron =exciton Negative =polaron Negative =bipolaron 26

19 Excitons Exciton: Mobile molecular excited state In some applications it is useful to consider electronic excitation as if a quasiprinciple, capable of migrating, were involved. This is termed as exciton. In organic materials two models are used: - the band or wave model (low temperature, high crystalline order) - the hopping model (higher temperature, low crystalline order or amorphous state) Energy transfer in the hopping limit is identical with energy migration. Excitons are integral to nearly all electronic processes in molecular organic solids - Exciton diffusion is a dominant method of energy transfer - Exciton absorption dominates the absorption spectrum - Exciton formation is necessary for luminescence and photoconductivity. 30

20 Excited States of a Molecule Typical energy levels and energy transfer process. Radiative process Non-radiative process The energy states of molecules correspond to Electronic, vibrational, rotational, and translational degrees of freedom. 31

21 Excitons 32

22 Excitons Depending on the degree of delocalization, the excitons are identified as Frenkel, Chrage-Transfer, or Wannier-Mott. 1. Frenkel Exciton - A correlated electron-hole pair localized on a single molecule - Its radius is comparable to the size of the molecule (typically < 0.5 nm) or is smaller than the intermolecular distance - No internal degrees of freedom - Considered as a neutral particle that can diffuse from site to site 2. Wannier-Mott (WM) Excitons - WM excitons occur in uncorrelated, crystalline materials (e.g., Si, Ge, GaAs), in which overlap between neighboring lattice atoms reduces the Coulombic interaction between the electron and the hole of the exciton - Large exciton radius (4 ~ 10 nm), many times the size of the lattice constant. 3. Charge-Transfer (CT) Excitons - An intermediate between a Frenkel and a WM state, being neither very extended nor tightly bound to a single molecular site. 33

23 Charge-Transfer Excitons Wavefunction density Coulombic potential (V e-h, Electron-hole binding energy) Total potential (V e-h + V pseudo, the periodic crystalline pseudopotential) 34

24 Excitons : PTCDA Electron Energy Transfer Thin-Film Solution (2μM in DMSO) 35

25 Energy Transfer 36

26 Energy Transfer Radiative energy transfer Transfer of excitation energy by radiative deactivation of a donor molecular entity and reabsorption of the emitted light by an acceptor molecular entity. The probability of transfer is given approximately by: P r,t [A]xJ Where J is the spectral overlap integral, [A] is the concentration of the acceptor, and x is the specimen thickness. This type of energy transfer depends on the shape and size of the vessel utilized. Same as trivial energy transfer. 37

27 Förster Transfer 38

28 Förster Transfer : Example 39

29 Förster Transfer Förster excitation transfer (dipole-dipole) excitation transfer A mechanism of excitation transfer which can occur between molecular entities separated by distances considerably exceeding the sum of their van der Waals radii. It is described in terms of an interaction between the transition dipole moments (a dipolar mechanism). The transfer rate constant k D A is given by: K D A = K 2 A( n ϖr 28 mol) Where K is an orientation factor, n the refractive index of the medium, ω the radiative lifetime of the donor, r the distance (cm) between donor (D) and acceptor (A), and J the spectral overlap (in coherent units cm 6 mol -1 ) between the absorption spectrum of the acceptor and the florescence spectrum of the donor. The critical quenching radium r 0, is that distance at which k D A is equal to the inverse of the radiative lifetime. 40

30 Förster Transfer : Rate Equation 41

31 Dexter Transfer 42

32 Dexter Transfer Dexter excitation transfer (electron exchange excitation transfer) Excitation transfer occurring as a result of an electron exchange mechanism. It requires an overlap of the wave functions of the energy donor and the energy acceptor. It is the dominant mechanism in triplet-triplet energy transfer. The transfer rate constant, k ET, is given by: h 2 2r K ET P J exp 2π L where r is the distance between donor (D) and acceptor (A), L and P are constants not easily related to experimentally determinable quantities, and J is the spectral overlap integral. For this mechanism the spin conservation rules are obeyed. 43

33 Non-radiative Energy Transfer 44

34 Diffusion of Excitons 45

35 Single Layer Organic PV Cell 46

36 Photocurrent Generation 47

37 Photocurrent, Photovoltage, Absorption 48

ELEMENTARY BAND THEORY

ELEMENTARY BAND THEORY ELEMENTARY BAND THEORY PHYSICIST Solid state band Valence band, VB Conduction band, CB Fermi energy, E F Bloch orbital, delocalized n-doping p-doping Band gap, E g Direct band gap Indirect band gap Phonon

More information

7 Conjugated Polymers

7 Conjugated Polymers 7 Conjugated Polymers The large majority of polymers, first of all the broadly used commodity materials polyethylene, polypropylene, poly(ethylene terephthalate) or polystyrene, have similar electrical

More information

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample.

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample. Luminescence Topics Radiative transitions between electronic states Absorption and Light emission (spontaneous, stimulated) Excitons (singlets and triplets) Franck-Condon shift(stokes shift) and vibrational

More information

Physics of Organic Semiconductor Devices: Materials, Fundamentals, Technologies and Applications

Physics of Organic Semiconductor Devices: Materials, Fundamentals, Technologies and Applications Physics of Organic Semiconductor Devices: Materials, Fundamentals, Technologies and Applications Dr. Alex Zakhidov Assistant Professor, Physics Department Core faculty at Materials Science, Engineering

More information

Semiconductor Polymer

Semiconductor Polymer Semiconductor Polymer Organic Semiconductor for Flexible Electronics Introduction: An organic semiconductor is an organic compound that possesses similar properties to inorganic semiconductors with hole

More information

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Lecture 1 OUTLINE Basic Semiconductor Physics Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Reading: Chapter 2.1 EE105 Fall 2007 Lecture 1, Slide 1 What is a Semiconductor? Low

More information

Introduction to Engineering Materials ENGR2000. Dr.Coates

Introduction to Engineering Materials ENGR2000. Dr.Coates Introduction to Engineering Materials ENGR2000 Chapter 18: Electrical Properties Dr.Coates 18.2 Ohm s Law V = IR where R is the resistance of the material, V is the voltage and I is the current. l R A

More information

CHARGE CARRIERS PHOTOGENERATION. Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015

CHARGE CARRIERS PHOTOGENERATION. Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015 CHARGE CARRIERS PHOTOGENERATION Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015 Charge carriers photogeneration: what does it mean? Light stimulus

More information

The photovoltaic effect occurs in semiconductors where there are distinct valence and

The photovoltaic effect occurs in semiconductors where there are distinct valence and How a Photovoltaic Cell Works The photovoltaic effect occurs in semiconductors where there are distinct valence and conduction bands. (There are energies at which electrons can not exist within the solid)

More information

Modern Physics for Frommies IV The Universe - Small to Large Lecture 4

Modern Physics for Frommies IV The Universe - Small to Large Lecture 4 Fromm Institute for Lifelong Learning University of San Francisco Modern Physics for Frommies IV The Universe - Small to Large Lecture 4 3 February 06 Modern Physics IV Lecture 4 Agenda Administrative

More information

Organic Molecular Solids

Organic Molecular Solids Markus Schwoerer, Hans Christoph Wolf Organic Molecular Solids BICENTENNIAL BICENTENNIAL WILEY-VCH Verlag GmbH & Co. KGaA VII Contents 1 Introduction 1 1.1 What are Organic Solids? 1 1.2 What are the Special

More information

Electron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID.

Electron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID. Electron Energy, E Free electron Vacuum level 3p 3s 2p 2s 2s Band 3s Band 2p Band Overlapping energy bands Electrons E = 0 1s ATOM 1s SOLID In a metal the various energy bands overlap to give a single

More information

Chemistry Instrumental Analysis Lecture 8. Chem 4631

Chemistry Instrumental Analysis Lecture 8. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 8 UV to IR Components of Optical Basic components of spectroscopic instruments: stable source of radiant energy transparent container to hold sample device

More information

ESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor

ESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor Metal Oxide Semiconductor Field Effect Transistor V G V G 1 Metal Oxide Semiconductor Field Effect Transistor We will need to understand how this current flows through Si What is electric current? 2 Back

More information

CME 300 Properties of Materials. ANSWERS: Homework 9 November 26, As atoms approach each other in the solid state the quantized energy states:

CME 300 Properties of Materials. ANSWERS: Homework 9 November 26, As atoms approach each other in the solid state the quantized energy states: CME 300 Properties of Materials ANSWERS: Homework 9 November 26, 2011 As atoms approach each other in the solid state the quantized energy states: are split. This splitting is associated with the wave

More information

EE 446/646 Photovoltaic Devices I. Y. Baghzouz

EE 446/646 Photovoltaic Devices I. Y. Baghzouz EE 446/646 Photovoltaic Devices I Y. Baghzouz What is Photovoltaics? First used in about 1890, the word has two parts: photo, derived from the Greek word for light, volt, relating to electricity pioneer

More information

Optical Properties of Lattice Vibrations

Optical Properties of Lattice Vibrations Optical Properties of Lattice Vibrations For a collection of classical charged Simple Harmonic Oscillators, the dielectric function is given by: Where N i is the number of oscillators with frequency ω

More information

EE143 Fall 2016 Microfabrication Technologies. Evolution of Devices

EE143 Fall 2016 Microfabrication Technologies. Evolution of Devices EE143 Fall 2016 Microfabrication Technologies Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1-1 Evolution of Devices Yesterday s Transistor (1947) Today s Transistor (2006) 1-2 1 Why

More information

Sandra Plaza García. Departamento de Física de Materiales, Facultad de Ciencias Químicas, Universidad del País Vasco (UPV)

Sandra Plaza García. Departamento de Física de Materiales, Facultad de Ciencias Químicas, Universidad del País Vasco (UPV) DOPING AND CONDUCTING POLYMERS Sandra Plaza García Departamento de Física de Materiales, Facultad de Ciencias Químicas, Universidad del País Vasco (UPV) Donostia International Physics Center (DIPC) OUTLINE

More information

Part II Electrical Properties of Materials

Part II Electrical Properties of Materials Part II Electrical Properties of Materials Chap. 7 Electrical Conduction in Metals and Alloys Chap. 8 Semiconductors Chap. 9 9.1 Conducting Polymers and Organic Metals Polymers consist of (macro)molecules

More information

Minimal Update of Solid State Physics

Minimal Update of Solid State Physics Minimal Update of Solid State Physics It is expected that participants are acquainted with basics of solid state physics. Therefore here we will refresh only those aspects, which are absolutely necessary

More information

Introduction. Fang-Chung Chen Department of Photonics and Display Institute National Chiao Tung University. Organic light-emitting diodes

Introduction. Fang-Chung Chen Department of Photonics and Display Institute National Chiao Tung University. Organic light-emitting diodes rganic light-emitting diodes Introduction Fang-Chung Chen Department of Photonics and Display Institute National Chiao Tung University rganic light-emitting diodes --The emerging technology LED Displays

More information

smal band gap Saturday, April 9, 2011

smal band gap Saturday, April 9, 2011 small band gap upper (conduction) band empty small gap valence band filled 2s 2p 2s 2p hybrid (s+p)band 2p no gap 2s (depend on the crystallographic orientation) extrinsic semiconductor semi-metal electron

More information

EECS143 Microfabrication Technology

EECS143 Microfabrication Technology EECS143 Microfabrication Technology Professor Ali Javey Introduction to Materials Lecture 1 Evolution of Devices Yesterday s Transistor (1947) Today s Transistor (2006) Why Semiconductors? Conductors e.g

More information

ET3034TUx Utilization of band gap energy

ET3034TUx Utilization of band gap energy ET3034TUx - 3.3.1 - Utilization of band gap energy In the last two weeks we have discussed the working principle of a solar cell and the external parameters that define the performance of a solar cell.

More information

Electrons, Holes, and Defect ionization

Electrons, Holes, and Defect ionization Electrons, Holes, and Defect ionization The process of forming intrinsic electron-hole pairs is excitation a cross the band gap ( formation energy ). intrinsic electronic reaction : null e + h When electrons

More information

Charge carriers photogeneration. Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 26-29th, 2013

Charge carriers photogeneration. Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 26-29th, 2013 Charge carriers photogeneration Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 26-29th, 2013 Charge carriers photogeneration: what does it mean? Light stimulus

More information

Chapter 12: Semiconductors

Chapter 12: Semiconductors Chapter 12: Semiconductors Bardeen & Shottky January 30, 2017 Contents 1 Band Structure 4 2 Charge Carrier Density in Intrinsic Semiconductors. 6 3 Doping of Semiconductors 12 4 Carrier Densities in Doped

More information

i) impact of interchain interactions

i) impact of interchain interactions i) impact of interchain interactions multiple experimental observations: in dilute solutions or inert matrices: the photoluminescence quantum yield of a given conjugated polymers can be very large: up

More information

Vibronic Coupling in Quantum Wires: Applications to Polydiacetylene

Vibronic Coupling in Quantum Wires: Applications to Polydiacetylene Vibronic Coupling in Quantum Wires: Applications to Polydiacetylene An Exhaustively Researched Report by Will Bassett and Cole Johnson Overall Goal In order to elucidate the absorbance spectra of different

More information

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell Galvanic cells convert different forms of energy (chemical fuel, sunlight, mechanical pressure, etc.) into electrical energy and heat. In this lecture, we are interested in some examples of galvanic cells.

More information

Lecture 2. Semiconductor Physics. Sunday 4/10/2015 Semiconductor Physics 1-1

Lecture 2. Semiconductor Physics. Sunday 4/10/2015 Semiconductor Physics 1-1 Lecture 2 Semiconductor Physics Sunday 4/10/2015 Semiconductor Physics 1-1 Outline Intrinsic bond model: electrons and holes Charge carrier generation and recombination Intrinsic semiconductor Doping:

More information

Classification of Solids

Classification of Solids Classification of Solids Classification by conductivity, which is related to the band structure: (Filled bands are shown dark; D(E) = Density of states) Class Electron Density Density of States D(E) Examples

More information

Electronics The basics of semiconductor physics

Electronics The basics of semiconductor physics Electronics The basics of semiconductor physics Prof. Márta Rencz, Gergely Nagy BME DED September 16, 2013 The basic properties of semiconductors Semiconductors conductance is between that of conductors

More information

Crystal Properties. MS415 Lec. 2. High performance, high current. ZnO. GaN

Crystal Properties. MS415 Lec. 2. High performance, high current. ZnO. GaN Crystal Properties Crystal Lattices: Periodic arrangement of atoms Repeated unit cells (solid-state) Stuffing atoms into unit cells Determine mechanical & electrical properties High performance, high current

More information

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Introduction to Semiconductor Physics 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/cmp2013 Review of Semiconductor Physics Semiconductor fundamentals

More information

Sébastien FORGET. Laboratoire de Physique des Lasers Université Paris Nord P13. www-lpl.univ-paris13.fr:8088/lumen/

Sébastien FORGET. Laboratoire de Physique des Lasers Université Paris Nord P13. www-lpl.univ-paris13.fr:8088/lumen/ OLEDs Basic principles, technology and applications Sébastien FORGET Laboratoire de Physique des Lasers Université Paris Nord P13 www-lpl.univ-paris13.fr:8088/lumen/ Paris Nord University (Paris 13) This

More information

Atoms? All matters on earth made of atoms (made up of elements or combination of elements).

Atoms? All matters on earth made of atoms (made up of elements or combination of elements). Chapter 1 Atoms? All matters on earth made of atoms (made up of elements or combination of elements). Atomic Structure Atom is the smallest particle of an element that can exist in a stable or independent

More information

Free Electron Model for Metals

Free Electron Model for Metals Free Electron Model for Metals Metals are very good at conducting both heat and electricity. A lattice of in a sea of electrons shared between all nuclei (moving freely between them): This is referred

More information

Chap. 12 Photochemistry

Chap. 12 Photochemistry Chap. 12 Photochemistry Photochemical processes Jablonski diagram 2nd singlet excited state 3rd triplet excited state 1st singlet excited state 2nd triplet excited state 1st triplet excited state Ground

More information

Density of states for electrons and holes. Distribution function. Conduction and valence bands

Density of states for electrons and holes. Distribution function. Conduction and valence bands Intrinsic Semiconductors In the field of semiconductors electrons and holes are usually referred to as free carriers, or simply carriers, because it is these particles which are responsible for carrying

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 8/30/2007 Semiconductor Fundamentals Lecture 2 Read: Chapters 1 and 2 Last Lecture: Energy Band Diagram Conduction band E c E g Band gap E v Valence

More information

Free Electron Model for Metals

Free Electron Model for Metals Free Electron Model for Metals Metals are very good at conducting both heat and electricity. A lattice of in a sea of electrons shared between all nuclei (moving freely between them): This is referred

More information

Semiconductor physics I. The Crystal Structure of Solids

Semiconductor physics I. The Crystal Structure of Solids Lecture 3 Semiconductor physics I The Crystal Structure of Solids 1 Semiconductor materials Types of solids Space lattices Atomic Bonding Imperfection and doping in SOLIDS 2 Semiconductor Semiconductors

More information

EE301 Electronics I , Fall

EE301 Electronics I , Fall EE301 Electronics I 2018-2019, Fall 1. Introduction to Microelectronics (1 Week/3 Hrs.) Introduction, Historical Background, Basic Consepts 2. Rewiev of Semiconductors (1 Week/3 Hrs.) Semiconductor materials

More information

Basic Semiconductor Physics

Basic Semiconductor Physics 6 Basic Semiconductor Physics 6.1 Introduction With this chapter we start with the discussion of some important concepts from semiconductor physics, which are required to understand the operation of solar

More information

Exciton spectroscopy

Exciton spectroscopy Lehrstuhl Werkstoffe der Elektrotechnik Exciton spectroscopy in wide bandgap semiconductors Lehrstuhl Werkstoffe der Elektrotechnik (WW6), Universität Erlangen-Nürnberg, Martensstr. 7, 91058 Erlangen Vortrag

More information

Lecture 7: Extrinsic semiconductors - Fermi level

Lecture 7: Extrinsic semiconductors - Fermi level Lecture 7: Extrinsic semiconductors - Fermi level Contents 1 Dopant materials 1 2 E F in extrinsic semiconductors 5 3 Temperature dependence of carrier concentration 6 3.1 Low temperature regime (T < T

More information

R measurements (resistivity, magnetoresistance, Hall). Makariy A. Tanatar

R measurements (resistivity, magnetoresistance, Hall). Makariy A. Tanatar R measurements (resistivity, magnetoresistance, Hall). 590B Makariy A. Tanatar April 18, 2014 Resistivity Typical resistivity temperature dependence: metals, semiconductors Magnetic scattering Resistivities

More information

KATIHAL FİZİĞİ MNT-510

KATIHAL FİZİĞİ MNT-510 KATIHAL FİZİĞİ MNT-510 YARIİLETKENLER Kaynaklar: Katıhal Fiziği, Prof. Dr. Mustafa Dikici, Seçkin Yayıncılık Katıhal Fiziği, Şakir Aydoğan, Nobel Yayıncılık, Physics for Computer Science Students: With

More information

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV 3.1 Introduction to Semiconductors Y. Baghzouz ECE Department UNLV Introduction In this lecture, we will cover the basic aspects of semiconductor materials, and the physical mechanisms which are at the

More information

Calculating Band Structure

Calculating Band Structure Calculating Band Structure Nearly free electron Assume plane wave solution for electrons Weak potential V(x) Brillouin zone edge Tight binding method Electrons in local atomic states (bound states) Interatomic

More information

Semiconductors 1. Explain different types of semiconductors in detail with necessary bond diagrams. Intrinsic semiconductors:

Semiconductors 1. Explain different types of semiconductors in detail with necessary bond diagrams. Intrinsic semiconductors: Semiconductors 1. Explain different types of semiconductors in detail with necessary bond diagrams. There are two types of semi conductors. 1. Intrinsic semiconductors 2. Extrinsic semiconductors Intrinsic

More information

PHOTOVOLTAICS Fundamentals

PHOTOVOLTAICS Fundamentals PHOTOVOLTAICS Fundamentals PV FUNDAMENTALS Semiconductor basics pn junction Solar cell operation Design of silicon solar cell SEMICONDUCTOR BASICS Allowed energy bands Valence and conduction band Fermi

More information

Electrical material properties

Electrical material properties Electrical material properties U = I R Ohm s law R = ρ (l/a) ρ resistivity l length σ = 1/ρ σ conductivity A area σ = n q μ n conc. of charge carriers q their charge μ their mobility μ depends on T, defects,

More information

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00 1 Name: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND Final Exam Physics 3000 December 11, 2012 Fall 2012 9:00-11:00 INSTRUCTIONS: 1. Answer all seven (7) questions.

More information

February 1, 2011 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC

February 1, 2011 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC FUNDAMENTAL PROPERTIES OF SOLAR CELLS February 1, 2011 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals of

More information

Charge Carriers in Semiconductor

Charge Carriers in Semiconductor Charge Carriers in Semiconductor To understand PN junction s IV characteristics, it is important to understand charge carriers behavior in solids, how to modify carrier densities, and different mechanisms

More information

Luminescence Process

Luminescence Process Luminescence Process The absorption and the emission are related to each other and they are described by two terms which are complex conjugate of each other in the interaction Hamiltonian (H er ). In an

More information

Luminescence basics. Slide # 1

Luminescence basics. Slide # 1 Luminescence basics Types of luminescence Cathodoluminescence: Luminescence due to recombination of EHPs created by energetic electrons. Example: CL mapping system Photoluminescence: Luminescence due to

More information

Fermi polaron-polaritons in MoSe 2

Fermi polaron-polaritons in MoSe 2 Fermi polaron-polaritons in MoSe 2 Meinrad Sidler, Patrick Back, Ovidiu Cotlet, Ajit Srivastava, Thomas Fink, Martin Kroner, Eugene Demler, Atac Imamoglu Quantum impurity problem Nonperturbative interaction

More information

Introduction to Sources: Radiative Processes and Population Inversion in Atoms, Molecules, and Semiconductors Atoms and Molecules

Introduction to Sources: Radiative Processes and Population Inversion in Atoms, Molecules, and Semiconductors Atoms and Molecules OPTI 500 DEF, Spring 2012, Lecture 2 Introduction to Sources: Radiative Processes and Population Inversion in Atoms, Molecules, and Semiconductors Atoms and Molecules Energy Levels Every atom or molecule

More information

Charge Excitation. Lecture 4 9/20/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi

Charge Excitation. Lecture 4 9/20/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi Charge Excitation Lecture 4 9/20/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi 1 2.626/2.627 Roadmap You Are Here 2 2.626/2.627: Fundamentals Every photovoltaic device

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #6 is assigned, due May 1 st Final exam May 8, 10:30-12:30pm

More information

Chapter 1 Overview of Semiconductor Materials and Physics

Chapter 1 Overview of Semiconductor Materials and Physics Chapter 1 Overview of Semiconductor Materials and Physics Professor Paul K. Chu Conductivity / Resistivity of Insulators, Semiconductors, and Conductors Semiconductor Elements Period II III IV V VI 2 B

More information

Direct and Indirect Semiconductor

Direct and Indirect Semiconductor Direct and Indirect Semiconductor Allowed values of energy can be plotted vs. the propagation constant, k. Since the periodicity of most lattices is different in various direction, the E-k diagram must

More information

Semiconductor Physical Electronics

Semiconductor Physical Electronics Semiconductor Physical Electronics Sheng S. Li Department of Electrical Engineering University of Florida Gainesville, Florida Plenum Press New York and London Contents CHAPTER 1. Classification of Solids

More information

Review of Semiconductor Fundamentals

Review of Semiconductor Fundamentals ECE 541/ME 541 Microelectronic Fabrication Techniques Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 1 Semiconductor A semiconductor is an almost insulating material,

More information

Semiconductors. Semiconductors also can collect and generate photons, so they are important in optoelectronic or photonic applications.

Semiconductors. Semiconductors also can collect and generate photons, so they are important in optoelectronic or photonic applications. Semiconductors Semiconducting materials have electrical properties that fall between true conductors, (like metals) which are always highly conducting and insulators (like glass or plastic or common ceramics)

More information

ELECTRONIC DEVICES AND CIRCUITS SUMMARY

ELECTRONIC DEVICES AND CIRCUITS SUMMARY ELECTRONIC DEVICES AND CIRCUITS SUMMARY Classification of Materials: Insulator: An insulator is a material that offers a very low level (or negligible) of conductivity when voltage is applied. Eg: Paper,

More information

Review of Optical Properties of Materials

Review of Optical Properties of Materials Review of Optical Properties of Materials Review of optics Absorption in semiconductors: qualitative discussion Derivation of Optical Absorption Coefficient in Direct Semiconductors Photons When dealing

More information

UNIT - IV SEMICONDUCTORS AND MAGNETIC MATERIALS

UNIT - IV SEMICONDUCTORS AND MAGNETIC MATERIALS 1. What is intrinsic If a semiconductor is sufficiently pure, then it is known as intrinsic semiconductor. ex:: pure Ge, pure Si 2. Mention the expression for intrinsic carrier concentration of intrinsic

More information

In this block the two transport mechanisms will be discussed: diffusion and drift.

In this block the two transport mechanisms will be discussed: diffusion and drift. ET3034TUx - 2.3.3 Transport of charge carriers What are the charge carrier transport principles? In this block the two transport mechanisms will be discussed: diffusion and drift. We will discuss that

More information

Triplet state diffusion in organometallic and organic semiconductors

Triplet state diffusion in organometallic and organic semiconductors Triplet state diffusion in organometallic and organic semiconductors Prof. Anna Köhler Experimental Physik II University of Bayreuth Germany From materials properties To device applications Organic semiconductors

More information

The electronic structure of solids. Charge transport in solids

The electronic structure of solids. Charge transport in solids The electronic structure of solids We need a picture of the electronic structure of solid that we can use to explain experimental observations and make predictions Why is diamond an insulator? Why is sodium

More information

Semiconducting Polymers: A New Class of Material for Electronic and Photonic Devices

Semiconducting Polymers: A New Class of Material for Electronic and Photonic Devices Semiconducting Polymers: A New Class of Material for Electronic and Photonic Devices M. Osama Aboelfotoh Dept. of Materials Science and Engineering North Carolina State University POLYMERS Question: What

More information

Electronic Processes on Semiconductor Surfaces during Chemisorption

Electronic Processes on Semiconductor Surfaces during Chemisorption Electronic Processes on Semiconductor Surfaces during Chemisorption T. Wolkenstein Translatedfrom Russian by E. M. Yankovskii Translation edited in part by Roy Morrison CONSULTANTS BUREAU NEW YORK AND

More information

Engineering 2000 Chapter 8 Semiconductors. ENG2000: R.I. Hornsey Semi: 1

Engineering 2000 Chapter 8 Semiconductors. ENG2000: R.I. Hornsey Semi: 1 Engineering 2000 Chapter 8 Semiconductors ENG2000: R.I. Hornsey Semi: 1 Overview We need to know the electrical properties of Si To do this, we must also draw on some of the physical properties and we

More information

Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures Electronic and Optoelectronic Properties of Semiconductor Structures Jasprit Singh University of Michigan, Ann Arbor CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE INTRODUCTION xiii xiv 1.1 SURVEY OF ADVANCES

More information

The German University in Cairo. Faculty of Information Engineering & Technology Semiconductors (Elct 503) Electronics Department Fall 2014

The German University in Cairo. Faculty of Information Engineering & Technology Semiconductors (Elct 503) Electronics Department Fall 2014 The German University in Cairo th Electronics 5 Semester Faculty of Information Engineering & Technology Semiconductors (Elct 503) Electronics Department Fall 2014 Problem Set 3 1- a) Find the resistivity

More information

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer Sheng S. Li Semiconductor Physical Electronics Second Edition With 230 Figures 4) Springer Contents Preface 1. Classification of Solids and Crystal Structure 1 1.1 Introduction 1 1.2 The Bravais Lattice

More information

Session 5: Solid State Physics. Charge Mobility Drift Diffusion Recombination-Generation

Session 5: Solid State Physics. Charge Mobility Drift Diffusion Recombination-Generation Session 5: Solid State Physics Charge Mobility Drift Diffusion Recombination-Generation 1 Outline A B C D E F G H I J 2 Mobile Charge Carriers in Semiconductors Three primary types of carrier action occur

More information

Organic solar cells. State of the art and outlooks. Gilles Horowitz LPICM, UMR7647 CNRS - Ecole Polytechnique

Organic solar cells. State of the art and outlooks. Gilles Horowitz LPICM, UMR7647 CNRS - Ecole Polytechnique Organic solar cells. State of the art and outlooks Gilles Horowitz LPICM, UMR7647 CNRS - Ecole Polytechnique Solar energy Solar energy on earth: 75,000 tep/year 6000 times the world consumption in 2007

More information

V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). Makariy A.

V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). Makariy A. V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). 590B Makariy A. Tanatar November 12, 2008 Resistivity Typical resistivity temperature

More information

ECE 250 Electronic Devices 1. Electronic Device Modeling

ECE 250 Electronic Devices 1. Electronic Device Modeling ECE 250 Electronic Devices 1 ECE 250 Electronic Device Modeling ECE 250 Electronic Devices 2 Introduction to Semiconductor Physics You should really take a semiconductor device physics course. We can only

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Ali Javey. Spring 2009.

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Ali Javey. Spring 2009. UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EE143 Professor Ali Javey Spring 2009 Exam 1 Name: SID: Closed book. One sheet of notes is allowed.

More information

Nanomaterials for Photovoltaics (v11) 14. Intermediate-Band Solar Cells

Nanomaterials for Photovoltaics (v11) 14. Intermediate-Band Solar Cells 1 14. Intermediate-Band Solar Cells Intermediate (impurity) band solar cells (IBSCs) (I) Concept first proposed by A. Luque and A. Martí in 1997. Establish an additional electronic band within the band

More information

Due to the quantum nature of electrons, one energy state can be occupied only by one electron.

Due to the quantum nature of electrons, one energy state can be occupied only by one electron. In crystalline solids, not all values of the electron energy are possible. The allowed intervals of energy are called allowed bands (shown as blue and chess-board blue). The forbidden intervals are called

More information

UNIT I: Electronic Materials.

UNIT I: Electronic Materials. SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code: SEMICONDUCTOR PHYSICS (18HS0851) Course & Branch: B.Tech

More information

How does a polymer LED OPERATE?

How does a polymer LED OPERATE? How does a polymer LED OPERATE? Now that we have covered many basic issues we can try and put together a few concepts as they appear in a working device. We start with an LED:. Charge injection a. Hole

More information

Three Most Important Topics (MIT) Today

Three Most Important Topics (MIT) Today Three Most Important Topics (MIT) Today Electrons in periodic potential Energy gap nearly free electron Bloch Theorem Energy gap tight binding Chapter 1 1 Electrons in Periodic Potential We now know the

More information

Organic Electronic Devices

Organic Electronic Devices Organic Electronic Devices Week 5: Organic Light-Emitting Devices and Emerging Technologies Lecture 5.5: Course Review and Summary Bryan W. Boudouris Chemical Engineering Purdue University 1 Understanding

More information

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules.

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules. Today From Last Time Important new Quantum Mechanical Concepts Indistinguishability: Symmetries of the wavefunction: Symmetric and Antisymmetric Pauli exclusion principle: only one fermion per state Spin

More information

Graphene and Carbon Nanotubes

Graphene and Carbon Nanotubes Graphene and Carbon Nanotubes 1 atom thick films of graphite atomic chicken wire Novoselov et al - Science 306, 666 (004) 100μm Geim s group at Manchester Novoselov et al - Nature 438, 197 (005) Kim-Stormer

More information

4. One-dimensional systems

4. One-dimensional systems 4. One-dimensional systems 1 Contents Introduction Clasification and fabrication techniques 1D metals, polymers Carbon nanotubes Semiconductor wires Metallic wires obtained by MCBJ technique and STM Metallic

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Fall Exam 1

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Fall Exam 1 UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 143 Fall 2008 Exam 1 Professor Ali Javey Answer Key Name: SID: 1337 Closed book. One sheet

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF PHYSICS QUESTION BANK II SEMESTER PH8252 - PHYSICS FOR INFORMATION SCIENCE (Common to CSE & IT) Regulation 2017 Academic Year

More information

Mat E 272 Lecture 25: Electrical properties of materials

Mat E 272 Lecture 25: Electrical properties of materials Mat E 272 Lecture 25: Electrical properties of materials December 6, 2001 Introduction: Calcium and copper are both metals; Ca has a valence of +2 (2 electrons per atom) while Cu has a valence of +1 (1

More information

arxiv: v1 [cond-mat.mtrl-sci] 18 Sep 2013

arxiv: v1 [cond-mat.mtrl-sci] 18 Sep 2013 The Sub-bandgap Photoconductivity in InGaAs:ErAs Nanocomposites W-D. Zhang and E. R. Brown Terahertz Sensor Laboratory, Depts. of Physics and Electrical Engineering, arxiv:1309.4675v1 [cond-mat.mtrl-sci]

More information

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Optical Properties of Semiconductors 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 Light Matter Interaction Response to external electric

More information