The E factor at 21. Roger A. Sheldon Delft University of Technology

Size: px
Start display at page:

Download "The E factor at 21. Roger A. Sheldon Delft University of Technology"

Transcription

1 The E factor at 21 Roger A. Sheldon Delft University of Technology 1

2 The E factor at 21 Outline 1. Origins of the E factor 2. Green chemistry, catalysis & sustainability 3. Suspect solvents 4. Biocatalysis 5. The bio-based economy 6. The metrics of sustainability 7. Conclusions & prospects 2

3 Phloroglucinol Synthesis anno 1980 CH 3 COOH O 2 N NO 2 K 2 Cr 2 O 7 O 2 N NO 2 Fe/HCl H 2 N NH 2 HO aq.hcl OH H 2 SO 4 / SO 3 - CO 2 ΔT NO 2 TNT NO 2 NH 2 Ca. 40kg of solid waste per kg phloroglucinol O H phloroglucinol HO OH O H product MW = 126 > 90 % yield Selective? Efficient? + Cr 2 (SO 4 ) 3 + 2KHSO 4 + 9FeCl 2 + 3NH 4 Cl + CO 2 + 8H 2 O byproducts Atom Utilisation = 126/2282 = ca. 5 % E Factor = ca. 40 To measure is to know Lord Kelvin 3

4 Reaction Stoichiometry and Atom Economy 4

5 Conclusion? A new paradigm was needed for efficiency in organic synthesis From the traditional one of chemical yield to one that assigns value to waste elimination and avoiding toxic/hazardous materials An environmental factor was missing 5

6 Green (Clean) Chemistry Green chemistry efficiently utilises (preferably renewable) raw materials, eliminates waste and avoids the use of toxic and/or hazardous solvents and reagents in the manufacture and application of chemical products. Anastas & Warner, Green Chemistry : Theory & Practice,Oxford Univ. Press,New York,1998 Sheldon, Arends and Hanefeld, Green Chemistry and Catalysis, Wiley, New York,

7 Green (Clean) Chemistry Green chemistry is pollution prevention not end-of-pipe remediation Environmental pollution is an incurable disease. It can only be prevented. Barry Commoner The Closing Circle,

8 What is Sustainability? Meeting the needs of the present generation without compromising the needs of future generations to meet their own needs Making every decision with the future in mind Profit People Planet Brundtland Report, Our Common Future,

9 The Sustainability Venn Diagram Social (People) Equitable Sustainable Economic (Profit) Bearable Viable Environment (Planet) 9

10 Green Chemistry Waste minimization Environmentally acceptable solvents, reagents and end-products Renewable feedstocks Products & processes The Bio-Based Economy - Biomass as feedstock - Biodegradable products - (Bio)catalytic conversions 10

11 E Factor = kg waste/kg product Tonnage E Factor Oil Refining <0.1 Bulk Chemicals <1-5 Fine chemical Industry >50 Pharmaceutical Industry >100 Another aspect of process development mentioned by all pharmaceutical process chemists who spoke with C&EN is the need for determining an E Factor. A. N. Thayer, C&EN, August 6, 2007, pp R.A.Sheldon, Chem & Ind, 1992, 903 ; 1997, 12 11

12 The E factor (E)verything but the Product Is the actual amount of all waste formed in the process, including solvent losses and waste from energy production (c.f. atom utilisation is a theoretical nr.) E = [kgs raw materials- kgs product]/[kgs product] A good way to quickly show (e.g. to students) the enormity of the waste problem What about the process water? Only if it needs to be treated 12

13 Metrics of Green Chemistry MI = E = E factor Total mass of waste Mass of final product Mass intensity (MI) Total mass in process Mass of product Atom efficiency (AE) AE (%) = m.w of product x 100 Σ m.w. of reactants Reaction mass efficiency (RME) RME(%) = Mass of product C x 100 Mass of A + Mass of B Mass Productivity (MP) Carbon efficiency (CE) MP = Mass of product Total mass in process CE(%) = Carbon in product x 100 Total carbon in reactants Effective mass yield (EMY) EMY(%) = Mass of product x 100 Mass of hazardous reagents 13

14 The Goal Is Zero E-factor as a green chemistry metric E-factor M&M model Industry segment 0.1 Oil refining 1 Bulk Chemicals & Polymers Fine Chemicals 250 Pharmaceuticals & Electronics Irvin J. Levy Professor of Chemistry Gordon College, Wenham, MA E-factor = mass of waste mass of product E-factor = (mass of inputs - mass of outputs) mass of product 14

15 On the Way Towards Greener Processes, as Quantified by E Factors B. H. Lipshutz, N. A. Isley, J. C. Fennewald, E. D. Slack 15

16 The Environmental Impact EQ EQ = E(kg waste) Q Q = Unfriendliness Multiplier e.g. NaCl : Q = 1 ( arbitrary) Cr salts : Q = 1000? There are many shades of green! Quantification of Q R.A.Sheldon, Chem & Ind, 1992, 903 ; 1997, 12 16

17 Environmental Assessment Tool for Organic Syntheses EATOS Combines raw material efficiency with LCA and economic indicators - Mass and Energy Flow - Environment, Health and Safety - Persistence, bioaccumulation and toxicity (PBT) - Costs J. O. Metzger and M. Eissen, Chem. Eur. J. 8, (2002) 17

18 Environmental Assessment Tool for Organic Syntheses EATOS 18

19 Major Sources of Waste Stoichiometric Reagents - Acids & Bases - Oxidants & reductants - Na 2 Cr 2 O 7, KMnO 4, MnO 2 - LiAlH 4, NaBH 4, Zn, Fe/HCl Solvent losses ( 85% of non-aqueous mass) The Solution : Atom & step economic catalytic processes in alternative reaction media (the best solvent is no solvent) 19

20 Bridging the Gap J. J. Berzelius Organic Chemistry (1807) Catalysis (1835) Urea synthesis 1828 ( Wöhler ) First synthetic dye 1856 Aniline purple (Perkin) Dyestuffs Industry (based on coal-tar) ca Catalysis definition (Ostwald) Catalytic Hydrogenation (Sabatier) ca Petrochemicals 1936 Catalytic cracking 1949 Catalytic reforming 1955 Ziegler-Natta catalysis Fine Chemicals Bulk Chemicals & Polymers Catalysis in Organic Synthesis 20

21 The Ideal Synthesis 100% Yield One Step Simple & Safe Economical in Time & Waste Environmentally Acceptable - atom economy - step economy - human economy Urea Taxol Apoptolidine s 2005 #Steps Shorten the synthesis or change the target N O 13 steps 1. Ni cat. 2. H 2 / cat. + Wilstatter 21

22 The Ideal Process "The ideal chemical process is that which a one-armed operator can perform by pouring the reactants into a bath tub and collecting pure product from the drain hole" Sir John Cornforth (Nobel Prize 1975) 22

23 Catalysis & Green Chemistry Organocatalysis Biocatalysis Catalysis Homogeneous Heterogeneous Sheldon, Arends and Hanefeld, Green Chemistry And Catalysis, Wiley, New York,

24 The Solvent Problem : Catalysis in Non-conventional Reaction Media Two challenges : Toxicity and/or hazards of atmospheric and ground water pollution by conventional solvents Separation/recycling of homogeneous catalysts (Biphasic) catalysis in non-conventional media - water - supercritical carbon dioxide - ionic liquids The best solvent is no solvent 24

25 Solvent Selection Guide Pentane Hexane(s) Di-isopropyl ether Diethyl ether Dichloromethane Dichloroethane Chloroform NMP DMF Pyridine DMAc Dioxane Dimethoxyethane Benzene Carbon Tetrachloride Cyclohexane Toluene Methylcyclohexane TBME Isooctane Acetonitrile 2-MeTHF THF Xylenes DMSO Acetic Acid Ethylene Glycol Water scco 2 Acetone Ethanol 2-Propanol 1-Propanol Heptane Ethyl Acetate Isopropyl acetate Methanol MEK 1-Butanol t-butanol P. Dunn et al, Green Chem. 2008, 10,

26 Biocatalysis is Green & Sustainable Enzymes are derived from renewable resources and are biodegradable (even edible sometimes) Avoids use of (and product contamination by) scarce precious metals Mild conditions: ambient T & P in water High rates & highly specific : substrate, chemo-, regio-, and enantiospecific Higher quality product No special equipment needed Reduced environmental footprint 26

27 Historically: Adapt Process to fit Catalyst Available Catalyst Dream Process 27

28 Future: Adapt Catalyst to fit Ideal Process EVOLVE Catalyst Adapted Catalyst Nightmare Process Dream Process Compromise process to accommodate catalyst Directed Evolution Adapt catalyst to optimum process 28

29 The Challenge Disadvantages of Enzymes Low operational stability & shelf life Cumbersome recovery & re-use Product contamination Allergic reactions to proteins Non viable biocatalytic applications Costs are too high Not practical The Solution: Immobilization 29

30 Heterogeneous Catalysis with Enzymes Available Technologies Proprietary CLEA (Cross-Linked Enzyme Aggregate) Technology On various carriers Encapsulation Combinations 30

31 Conclusions & Take Home Message 1. There is not one winner. 2. There are Waste many chemo- Valorisation: and bio-catalytic methods 3. There are many shades of green. The New Frontier In an ideal chemical factory there is, strictly speaking, no waste but only products. The better a real factory makes use of its waste, the closer it gets to its ideal, the bigger is the profit. A. W. von Hofmann (1884) 31

32 Remediation Prevention Utilisation Valorisation Green Chemistry Sustainable Development 32

33 The Size of the Opportunity Lignocellulosic biomass residues: 220 X 10 9 tonnes /annum Rice husks: 120 X 10 6 tonnes / annum Sugar cane bagasse: 220 X 10 6 tonnes / annum Waste straw in China: 600 X 10 6 tonnes / annum Orange peel in Brazil: 8 X 10 6 tonnes / annum C. O. Tuck, E. Perez, I. T. Horvath, R. A. Sheldon, M Poliakoff, Science, 2012, 337,

34 The Valorisation Scale Product /ton Average Bulk Chemical 1000 Transportation Fuel Fermentation Feedstock Animal Feed Electricity Generation Landfill -/

35 Valorisation of glycerol ( 25.3 GJ/tonne) Product /GJ Epichlorohydrin Transport fuel 10 Electricity 3 35

36 Meaningful Metrics for Biomass Valorisation To measure is to know Lord Kelvin M eff = kgs product(s) kgs product(s)+ kgs waste E eff = energy out energy in Boundary conditions? (Cradle-Gate-Gate-Grave-Cradle) Land & Water Usage Economics A concise set of metrics for quick evaluation of petrochemical vs bio-based processes 36

37 Sustainability metrics of chemicals from biomass List of selected metrics: - material efficiency - total energy efficiency - land use - economic added value 37

38 Sustainability metrics of chemicals from biomass 38

39 Lignocellulosic biomass to sustainable fuels & chemicals The stone age didn t end when there were no more stones left 39

40 Production of Phloroglucinol by Fermentation Metabolically engineered E. coli 3.8 g/l in 12 h Not (yet) commercially viable Y.Cao, X. Jiang, R. Zhang & M. Xian, Appl Microbiol Biotechnol (2011) 91:

41 and Sustainable Thank you, any questions? 41

The E factor, Pollution Prevention & Reaction Efficiency. Roger A. Sheldon Delft University of Technology

The E factor, Pollution Prevention & Reaction Efficiency. Roger A. Sheldon Delft University of Technology The E factor, Pollution Prevention & Reaction Efficiency Roger A. Sheldon Delft University of Technology r.a.sheldon@tudelft.nl r.sheldon@clea.nl 1 The E factor, Pollution Prevention & Reaction Efficiency

More information

LATEST TECHNOLOGY IN Safe handling & Recovery OF Solvents in Pharma Industry

LATEST TECHNOLOGY IN Safe handling & Recovery OF Solvents in Pharma Industry LATEST TECHNOLOGY IN Safe handling & Recovery OF Solvents in Pharma Industry TYPICAL SOLVENT USE IN Pharma Industry Usage of solvents in an API process development is for: Diluent to carry out reaction

More information

GREEN CHEMISTRY & SUSTAINABLE INDUSTRIAL TECHNOLOGY

GREEN CHEMISTRY & SUSTAINABLE INDUSTRIAL TECHNOLOGY CHE00001M UNIVERSITY OF YORK MSc Examinations 2016 GREEN CHEMISTRY & SUSTAINABLE INDUSTRIAL TECHNOLOGY Time allowed: 2½ hours Answer Section A (Question 1) and TWO out of FOUR questions from Section B

More information

Green Chemistry: A Greener Clean

Green Chemistry: A Greener Clean Green Chemistry: A Greener Clean Chicago ACS Chemistry Day Mary Kirchhoff Green Chemistry Institute What is Green Chemistry? Green Chemistry is the design of chemical products and processes that reduce

More information

Green Chemistry at Pfizer. James Long Pfizer Green Chemistry Team

Green Chemistry at Pfizer. James Long Pfizer Green Chemistry Team Green Chemistry at Pfizer James Long Pfizer Green Chemistry Team Agenda Introduction to Green Chemistry at Pfizer Engagement and alignment across the company Supporting and influencing external environment

More information

GREEN CHEMISTRY. Dr. A. R. Ramesh Assistant Professor. Green Chemistry- Ramesh - GEC Kozhikode

GREEN CHEMISTRY. Dr. A. R. Ramesh Assistant Professor. Green Chemistry- Ramesh - GEC Kozhikode GREEN CHEMISTRY Dr. A. R. Ramesh Assistant Professor 1 What is Green Chemistry? Green chemistry can also be described as Sustainable chemistry. Chemistry that is benign by design. Pollution prevention

More information

Green Chemistry at Pfizer. Peter Dunn Pfizer Green Chemistry Lead

Green Chemistry at Pfizer. Peter Dunn Pfizer Green Chemistry Lead Green Chemistry at Pfizer Peter Dunn Pfizer Green Chemistry Lead Agenda Introduction to Green Chemistry at Pfizer What it is, what it encompasses Making a Difference through Green Chemistry Engagement

More information

GCSE Chemistry. Module C7 Further Chemistry: What you should know. Name: Science Group: Teacher:

GCSE Chemistry. Module C7 Further Chemistry: What you should know. Name: Science Group: Teacher: GCSE Chemistry Module C7 Further Chemistry: What you should know Name: Science Group: Teacher: R.A.G. each of the statements to help focus your revision: R = Red: I don t know this A = Amber: I partly

More information

Catalysis a Key to Sustainability Matthias Beller

Catalysis a Key to Sustainability Matthias Beller Catalysis a Key to Sustainability Matthias Beller Catalysis is the science of accelerating chemical transformations. In general, readily available starting materials are converted to form more complex

More information

Silesian University of Technology, Poland Recoverable and recyclable catalysts for sustainable chemical processes

Silesian University of Technology, Poland Recoverable and recyclable catalysts for sustainable chemical processes Silesian University of Technology, Poland Recoverable and recyclable catalysts for sustainable chemical processes Anna Chrobok What are the challenges for the sustainable chemical industry today? reduce

More information

Pharma and Suppliers: Collaborating on Green Chemistry. Launch of PMI tool. ACS Green Chemistry Institute Pharmaceutical Roundtable

Pharma and Suppliers: Collaborating on Green Chemistry. Launch of PMI tool. ACS Green Chemistry Institute Pharmaceutical Roundtable Pharma and Suppliers: Collaborating on Green Chemistry. Launch of PMI tool ACS Green Chemistry Institute Pharmaceutical Roundtable Dave Hughes 08-Feb-2011 2011 Copyright American Chemical Society Green

More information

Selec*vity and Atom Economy: Green Chemistry Metrics. 2 nd Principle of Green Chemistry. Types of selec*vity. Reac*on Efficiency 3/11/12

Selec*vity and Atom Economy: Green Chemistry Metrics. 2 nd Principle of Green Chemistry. Types of selec*vity. Reac*on Efficiency 3/11/12 Selec*vity and Atom Economy: Green Chemistry Metrics Week 4 2 nd Principle of Green Chemistry Synthe*c methods should be designed to maximize the incorpora*on of all materials used in the process into

More information

Chemicals and petroleum industries account for 50% of industrial energy usage.

Chemicals and petroleum industries account for 50% of industrial energy usage. Chemicals and petroleum industries account for 50% of industrial energy usage. ~1/4 of the energy used is consumed in distillation and drying processes. 15 Biomaterials [Carbohydrates, Proteins, Lipids]

More information

A Green Oxidant for In-Situ Chemical Oxidation. Jack Peabody Regenesis

A Green Oxidant for In-Situ Chemical Oxidation. Jack Peabody Regenesis A Green xidant for In-Situ Chemical xidation Jack Peabody Regenesis jpeabody@regenesis.com The New Era of Environmentalism Green Sustainable Renewable Energy Chemistry Vehicles Farming Technologies Lifestyles

More information

Green Chemistry & Engineering for Pharmacuetical Industry Impact of Process Research / Route Scouting towards the Environment during API Life Cycle

Green Chemistry & Engineering for Pharmacuetical Industry Impact of Process Research / Route Scouting towards the Environment during API Life Cycle Green Chemistry & Engineering for Pharmacuetical Industry Impact of Process Research / Route Scouting towards the Environment during API Life Cycle Dhileep Krishnamurthy, Ph.D. Outline Introduction Green

More information

Design for Environment : Green Chemistry Principles for Product Design

Design for Environment : Green Chemistry Principles for Product Design Design for Environment : Green Chemistry Principles for Product Design ecologic Technologies Ltd We shall require a substantially new manner of thinking if mankind is to survive. Transforming industrial

More information

Introducing New Functionalities in Liquid Stationary Phases in GC Columns for Confirming Organic Volatile Impurity Testing in Pharmaceutical Products.

Introducing New Functionalities in Liquid Stationary Phases in GC Columns for Confirming Organic Volatile Impurity Testing in Pharmaceutical Products. Introducing New Functionalities in Liquid Stationary Phases in GC Columns for Confirming Organic Volatile Impurity Testing in Pharmaceutical Products. CHRISTOPHER M. ENGLISH, CHRISTOPHER S. COX, FRANK

More information

Green Chemistry: Principle and its Application

Green Chemistry: Principle and its Application Green Chemistry: Principle and its Application Mohd Wahid Department of Chemistry, Aligarh Muslim University, Aligarh, UP, India Faizan Ahmad * Department of Post arvest Engineering and Technology, Faculty

More information

Density (g ml -1 ) Volume (cm 3 ) 2- chloroethanol

Density (g ml -1 ) Volume (cm 3 ) 2- chloroethanol Method 2: Synthesis of morpholines using copper triflate catalyst - step 1 Summary of First Pass Metrics Toolkit Yield, AE, RME, MI/PMI and OE Reactant (Limiting Reactant First) MW Mol Catalyst Reagent

More information

Module overview. The approach. Practical work. ICT resources. The topics. Skills assessment. Health and safety. Advance preparation

Module overview. The approach. Practical work. ICT resources. The topics. Skills assessment. Health and safety. Advance preparation Module overview The approach This module is equivalent in extent to three of the earlier modules C1 C3 or C4 C6. There are three broad aims: to extend the coverage of key themes in modern chemistry (organic

More information

Green Synthesis and Green Nanotechnology: An Integral Part of Sustainable Nano

Green Synthesis and Green Nanotechnology: An Integral Part of Sustainable Nano Green Synthesis and Green Nanotechnology: An Integral Part of Sustainable Nano Barbara Karn, PhD National Science Foundation Santa Barbara November 3, 2013 Green Nano Green nanotechnology is about doing

More information

Greening The Pharmaceutical Industry To Afford Good Laboratory Practice. Presented By Prof. Dr. Salwa Elmeligie Faculty of Pharmacy, Cairo University

Greening The Pharmaceutical Industry To Afford Good Laboratory Practice. Presented By Prof. Dr. Salwa Elmeligie Faculty of Pharmacy, Cairo University Greening The Pharmaceutical Industry To Afford Good Laboratory Practice Presented By Prof. Dr. Salwa Elmeligie Faculty of Pharmacy, Cairo University 1 Iam so glade to be here in this International Conference

More information

KOCH MODULAR PROCESS SYSTEMS

KOCH MODULAR PROCESS SYSTEMS KOCH MODULAR PROCESS SYSTEMS Designing Separation Systems for Bio-Produced Chemicals Prepared for: Pacific Rim Summit on Industrial Biotechnology Date: December 2014 4 5 E i s e n h o w e r D r i v e,

More information

Chemistry. Answers and Marking Scheme. HSC Course. Production of Materials. Theory Test General Instructions. Total Marks 35

Chemistry. Answers and Marking Scheme. HSC Course. Production of Materials. Theory Test General Instructions. Total Marks 35 Answers and Marking Scheme Chemistry SC Course Production of Materials Theory Test 2005 General Instructions Total Marks 35 Reading time 5 minutes Working time 50 minutes Write using black or blue pen

More information

Michael J. Costanzo, Mitul N. Patel, Kathryn A. Petersen, and Paul F. Vogt. June 2009

Michael J. Costanzo, Mitul N. Patel, Kathryn A. Petersen, and Paul F. Vogt. June 2009 Ammonia-Free Birch Reductions Using Stabilized Sodium In n-silica for Safer, More Sustainable Synthesis Michael J. Costanzo, Mitul N. Patel, Kathryn A. Petersen, and Paul F. Vogt June 2009 About SiGNa

More information

Environmental Efficiency of Chemical Processes. Dr. Anuj Kumar Mittal, Head-R&D PI Industries Ltd. IGCW Convention - December 2013

Environmental Efficiency of Chemical Processes. Dr. Anuj Kumar Mittal, Head-R&D PI Industries Ltd. IGCW Convention - December 2013 Environmental Efficiency of Chemical Processes Dr. Anuj Kumar Mittal, Head-R&D PI Industries Ltd. IGCW Convention - December 2013 Prelude WHAT IS GREEN CHEMISTRY? Green Chemistry is essentially a way of

More information

KENNETH G. HANCOCK MEMORIAL STUDENT AWARD IN GREEN CHEMISTRY Student Application Package Award: $1,000 Closing date: October 11, 2019

KENNETH G. HANCOCK MEMORIAL STUDENT AWARD IN GREEN CHEMISTRY Student Application Package Award: $1,000 Closing date: October 11, 2019 KENNETH G. HANCOCK MEMORIAL IN GREEN CHEMISTRY Student Application Package Award: $1,000 Closing date: October 11, 2019 The Kenneth G. Hancock Memorial Award is sponsored by the American Chemical Society

More information

Exercise 9 - Petrochemicals and Climate

Exercise 9 - Petrochemicals and Climate 113 Exercise 9 - Petrochemicals and Climate 1. The year of the first U.S. drilled oil well. c. 1859 2. Approximately, what percent of the world's remaining oil reserves are in the United States? a. 2%

More information

THE ROLE OF CHEMICAL SYNTHESIS IN SUPPORT OF THE SUBSTITUTION PRINCIPLE Ferdinando Fiorino Elisa Perissutti

THE ROLE OF CHEMICAL SYNTHESIS IN SUPPORT OF THE SUBSTITUTION PRINCIPLE Ferdinando Fiorino Elisa Perissutti Unit of Medicinal Chemistry LIFE-EDESIA workshop Milan, Dicember 10 th 2014 THE ROLE OF CHEMICAL SYNTHESIS IN SUPPORT OF THE SUBSTITUTION PRINCIPLE Ferdinando Fiorino Elisa Perissutti Università degli

More information

The development of an environmentally benign synthesis of sildenafil citrate (Viagra ) and its assessment by Green Chemistry metrics

The development of an environmentally benign synthesis of sildenafil citrate (Viagra ) and its assessment by Green Chemistry metrics The development of an environmentally benign synthesis of sildenafil citrate (Viagra ) and its assessment by Green Chemistry metrics Peter J. Dunn,* a Stephen Galvin b and Kevin Hettenbach c a Department

More information

Kolmetz Handbook of Process Equipment Design BTX EXTRACTION UNIT DESIGN, SIZING AND TROUBLESHOOTING (ENGINEERING DESIGN GUIDELINE)

Kolmetz Handbook of Process Equipment Design BTX EXTRACTION UNIT DESIGN, SIZING AND TROUBLESHOOTING (ENGINEERING DESIGN GUIDELINE) Page : 1 of 75 KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru SOLUTIONS, STANDARDS AND SOFTWARE www.klmtechgroup.com Rev 01- March 2017 Co Author: Rev 01 Yulis

More information

Green Catalytic Oxidations. Roger A. Sheldon Delft University of Technology & CLEA Technologies

Green Catalytic Oxidations. Roger A. Sheldon Delft University of Technology & CLEA Technologies Green Catalytic xidations Roger A. Sheldon Delft University of Technology & CLEA Technologies 1 Green Catalytic xidations utline 1.Introduction 2.Pd-catalyzed oxidations in water 3.rganocatalysts; stable

More information

Salting-out extraction of 1,3-propanediol from fermentation broth

Salting-out extraction of 1,3-propanediol from fermentation broth Salting-out extraction of 1,3-propanediol from fermentation broth Beata RUKOWICZ, Krzysztof ALEJSKI, Ireneusz MIESIĄC Keywords: 1,3-propanediol; fermentation broth; solvent extraction Abstract: 1,3-propanediol

More information

Stoichiometry: Chemical Calculations. Chapter 3-4

Stoichiometry: Chemical Calculations. Chapter 3-4 Chapters 3-4 Stoichiometry: Chemical Calculations Slide 1 of 48 Molecular Masses And Formula Masses Molecular Masses Molecular mass is the sum of the masses of the atoms represented in a molecular formula.

More information

Green Oxidations with Tungsten Catalysts. by Mike Kuszpit Michigan State University

Green Oxidations with Tungsten Catalysts. by Mike Kuszpit Michigan State University Green xidations with Tungsten Catalysts by Mike Kuszpit Michigan State University xidations in rganic Chemistry [] [] R 1 R 1 R 1 [] R 1 R 2 R 1 R 2 [] R 1 R 2 R 1 R 2 R 1 R 2 [] R 1 R 2 Essential as building

More information

Headspace Technology for GC and GC/MS: Features, benefits & applications

Headspace Technology for GC and GC/MS: Features, benefits & applications Headspace Technology for GC and GC/MS: Features, benefits & applications Karima Baudin Oct 2015 Why use Headspace? Very Simple no to minimum sample prep Robust enhance uptime Non-detectable carry-over

More information

ALE 9. Equilibrium Problems: ICE Practice!

ALE 9. Equilibrium Problems: ICE Practice! Name Chem 163 Section: Team Number: ALE 9. Equilibrium Problems: ICE Practice! (Reference: 17.5 Silberberg 5 th edition) Equilibrium Calculations: Show all work with correct significant figures. Circle

More information

Green Chemistry Education

Green Chemistry Education American Chemical Society Green Chemistry Education Mary M. Kirchhoff South African Chemical Institute Conference 29 November 2015 Green Chemistry in the Curriculum How can you introduce your students

More information

Valorisation of Lignocellulosic Waste and the Potential for Supercritical Water and Wet Air Oxidation Part 1

Valorisation of Lignocellulosic Waste and the Potential for Supercritical Water and Wet Air Oxidation Part 1 Queens University Belfast Valorisation of Lignocellulosic Waste and the Potential for Supercritical Water and Wet Air Oxidation Part 1 Dr Gary Sheldrake School of Chemistry and Chemical Engineering Queen

More information

The Use of Green Chemistry Approach in Organic Synthesis : Focus and Review

The Use of Green Chemistry Approach in Organic Synthesis : Focus and Review The Use of Green Chemistry Approach in Organic Synthesis : Focus and Review Abstract : Rameshwar R. Magar 3, Sunil S. Choudhare 2, Santosh V. Padghan *1 Dept of Chemistry Sant Dnyaneshwar Mahavidyalaya,

More information

Rate of reaction refers to the amount of reactant used up or product created, per unit time. We can therefore define the rate of a reaction as:

Rate of reaction refers to the amount of reactant used up or product created, per unit time. We can therefore define the rate of a reaction as: Rates of Reaction Rate of reaction refers to the amount of reactant used up or product created, per unit time. We can therefore define the rate of a reaction as: Rate = change in concentration units: mol

More information

Microwave Irradiation

Microwave Irradiation Microwave Irradiation Way to Eco-friendly, Green Chemistry Rashmi Sanghi This article highlights with examples, the usefulness of microwaves for carrying out a 'variety of organic transformations Introduction

More information

Acetals, more than solvents. Expanding Chemistry 8-9 November 2017

Acetals, more than solvents. Expanding Chemistry 8-9 November 2017 Acetals, more than solvents Expanding Chemistry 8-9 November 2017 Acetals RANGE 2 Acetals Name Methylal Formula CH3-O-CH2-O-CH3 Ethylal CH3-CH2-O-CH2-O-CH2-CH3 Propylal CH3-CH2-CH2-O-CH2-O-CH2-CH2-CH3

More information

The Types of Catalysis

The Types of Catalysis The Types of Catalysis Heterogeneous Catalysis: Homogeneous Catalysis: Enzyme Catalysis: catalyst and reactants in different phase most common example: solid catalyst, fluid reactants by far the largest

More information

Green Chemistry The atom economy

Green Chemistry The atom economy Green Chemistry The atom economy Tutor summary Divide the students of your tutorial group (ca nine students) up into three subgroups (ca three students) right at the beginning of the group session so they

More information

Comparative Analysis of Homogeneous and Heterogeneous Catalysis

Comparative Analysis of Homogeneous and Heterogeneous Catalysis Comparative Analysis of Homogeneous and Heterogeneous Catalysis Seema Ranga Department of Chemistry, AIJHM College, Rohtak, Haryana ABSTRACT: The chemical industry has often favored heterogeneous catalysis,

More information

Green organic chemistry and its interdisciplinary applications / Vera M. Kolb. Boca Raton [etc.], cop Spis treści

Green organic chemistry and its interdisciplinary applications / Vera M. Kolb. Boca Raton [etc.], cop Spis treści Green organic chemistry and its interdisciplinary applications / Vera M. Kolb. Boca Raton [etc.], cop. 2016 Spis treści Preface Acknowledgments Author xiii xv xvii Chapter 1 Introduction to Green Chemistry

More information

Concentration of Solutions

Concentration of Solutions CHAPTER 4 Concentration of Solutions There are three principal ways to express solution concentration in chemistry percentage by mass, molarity, and molality. The following table compares these three ways

More information

Swell Sheet Chemical Resistance Guide

Swell Sheet Chemical Resistance Guide Swell Sheet Chemical Resistance Guide MULTI-SWELL 3760 Rev. 3/2018 LEAK-GARD 3750 KEY: A - Ideal for low pressure applications B - Fair, Depends on conditions; please contact Applications Engineering C

More information

Swell Sheet Chemical Resistance Guide

Swell Sheet Chemical Resistance Guide Swell Sheet Chemical Resistance Guide MULTI-SWELL 3760 Rev. 6/2016 LEAK-GARD 3750 KEY: A - Ideal for low pressure applications B - Fair, Depends on conditions; please contact Applications Engineering C

More information

Biocatalysis. Deep Eutectic Solvents. Trial Pack

Biocatalysis. Deep Eutectic Solvents. Trial Pack Biocatalysis Deep Eutectic Solvents Trial Pack Ionic Liquids Ionic Liquids are salts that are liquid below 100 o C.They are primarily large quaternary ammonium cations (R 4 N+) with large anions such as

More information

Chapter 14 Organic Compounds That Contain Oxygen, Halogen, or Sulfur

Chapter 14 Organic Compounds That Contain Oxygen, Halogen, or Sulfur Chapter 14 Organic Compounds That Contain Oxygen, Halogen, or Sulfur Based on Material Prepared by Andrea D. Leonard University of Louisiana at Lafayette Copyright The McGraw-Hill Companies, Inc. Permission

More information

Chemistry 1506: Allied Health Chemistry 2. Section 3: Alchols, Phenols, Ethers, and Halides. Functional Groups with Single Bonds to Oxygen.

Chemistry 1506: Allied Health Chemistry 2. Section 3: Alchols, Phenols, Ethers, and Halides. Functional Groups with Single Bonds to Oxygen. Chemistry 1506 Dr. Hunter s Class Section 3 Notes - Page 1/21 Chemistry 1506: Allied Health Chemistry 2 Section 3: Alchols, Phenols, Ethers, and Halides Functional Groups with Single Bonds to Oxygen Outline

More information

Lab 6 Inorganic Syntheses using Mo catalysts

Lab 6 Inorganic Syntheses using Mo catalysts Lab 6 Inorganic Syntheses using Mo catalysts Literature References 1. Moore, F.W., et. al., "Dialkyldithiocarbamate Complexes of Molybdenum (V) and Molybdenum (VI)", Inorganic Chemistry 1967, 6, 998-1003.

More information

Problem Solving. Percentage Yield

Problem Solving. Percentage Yield Skills Worksheet Problem Solving Percentage Yield Although we can write perfectly balanced equations to represent perfect reactions, the reactions themselves are often not perfect. A reaction does not

More information

Chapter 9 The Chemical Reaction Equation and Stoichiometry 9.1 Stoichiometry

Chapter 9 The Chemical Reaction Equation and Stoichiometry 9.1 Stoichiometry Chapter 9 The Chemical Reaction Equation and Stoichiometry 9.1 Stoichiometry The stoichiometric coefficients in the chemical reaction equation Is (1 for C 7 H 16, 11 for O 2 and so on). Another way to

More information

GREEN CHEMISTRY. N. MD. Akram. Asst. Prof of Chemistry, Santhiram Engineering College, Nandyal, Kurnool Dt, Andhra Pradesh.(India)

GREEN CHEMISTRY. N. MD. Akram. Asst. Prof of Chemistry, Santhiram Engineering College, Nandyal, Kurnool Dt, Andhra Pradesh.(India) GREEN CHEMISTRY N. MD. Akram Asst. Prof of Chemistry, Santhiram Engineering College, Nandyal, Kurnool Dt, Andhra Pradesh.(India) ABSTRACT Green chemistry is the most utilization of a set of principles

More information

Ferdowsi University of Mashhad

Ferdowsi University of Mashhad Spectroscopy in Inorganic Chemistry 2 Diatomic molecule C v and D h HCN H-H 3 contribution orbital electron Σ 0 σ 1 Π 1 π 1 Δ 2 δ 1 Φ 3 δ 1 Σ + Σ - 4 Linear molecule NO 2s+1 2 Π A 1 =Σ + 0 A 2 =Σ - 0 E

More information

Cracking. 191 minutes. 186 marks. Page 1 of 27

Cracking. 191 minutes. 186 marks. Page 1 of 27 3.1.6.2 Cracking 191 minutes 186 marks Page 1 of 27 Q1. (a) Gas oil (diesel), kerosine (paraffin), mineral oil (lubricating oil) and petrol (gasoline) are four of the five fractions obtained by the fractional

More information

Spectroscopy in Inorganic Chemistry. Electronic Absorption Spectroscopy

Spectroscopy in Inorganic Chemistry. Electronic Absorption Spectroscopy Spectroscopy in Inorganic Chemistry Diatomic molecule C v and D h NO H-H 2 contribution orbital Σ 0 σ Π 1 π Δ 2 δ Φ 3 δ 3 Linear molecule NO 2s+1 2 Π A 1 =Σ + 0 A 2 =Σ - 0 E 1 =Π 1 E 2 =Δ 2 E 3 =Φ 3 4

More information

Process Intensification for Ethyl Lactate Production Using Reactive Distillation

Process Intensification for Ethyl Lactate Production Using Reactive Distillation Process Intensification for Ethyl Lactate Production Using Reactive Distillation Betânia Hoss Lunelli*, Edvaldo Rodrigo de Morais, Maria Regina Wolf Maciel and Rubens Maciel Filho Laboratory of Optimization,

More information

15.1: Hydrocarbon Reactions

15.1: Hydrocarbon Reactions 15.1: Hydrocarbon Reactions Halogenation An alkane will react with a halogen to produce a halalkane and the corresponding hydrogen halide. The catalyst is ultraviolet radiation. Reaction 1 methane chlorine

More information

Part 8- Chemistry Paper 2 Using Resources Triple Science

Part 8- Chemistry Paper 2 Using Resources Triple Science Part 8- Chemistry Paper 2 Using Resources Triple Science How bonding and structure are related to the properties of substances A simple model of the atom, symbols, relative atomic mass, electronic charge

More information

Green Chemistry at Pfizer. Peter Dunn Pfizer Green Chemistry Lead

Green Chemistry at Pfizer. Peter Dunn Pfizer Green Chemistry Lead Green Chemistry at Pfizer Peter Dunn Pfizer Green Chemistry Lead Presentation Outline ubrief Introduction to the Pfizer Green Chemistry Program ugreen Chemistry Tools with a focus on the Pfizer Reagent

More information

Q1. Which one of the following is least likely to occur in the reaction between methane and chlorine?

Q1. Which one of the following is least likely to occur in the reaction between methane and chlorine? Q1. Which one of the following is least likely to occur in the reaction between methane and chlorine? A B C D C 4 + Cl C 3 + Cl C 3 + Cl C 3 Cl + C 3 + Cl 2 C 3 Cl + Cl C 3 Cl + Cl C 2 Cl + Cl (Total 1

More information

Name Class Date. Symbol Meaning How to prepare Percentage % Moles solute per liter of solution. Moles solute per kilogram of solvent

Name Class Date. Symbol Meaning How to prepare Percentage % Moles solute per liter of solution. Moles solute per kilogram of solvent Skills Worksheet Problem Solving Concentration of Solutions There are three principal ways to express solution concentration in chemistry percentage by mass, molarity, and molality. The following table

More information

Alcohols. Contents. Structure. structure

Alcohols. Contents. Structure. structure Page 1 of 9 Alcohols Contents structure Physical Properties Classification of Alcohols Nomenclature of Alcohols Preparation of Alcohols Oxidation of Alcohols oxidation of aldehydes Structure Alcohols can

More information

AE 205 Materials and Energy Balances Asst. Prof. Dr. Tippabust Eksangsri. Chapter 4 Stoichiometry and MB with Reactions

AE 205 Materials and Energy Balances Asst. Prof. Dr. Tippabust Eksangsri. Chapter 4 Stoichiometry and MB with Reactions AE 205 Materials and Energy Balances Asst. Prof. Dr. Tippabust Eksangsri Chapter 4 Stoichiometry and MB with Reactions Stoichiometry Stoichiometry provides a quantitative means of relating the amount of

More information

Class XII Chapter 2 Solutions Chemistry

Class XII Chapter 2 Solutions Chemistry Class XII Chapter 2 Solutions Chemistry Question 2.1: Calculate the mass percentage of benzene (C 6 H 6 ) and carbon tetrachloride (CCl 4 ) if 22 g of benzene is dissolved in 122 g of carbon tetrachloride.

More information

A Generic Method for the Analysis of Residual Solvents in Pharmaceuticals Using Static Headspace-GC-FID/MS

A Generic Method for the Analysis of Residual Solvents in Pharmaceuticals Using Static Headspace-GC-FID/MS A Generic Method for the Analysis of Residual Solvents in Pharmaceuticals Using Static Headspace-GC-FID/MS Application Note Pharmaceuticals Authors Karine Jacq, Frank David, and Pat Sandra Research Institute

More information

Supporting Information Reagents. Physical methods. Synthesis of ligands and nickel complexes.

Supporting Information Reagents. Physical methods. Synthesis of ligands and nickel complexes. Supporting Information for Catalytic Water Oxidation by A Bio-inspired Nickel Complex with Redox Active Ligand Dong Wang* and Charlie O. Bruner Department of Chemistry and Biochemistry and Center for Biomolecular

More information

High Purity Chromasolv Solvents

High Purity Chromasolv Solvents Research Chemicals High Purity Chromasolv Solvents Part of Honeywell Research Chemical s Exclusive Riedel-de Haën Brand Portfolio The Chromasolv family of solvents are used in a variety of analytical applications

More information

9.2 Production of Materials

9.2 Production of Materials 9.2 Production of Materials Contextual Outline Humans have always exploited their natural environment for all their needs including food, clothing and shelter. As the cultural development of humans continued,

More information

Isomerism and Carbonyl Compounds

Isomerism and Carbonyl Compounds Isomerism and Carbonyl Compounds 18 Section B Answer all questions in the spaces provided. 7 Esters have many important commercial uses such as solvents and artificial flavourings in foods. Esters can

More information

Sample Problem Set. Teacher Notes and Answers. Skills Worksheet PERCENTAGE YIELD. Name: Class: Date:

Sample Problem Set. Teacher Notes and Answers. Skills Worksheet PERCENTAGE YIELD. Name: Class: Date: Skills Worksheet Sample Problem Set Teacher Notes and Answers PERCENTAGE YIELD 1. a. 64.3% yield b. 58.0% yield c. 69.5% yield d. CH 3 CH OH is limiting; 79% yield. a. 69.5% yield b. 79.0% yield c. 48%

More information

The Simplest Alkanes. Physical Properties 2/16/2012. Butanes are still gases. bp -160 C bp -89 C bp -42 C. CH 3 CH 2 CH 2 CH 2 CH 3 n-pentane.

The Simplest Alkanes. Physical Properties 2/16/2012. Butanes are still gases. bp -160 C bp -89 C bp -42 C. CH 3 CH 2 CH 2 CH 2 CH 3 n-pentane. The Simplest Alkanes Butanes are still gases Methane (CH 4 ) Ethane (C 2 H 6 ) Propane (C 3 H 8 ) n-butane CH 2 CH 2 Isobutane ( ) 3 CH bp -160 C bp -89 C bp -42 C bp -0.4 C bp -10.2 C Branched isomer

More information

Fast Analysis of USP 467 Residual Solvents using the Agilent 7890A GC and Low Thermal Mass (LTM) System

Fast Analysis of USP 467 Residual Solvents using the Agilent 7890A GC and Low Thermal Mass (LTM) System Fast Analysis of USP 7 Residual Solvents using the Agilent 789A GC and Low Thermal Mass (LTM) System Application Note Pharmaceutical Author Roger L Firor Agilent Technologies, Inc. 8 Centerville Road Wilmington,

More information

Improved hydrogen yield in catalytic reforming

Improved hydrogen yield in catalytic reforming Improved hydrogen yield in catalytic reforming A process step that sends higher-boiling to light tops isomerisation delivers an increase in hydrogen from naphtha catalytic reforming ROBERTO AMADEI Chemical

More information

INDUSTRIAL CHEMISTRY THE PRODUCTION OF NITRIC ACID

INDUSTRIAL CHEMISTRY THE PRODUCTION OF NITRIC ACID INDUSTRIAL CHEMISTRY THE PRODUCTION OF NITRIC ACID Many reactions proceed too slowly under normal conditions of temperature and pressure. Some reactions proceed at very fast rates but produce very small

More information

Catalytic Aromatization of Methane

Catalytic Aromatization of Methane Catalytic Aromatization of Methane N.I.FAYZULLAYEV* 1, S.M.TUROBJONOV 2 1 Department of Natural Sciences, Division of Chemistry, Samarkand State University, Samarkand, Uzbekistan 2 Tashkent chemistry-technology

More information

Class XI Chapter 1 Some Basic Concepts of Chemistry Chemistry

Class XI Chapter 1 Some Basic Concepts of Chemistry Chemistry Question 1.1: Calculate the molecular mass of the following: (i) H 2 O (ii) CO 2 (iii) CH 4 (i) H 2 O: The molecular mass of water, H 2 O = (2 Atomic mass of hydrogen) + (1 Atomic mass of oxygen) = [2(1.0084)

More information

Balancing chemical reaction equations (stoichiometry)

Balancing chemical reaction equations (stoichiometry) Balancing chemical reaction equations (stoichiometry) This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit

More information

Funsheet 9.1 [VSEPR] Gu 2015

Funsheet 9.1 [VSEPR] Gu 2015 Funsheet 9.1 [VSEPR] Gu 2015 Molecule Lewis Structure # Atoms Bonded to Central Atom # Lone Pairs on Central Atom Name of Shape 3D Lewis Structure NI 3 CF 4 OCl 2 C 2 F 2 HOF Funsheet 9.1 [VSEPR] Gu 2015

More information

Glycerol conversion to 1,2-propanediol in mild conditions

Glycerol conversion to 1,2-propanediol in mild conditions Glycerol conversion to 1,2-propanediol in mild conditions Els D Hondt CK, KULeuven, Belgium Poitiers, March 13, 2008 Content Introduction Use of 1,2-propanediol Results with better literature catalysts

More information

CHEMISTRY 2202 Answer Key Unit 3 Section 1 and 2 Homework Portfolio

CHEMISTRY 2202 Answer Key Unit 3 Section 1 and 2 Homework Portfolio hemistry 2202 Unit 3 Section 1&2 Homework Portfolio Page 1 of 5 HEMISTRY 2202 Answer Key Unit 3 Section 1 and 2 Homework Portfolio Value {2} 1. Jon Jacob Berzelius first defined organic chemistry as a

More information

CHAPTER 4. LIQUID PHASE AEROBIC OXIDATION OF ETHYLBENZENE OVER PrAlPO-5

CHAPTER 4. LIQUID PHASE AEROBIC OXIDATION OF ETHYLBENZENE OVER PrAlPO-5 106 CHAPTER 4 LIQUID PHASE AEROBIC OXIDATION OF ETHYLBENZENE OVER PrAlPO-5 4.1 INTRODUCTION Selective catalytic oxidation of alkyl aromatics is a viable technology to functionalize saturated and unsaturated

More information

USP <467> Headspace Residual Solvent Assay with a HT3 Headspace Instrument

USP <467> Headspace Residual Solvent Assay with a HT3 Headspace Instrument Application Note Abstract The US Pharmacopeia recently released USP as the current monograph for determining residual solvents in pharmaceutical products by static headspace. The USP classified these

More information

Study of Residual Solvents in Various Matrices by Static Headspace

Study of Residual Solvents in Various Matrices by Static Headspace Application Note Abstract United States Pharmacopeia (USP) chapter is a widely used method for identifying and quantifying Organic Volatile Impurities (OVI) used in the production of pharmaceuticals.

More information

Appendix A Physical and Critical Properties

Appendix A Physical and Critical Properties Appendix A Physical and Critical Properties Table A1 Physical properties of various organic and inorganic substances Compound Formula MW Sp Gr T m (K) T b (K) DH v (kj/kg) DH m (kj/kg) Air 28.97 Ammonia

More information

Spring 2017 Organisk kemi I Eszter Borbas. Solutions 2017/04/03

Spring 2017 Organisk kemi I Eszter Borbas. Solutions 2017/04/03 Solutions 2017/04/03 1) Add formal charges to the atoms. Where is the + and end of the polar bonds? Do you see a conflict, and can you resolve it without recourse to lawyers, shrinks, or guns? Indicated

More information

Green Chemistry Innovation and Opportunity in the Pharmaceutical and Specialty Chemical Industries

Green Chemistry Innovation and Opportunity in the Pharmaceutical and Specialty Chemical Industries Green Chemistry Innovation and Opportunity in the Pharmaceutical and Specialty Chemical Industries IGCW: Pharmaceutical Conference December 6, 2013 David J. C. Constable, Ph.D. Director, ACS Green Chemistry

More information

Chapter 13. Physical Properties of Solutions

Chapter 13. Physical Properties of Solutions Chapter 13 Overview Composition of Matter All matter can be divided into two major classes which are pure substance and mixture. The pure substance could be Element or could be compound. The mixture can

More information

Alcohols. Ethanol Production. 182 minutes. 181 marks. Page 1 of 25

Alcohols. Ethanol Production. 182 minutes. 181 marks. Page 1 of 25 3..10 Alcohols Ethanol Production 18 minutes 181 marks Page 1 of 5 Q1. Ethanol is produced commercially by fermentation of aqueous glucose, C 6 H 1 O 6 State two conditions, other than temperature, which

More information

GCSE CHEMISTRY REVISION LIST

GCSE CHEMISTRY REVISION LIST GCSE CHEMISTRY REVISION LIST OCR Gateway Chemistry (J248) from 2016 Topic C1: Particles C1.1 Describe the main features of the particle model in terms of states of matter and change of state Explain, in

More information

Name: Date: M O L A R M A S S & P E R C E N T C O M P O S I T I O N

Name: Date: M O L A R M A S S & P E R C E N T C O M P O S I T I O N Name: Date: M O L A R M A S S & P E R C E N T C O M P O S I T I O N I. Molar Masses Given a periodic table, you should be able to calculate the molecular mass (in amu s) or the molar mass (in grams) for

More information

Chemistry Notes. Daniel P

Chemistry Notes. Daniel P Chemistry Notes Daniel P Contents 1 Introduction 3 2 Production of Materials 4 2.1 Ethylene and its Uses...................................... 4 1. Chemical Equations...................................

More information

AQA A2 CHEMISTRY TOPIC 5.4 TRANSITION METALS PART 2 REDOX REACTIONS AND CATALYSIS BOOKLET OF PAST EXAMINATION QUESTIONS

AQA A2 CHEMISTRY TOPIC 5.4 TRANSITION METALS PART 2 REDOX REACTIONS AND CATALYSIS BOOKLET OF PAST EXAMINATION QUESTIONS AQA A2 CHEMISTRY TOPIC 5.4 TRANSITION METALS PART 2 REDOX REACTIONS AND CATALYSIS BOOKLET OF PAST EXAMINATION QUESTIONS 1. Chemical reactions can be affected by homogeneous or by heterogeneous catalysts.

More information

3/16/2012. Contact: Shelley Brozenick

3/16/2012. Contact: Shelley Brozenick Contact: Shelley Brozenick 1 Molecular Design What will you consider and why? Feedstock eagents Final properties How does this shape the interpretation or execution of the 12

More information

gerflor.com.au Stain chemicals

gerflor.com.au Stain chemicals gerflor.com.au Stain resistance: list of chemicals PRODUCTS/ TIME MIPOLAM TARALAY TARALAY / WALL CONCENTRATED ACID Acetic acid - CH 3 -COOH 14 0 0 0 0-1d 0-1d 0-1d 1d 1d 2d 0 0 0-1d Hydrochloric acid -

More information

Friedel-Crafts Alkylation

Friedel-Crafts Alkylation Friedel-Crafts Alkylation Summary: The Friedel-Crafts alkylation reaction proceeds similarly to the acylation reaction, but uses an alkyl halide to attach an alkyl group to an aromatic ring. Anhydrous

More information