3/16/2012. Contact: Shelley Brozenick

Size: px
Start display at page:

Download "3/16/2012. Contact: Shelley Brozenick"

Transcription

1 Contact: Shelley Brozenick 1

2 Molecular Design What will you consider and why? Feedstock eagents Final properties How does this shape the interpretation or execution of the 12 principles? Getting from A B Pratical Tools in Green Chemistry Green Chemistry is the molecular basis of sustainability Paul Anastas Goals for this class: To think about better ways to do chemistry Better understand some of the 12 Principles Introduce practical metrics to determine greenness Understand why catalysis is an important and powerful synthetic concept 2

3 12 Principles of Green Chemistry 1. Prevention. It is better to prevent waste than to treat or clean up waste after it is formed. 2. Atom Economy.Synthetic methods should be designed to maximize the incorporation of all materials used in the process into the final product. 3. Less Hazardous Chemical Synthesis.Whenever practicable, synthetic methodologies should be designed to use and generate substances that possess little or no toxicity to human health and the environment. 4. Designing Safer Chemicals. Chemical products should be designed to preserve efficacy of the function while reducing toxicity. 5. Safer Solvents and Auxiliaries. The use of auxiliary substances (solvents, separation agents, etc.) should be made unnecessary whenever possible and, when used, innocuous. 6. Design for Energy Efficiency. Energy requirements should be recognized for their environmental and economic impacts and should be minimized. Synthetic methods should be conducted at ambient temperature and pressure. 7. Use of enewable Feedstocks. A raw material or feedstock should be renewable rather than depleting whenever technically and economically practical. 8. educe Derivatives. Unnecessary derivatization (blocking group, protection/deprotection, temporary modification of physical/chemical processes) should be avoided whenever possible. 9. Catalysis. Catalytic reagents (as selective as possible) are superior to stoichiometric reagents. 10. Design for Degradation. Chemical products should be designed so that at the end of their function they do not persist in the environment and instead break down into innocuous degradation products. 11. eal-time Analysis for Pollution Prevention. Analytical methodologies need to be further developed to allow for real-time in-process monitoring and control prior to the formation of hazardous substances. 12. Inherently Safer Chemistry for Accident Prevention. Substance and the form of a substance used in a chemical process should be chosen so as to minimize the potential for chemical accidents, including releases, explosions, and fires. Anastas, P. T.; Warner, J.C. Green Chemistry: Theory and Practice, Oxford University Press,

4 Summary of GC Metrics 4

5 Traditional metrics in chemistry Yield (%) = moles of product / moles of limiting reagent 100 Purity (%) eaction time (min, h) (Cost ($)) Common GC metrics E (Environmental) Factor (or E Value) Useful industrial metric Atom Economy Atom Efficiency eaction Mass Efficiency + others 5

6 E Factor E Factor = Total Waste (Kg) Product (Kg) Very useful metric for industry Important to define what waste is Organic waste Aqueous waste The smaller the number, the better (0 - ) E Factor Environmental acceptability (E) E = Kg waste + unwanted byproducts Kg desired product(s) Volume of production in tons per Year E value Oil refining commodity chemicals special chemicals drugs < >100 More optimized processes Higher complexity of synthesis 6

7 Atom Economy Molecular Weight = elative Formula Mass, FM: M r The sum of the relative atomic masses of the atoms in the numbers shown in the formula of the compound e.g. M r of H 2 O = (2 x 1)+16 = 18 For the reaction: A + C C (+ by-products) % Atom Economy = 100 x M r of Product C M r of A + M r B Correlates how much of reactants end up in the product Simple! Doesn t account for solvents Larger number is better (0-100%) Example Atom Economy From: Lancaster, Green Chemistry 7

8 The Wittig eaction eaction Mass Efficiency (ME) Developed by GSK, ME takes into account atom economy, chemical yield and stoichiometry. The formula can take one of the two forms shown below: From a generic reac on where A + B C ME = Molecular weight of product C x yield m.w. A + (m.w. B x molar ratio B/A) Or more simply: ME = Mass of product C x 100 / Mass of A + mass of B Like carbon efficiency, this measure shows the clean-ness of a reaction but not of a process, for example, neither metric takes into account waste produced. For example, these metrics could present a rearrangement as very green but they would fail to address any solvent, work-up and energy issues arising. 8

9 9. Catalysis Catalytic reagents (as selective as possible) are superior to stoichiometric reagents. Why? Stoichiometric Oxidation with Cr Oxidation of diphenylmethanol to benzophenone stoichiometric reagents 3 + 2CrO 3 + 3H 2 SO 4 OH diphenyl methanol 3 + 2Cr 2 (SO 4 ) 3 + 6H 2 O O benzophenone waste Catalysis/ othenberg, ISBN

10 Synthesis of Ethylene Oxide Stoichiometric Synthesis of Ethylene Oxide Catalytic Selectivity for ethylene oxide, as with the traditional synthesis, is around 80 % All manufacture of ethylene oxide today is via the catalytic route 10

11 Synthesis of Ethylene Oxide Scale of reactions Operation Terephthalic acid and poly(ethylene terephthalate) Acetic acid and acetyl chemicals Aldehydes and alcohols via hydroformylation Adiponitrile Detergent-range alkenes via SHOP Total fine chemicals manufacture Olefin polymerization (60% uses Ziegler-Natta) Scale (million tonnesper year) < % of US GNP and 90 % of chemical industry involve products made using catalysts (food, fuels, polymers, textiles, pharma/agrochemicals,etc) 11

12 Introduction to catalysis A catalyst is a substance that increases the rate at which a chemical reaction approaches equilibrium without becoming itself permanently involved (unchanged at the end of the cycle) A catalyst does not influence the thermodynamics of a reaction i.e. a kinetic effect A + B + [CAT] k 1 k -1 C K= k 1 k -1 Important terms: Selectivity Turnover number Turnover frequency Catalyst phase: homogeneous or heterogeneous General Scheme for Catalytic Activity eactants bind to sites on the catalyst (open site on molecule (homogeneous) or surface (heterogeneous) Transformation occurs eactants desorb Cycle repeats 12

13 Selectivity OH O O O Hydrogenation OH Chemoselectivity Hydrofomylation egioselectivity O OH COO' OH COO' NHCO" OH NHCO" COO' Hydrogenation Diastereoselectivity Hydrogenation Enantioselectivity NHCO" 25 Turnover Number The number of times the catalytic cycle operates before the catalyst dies CH 3COOH HI CH 3OH CH 3COI H 2 O [h(co) 2I 2] - CH 3 I C O I h 3 C I O I H C C O C O CH I 3 I h I C O CO Figure 12.1 A schematic of the catalytic cycle for Acetic acid production via the Monsanto process. 13

14 Turnover Frequency (TOF) The number of times per second the catalytic cycle turns For most relevant industrial applications, the turnover frequency is in the range of s 1 (enzymes s 1 ). Different types of catalysts enzyme (biocatalyst) zeolite (crystalline aluminosilicate) copper-zinc crystallites on silica 14

15 Heterogeneous vs Homogenous Heterogeneous eadily separated eadily recycled / regenerated Long-lived Cheap Lower rates (diffusion limited) Sensitive to poisons Lower selectivity High energy process Poor mechanistic understanding Homogeneous Difficult to separate Difficult to recover Short service life Expensive Very high rates obust to poisons Highly selective Mild conditions Mechanisms often known Ultimate goal: to combine the fast rates and high selectivities of homogeneous catalysts with the ease of recovery /recycle of heterogeneous catalysts Nobel Prize in Chemistry 2005 Trio wins Nobel Prize for green chemistry Frenchman, 2 Americans develop environmentally friendly methods ichard Schrock, Yves Chauvin and obert Grubbs have won the Nobel Prize for chemistry for the development of the metathesis method in organic synthesis an environmentally friendly process for making products ranging from baseball bats to biodiesel fuel. Good, easy to read ref: J. Chem. Educ. 2006, 83,

16 Alkene Metathesis + [cat] F 3 C F 3 C F 3 C N Mo C H Cl C l PCy 3 u C PCy 3 H F 3 C Grubbs catalyst Schrock catalyst Mechanism M M M H H M 16

17 Ammomia Synthesis The Haber Process The Haber process now produces 100 million tons of nitrogen fertilizer per year, mostly in the form of anhydrous ammonia, ammonium nitrate, and urea. 3 5% of world natural gas production is consumed in the Haber process (~1 2% of the world's annual energy supply). Depending on the particular crop being grown, up to 200 pounds of ammonia per acre may be applied for each growing season. esponsible for sustaining one-third of the Earth's population Ammonia is a widely used refrigerant in industrial refrigeration Nitric Acid production is the most important single use of ammonia Made via oxidation to NO Hydrogen production using electrolysis of water powered by renewable energy is not yet competitive cost-wise with hydrogen from fossil fuels, such as natural gas, and so has been responsible for only 4% of current hydrogen production (almost all as a byproduct of the chloralkaliprocess). 17

18 The Haber Process 3H 2 + N2 2NH o C provides an acceptable yield of ammonia (10-20%) within an acceptable time period Very high pressure (~250 atm, ~351 kpa) Needs catalyst (porous iron, prepared by reducing magnetite, Fe 3 O 4 ) Hydrogen required made from methane by reaction with steam Nitrogen obtained by distillation of liquid air 18

19 Global Polyolefins Industry Major Producer Capacity 2000 Global Polyolefins DOW/UCC Basell Exxon-Mobil BP Amoco 4.9 Borealis TotalFina Equistar DSM/DEX Formosa Plastics Solvay Philips Nova ,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 KT PE PP Catalloy emedy Divestment Applications of oligomers and polymers from olefins Etheneand propene come directly from crude oil "crackers" Primary petrochemical products, basic chemical feedstocks Dimerization rarely desired Making butene very expensive Oligomers: surfactants, comonomers High added value, but limited market Polymers: plastics, construction materials, foils and films Very large market, bulk products 19

20 Timetable and historical development of metallocene research Development of the structure of metallocenes (ferrocene) by Fischer and Wilkinson Metallocene as component of Ziegler-Natta catalysts, low activity with common aluminium alkyls. Addition of small amount of water to increase the activity (Al:H 2 O = 1:0.05 up to 1:0.3) (eichert, Meyer and Breslow) Unusual increase in activity by adding water at the ratio Al:H 2 O = 1:2 (Kaminsky, Sinn and Motweiler) Using separately prepared methylaluminoxane (MAO) as cocatalyst for olefin polymerization. (Kaminsky and Sinn) Synthesis of ansametallocenes with C 2 symmetry (Brintzinger) Polymerization of propylene using a rac/mesomixture of ansatitanocenes lead to partially isotactic polypropylene. (Ewen) Chiral ansa zirconocenes produce highly isotactic polypropylene (Kaminsky and Brintzinger) Ziegler-Natta (Nobel Prize 1963) High density polyethene (HDPE) M cat High pressure free radical polymerization gives branched low molecular polyethene (LDPE) Stereocontroled polymerization M cat 20

21 Important Types of PE Ziegler-Natta Polymerization 21

22 Important Isomers of Polypropylene Isotactic polypropylene Syndiotactic polypropylene Atactic polypropylene Group 4(Ti, Zr, Hf) metallocene catalysts are considered to be the most versatile transition metal catalysts for olefin polymerization Brintzinger and co-workers developed synthesis of the enantiomeric pure ansametallocene Chiral ansa-metallocenes also catalyze: Metallocene Catalysts Hydrogenations of C=C, C=O or C=N double bonds Diels-Alder reactions Epoxidations 22

Chemicals and petroleum industries account for 50% of industrial energy usage.

Chemicals and petroleum industries account for 50% of industrial energy usage. Chemicals and petroleum industries account for 50% of industrial energy usage. ~1/4 of the energy used is consumed in distillation and drying processes. 15 Biomaterials [Carbohydrates, Proteins, Lipids]

More information

Design for Environment : Green Chemistry Principles for Product Design

Design for Environment : Green Chemistry Principles for Product Design Design for Environment : Green Chemistry Principles for Product Design ecologic Technologies Ltd We shall require a substantially new manner of thinking if mankind is to survive. Transforming industrial

More information

The Types of Catalysis

The Types of Catalysis The Types of Catalysis Heterogeneous Catalysis: Homogeneous Catalysis: Enzyme Catalysis: catalyst and reactants in different phase most common example: solid catalyst, fluid reactants by far the largest

More information

Greening The Pharmaceutical Industry To Afford Good Laboratory Practice. Presented By Prof. Dr. Salwa Elmeligie Faculty of Pharmacy, Cairo University

Greening The Pharmaceutical Industry To Afford Good Laboratory Practice. Presented By Prof. Dr. Salwa Elmeligie Faculty of Pharmacy, Cairo University Greening The Pharmaceutical Industry To Afford Good Laboratory Practice Presented By Prof. Dr. Salwa Elmeligie Faculty of Pharmacy, Cairo University 1 Iam so glade to be here in this International Conference

More information

CO 2 and CO activation

CO 2 and CO activation 2 and activation Most organic chemicals are currently made commercially from ethylene, a product of oil refining. It is possible that in the next several decades we may have to shift toward other carbon

More information

Environmental Efficiency of Chemical Processes. Dr. Anuj Kumar Mittal, Head-R&D PI Industries Ltd. IGCW Convention - December 2013

Environmental Efficiency of Chemical Processes. Dr. Anuj Kumar Mittal, Head-R&D PI Industries Ltd. IGCW Convention - December 2013 Environmental Efficiency of Chemical Processes Dr. Anuj Kumar Mittal, Head-R&D PI Industries Ltd. IGCW Convention - December 2013 Prelude WHAT IS GREEN CHEMISTRY? Green Chemistry is essentially a way of

More information

Catalysis & Sustainable Processes

Catalysis & Sustainable Processes Catalysis & Sustainable Processes The Polymers Story 8 lectures http://www.kcpc.usyd.edu.au/cem3113.html username: chem3 password: carbon12 Lecturer: Associate Professor Sébastien Perrier s.perrier@chem.usyd.edu.au;

More information

CO 2 and CO activation

CO 2 and CO activation 2 and activation Most organic chemicals are currently made commercially from ethylene, a product of oil refining. Itispossiblethatinthenextseveraldecadeswemayhavetoshifttowardothercarbonsources for these

More information

GCSE Chemistry. Module C7 Further Chemistry: What you should know. Name: Science Group: Teacher:

GCSE Chemistry. Module C7 Further Chemistry: What you should know. Name: Science Group: Teacher: GCSE Chemistry Module C7 Further Chemistry: What you should know Name: Science Group: Teacher: R.A.G. each of the statements to help focus your revision: R = Red: I don t know this A = Amber: I partly

More information

Selec*vity and Atom Economy: Green Chemistry Metrics. 2 nd Principle of Green Chemistry. Types of selec*vity. Reac*on Efficiency 3/11/12

Selec*vity and Atom Economy: Green Chemistry Metrics. 2 nd Principle of Green Chemistry. Types of selec*vity. Reac*on Efficiency 3/11/12 Selec*vity and Atom Economy: Green Chemistry Metrics Week 4 2 nd Principle of Green Chemistry Synthe*c methods should be designed to maximize the incorpora*on of all materials used in the process into

More information

14-1 Reactions Involving Gain or Loss of Ligands Reactions Involving Modification of Ligands

14-1 Reactions Involving Gain or Loss of Ligands Reactions Involving Modification of Ligands Organometallic Reaction and Catalysis 14-1 Reactions Involving Gain or Loss of Ligands 14-2 Reactions Involving Modification of Ligands 14-3 Organometallic Catalysts 14-4 Heterogeneous Catalysts Inorganic

More information

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera andout-10 ourse 201N 1 st Semester 2006-2007 Inorganic hemistry Instructor: Jitendra K. Bera ontents 3. rganometallic hemistry omogeneous atalysis lefin ydrogenation; ydroformylation; Monsanto Acetic acid

More information

A Green Oxidant for In-Situ Chemical Oxidation. Jack Peabody Regenesis

A Green Oxidant for In-Situ Chemical Oxidation. Jack Peabody Regenesis A Green xidant for In-Situ Chemical xidation Jack Peabody Regenesis jpeabody@regenesis.com The New Era of Environmentalism Green Sustainable Renewable Energy Chemistry Vehicles Farming Technologies Lifestyles

More information

We use a special symbol to denote a reaction which is reversible: The double-headed arrow means the reaction can go in either direction

We use a special symbol to denote a reaction which is reversible: The double-headed arrow means the reaction can go in either direction Reversible reactions Some reactions do not go to completion we don t get 100% yield because not all of the reactants react to form products. One of the reasons for this is that some reactions are reversible

More information

10.5 Catalytic reactions Catalyzed reactions. Out-class extensive reading: Levine, p Catalysis Enzyme catalysis

10.5 Catalytic reactions Catalyzed reactions. Out-class extensive reading: Levine, p Catalysis Enzyme catalysis 10.5 Catalytic reactions Catalyzed reactions Out-class extensive reading: Levine, p.577 17.16 Catalysis 17.17 Enzyme catalysis 5.1 Catalysts and catalysis Catalyst A substance of small amount that can

More information

Insertion and elimination. Peter H.M. Budzelaar

Insertion and elimination. Peter H.M. Budzelaar Peter H.. Budzelaar Insertion reactions If at a metal centre you have a) a σ-bound group (hydride, alkyl, aryl) b) a ligand containing a π-system (olefin, alkyne, C) the σ-bound group can migrate to the

More information

Part 8- Chemistry Paper 2 Using Resources Triple Science

Part 8- Chemistry Paper 2 Using Resources Triple Science Part 8- Chemistry Paper 2 Using Resources Triple Science How bonding and structure are related to the properties of substances A simple model of the atom, symbols, relative atomic mass, electronic charge

More information

Atom Economy in Drug Synthesis is a Playground of Functional Groups

Atom Economy in Drug Synthesis is a Playground of Functional Groups American Journal of Advanced Drug Delivery www.ajadd.co.uk Atom Economy in Drug Synthesis is a Playground of Functional Groups Kartik R. Patel*, Dr. Dhrubo Jyoti Sen and Viraj P. Jatakiya Review Article

More information

Catalysis a Key to Sustainability Matthias Beller

Catalysis a Key to Sustainability Matthias Beller Catalysis a Key to Sustainability Matthias Beller Catalysis is the science of accelerating chemical transformations. In general, readily available starting materials are converted to form more complex

More information

H Organometallic Catalysis in Industry

H Organometallic Catalysis in Industry H Organometallic Catalysis in Industry Some terminology: Catalytic cycles: a circular path meant to show productive reactions, in order, that lead from the catalytically active species and its reaction

More information

THE ROLE OF CHEMICAL SYNTHESIS IN SUPPORT OF THE SUBSTITUTION PRINCIPLE Ferdinando Fiorino Elisa Perissutti

THE ROLE OF CHEMICAL SYNTHESIS IN SUPPORT OF THE SUBSTITUTION PRINCIPLE Ferdinando Fiorino Elisa Perissutti Unit of Medicinal Chemistry LIFE-EDESIA workshop Milan, Dicember 10 th 2014 THE ROLE OF CHEMICAL SYNTHESIS IN SUPPORT OF THE SUBSTITUTION PRINCIPLE Ferdinando Fiorino Elisa Perissutti Università degli

More information

Combined Science: Trilogy

Combined Science: Trilogy Co-teaching GCSE Chemistry and GCSE Combined Science: Trilogy This high level co-teaching guide will help you plan your route through the course. You ll be able to see what common themes and topics span

More information

Based on the kinetic molecular theory of gases, which one of the following statements is INCORRECT?

Based on the kinetic molecular theory of gases, which one of the following statements is INCORRECT? 1 Based on the kinetic molecular theory of gases, which one of the following statements is INCORRECT? A) The collisions between gas molecules are perfectly elastic. B) At absolute zero, the average kinetic

More information

Le Lycee Mauricien. Proposed Syllabus Chemistry (5070) - Form 5

Le Lycee Mauricien. Proposed Syllabus Chemistry (5070) - Form 5 Le Lycee Mauricien Proposed Syllabus 2017 Chemistry (5070) - Form 5 First Term 1. Metals Properties of metals - Physical properties of metals - Structure of alloys and uses Reactivity Series - Place metals

More information

Repeated insertion. Multiple insertion leads to dimerization, oligomerization or polymerization. κ 1: mainly dimerization κ

Repeated insertion. Multiple insertion leads to dimerization, oligomerization or polymerization. κ 1: mainly dimerization κ Repeated insertion ultiple insertion leads to dimerization, oligomerization or polymerization. k prop Et Key factor: k CT / k prop = κ κ 1: mainly dimerization κ 0.1-1.0: oligomerization (always mixtures)

More information

Catalysis Lectures W.H. Green 5.68J/10.652J Spring Handouts: Norskov et al., J. Catalysis Imbihl and Ertl, Chem. Rev. (partial) Homework

Catalysis Lectures W.H. Green 5.68J/10.652J Spring Handouts: Norskov et al., J. Catalysis Imbihl and Ertl, Chem. Rev. (partial) Homework Catalysis Lectures W.H. Green 5.68J/10.652J Spring 2003 Handouts: Norskov et al., J. Catalysis Imbihl and Ertl, Chem. Rev. (partial) Homework Major points: 1) Why reactions have barriers, and how catalysts

More information

Chemistry Notes. Daniel P

Chemistry Notes. Daniel P Chemistry Notes Daniel P Contents 1 Introduction 3 2 Production of Materials 4 2.1 Ethylene and its Uses...................................... 4 1. Chemical Equations...................................

More information

Green Chemistry The atom economy

Green Chemistry The atom economy Green Chemistry The atom economy Tutor summary Divide the students of your tutorial group (ca nine students) up into three subgroups (ca three students) right at the beginning of the group session so they

More information

Transition Metal Chemistry

Transition Metal Chemistry Transition Metal Chemistry 2 2011.12.2 Ⅰ Fundamental Organometallic Reactions Following four reactions are important formal reaction patterns in organotransition metal complexes, which would conveniently

More information

Hydrogenation. Most active appeared to be complexes of Co, Rh and Ir

Hydrogenation. Most active appeared to be complexes of Co, Rh and Ir Organometallic Chemistry and Homogeneous Catalysis Dr. Alexey Zazybin Lecture N11 Kashiwa Campus, January 15, 2010 Hydrogenation The hydrogenation of olefins, impossible without catalyst, can be catalyzed

More information

Green Chemistry: A Greener Clean

Green Chemistry: A Greener Clean Green Chemistry: A Greener Clean Chicago ACS Chemistry Day Mary Kirchhoff Green Chemistry Institute What is Green Chemistry? Green Chemistry is the design of chemical products and processes that reduce

More information

Design and Optimization of Catalysts: Using Modeling to Improve Performance George Fitzgerald Accelrys

Design and Optimization of Catalysts: Using Modeling to Improve Performance George Fitzgerald Accelrys Design and Optimization of Catalysts: Using Modeling to Improve Performance George Fitzgerald Accelrys Introduction Catalysis is critical to modern chemical industry 60% of chemical products 90% of chemical

More information

Heterogeneous catalysis: the fundamentals

Heterogeneous catalysis: the fundamentals www.catalysiscourse.com Heterogeneous catalysis: the fundamentals Introduction Prof dr J W (Hans) Niemantsverdriet Schuit Institute of Catalysis What is Catalysis? a phenomenon in which a small quantity

More information

Rate of reaction refers to the amount of reactant used up or product created, per unit time. We can therefore define the rate of a reaction as:

Rate of reaction refers to the amount of reactant used up or product created, per unit time. We can therefore define the rate of a reaction as: Rates of Reaction Rate of reaction refers to the amount of reactant used up or product created, per unit time. We can therefore define the rate of a reaction as: Rate = change in concentration units: mol

More information

Chemistry Introduction to Green Chemistry

Chemistry Introduction to Green Chemistry Chemistry 471-671 Introduction to Green Chemistry Contact Information Timothy Dransfield (atmospheric chemistry) timothy.dransfield@umb.edu S-1-85 7-6143 Jason Evans (alternative energy) Wei Zhang(Green

More information

Anionic Polymerization - Initiation and Propagation

Anionic Polymerization - Initiation and Propagation Anionic Polymerization Initiation and Propagation As in free radical polymerization, there are initiation and propagation steps. NH 2 NaNH 2 Na + + NH 2 + H 2 N CH: Propagation proceeds in the usual manner,

More information

4.1.1 A simple model of the atom, symbols, relative atomic mass, electronic charge and isotopes. Unit 1 Unit 2 Unit 3. C2.1.1a Structure and bonding

4.1.1 A simple model of the atom, symbols, relative atomic mass, electronic charge and isotopes. Unit 1 Unit 2 Unit 3. C2.1.1a Structure and bonding Summary of changes This resource outlines the main changes that have been made to the assessment and subject content from our previous GCSE Chemistry (4402) to the new specification (8462). Our new specifications

More information

Introduction to Chemical Reactions. Chapter 6

Introduction to Chemical Reactions. Chapter 6 Introduction to Chemical Reactions Chapter 6 Instructional Goals 1. Given the reactants and product in a chemical reaction, the student will be able to write and balance chemical equations. 2. Identify

More information

Balancing chemical reaction equations (stoichiometry)

Balancing chemical reaction equations (stoichiometry) Balancing chemical reaction equations (stoichiometry) This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit

More information

Appendix 1. Periodic Table and Atomic Structure. History of the idea of elements.

Appendix 1. Periodic Table and Atomic Structure. History of the idea of elements. Appendix 1 Detailed list of additions and deletions This appendix provides a detailed list of additions and deletions compared with the former (1983) Leaving Certificate Chemistry syllabus. Completely

More information

Grubbsʼ Inspired Ruthenium Catalysts for Olefin Metathesis-Nobel Prize Winning Chemistry

Grubbsʼ Inspired Ruthenium Catalysts for Olefin Metathesis-Nobel Prize Winning Chemistry EXPEIMENT 3 Grubbsʼ Inspired uthenium Catalysts for Olefin Metathesis-Nobel Prize Winning Chemistry EFEENCES a. Shaw, A. P.; yland, B. L.; Norton, J..; Buccella, D.; Moscatelli, A. Inorg. Chem. 2007, 46,

More information

Synthesis and Sustainable Chemistry

Synthesis and Sustainable Chemistry Synthesis and Sustainable Chemistry Considering % yield and % Atom Economy: high % yield means very efficient conversion from reactants to products increasing % yield means more efficient use of starting

More information

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b.

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. eaction chemistry of complexes Three general forms: 1. eactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. Oxidative Addition c. eductive Elimination d. Nucleophillic

More information

Part 5- Chemistry Paper 2 Rate and Extent of Chemical Change Combined Science Application

Part 5- Chemistry Paper 2 Rate and Extent of Chemical Change Combined Science Application Part 5- Chemistry Paper 2 Rate and Extent of Chemical Change Combined Science Application How bonding and structure are related to the properties of substances A simple model of the atom, symbols, relative

More information

Green Chemistry: Principle and its Application

Green Chemistry: Principle and its Application Green Chemistry: Principle and its Application Mohd Wahid Department of Chemistry, Aligarh Muslim University, Aligarh, UP, India Faizan Ahmad * Department of Post arvest Engineering and Technology, Faculty

More information

3.2.1 Energetics. Enthalpy Change. 263 minutes. 259 marks. Page 1 of 41

3.2.1 Energetics. Enthalpy Change. 263 minutes. 259 marks. Page 1 of 41 ..1 Energetics Enthalpy Change 6 minutes 59 marks Page 1 of 41 Q1. (a) Define the term standard molar enthalpy of formation, ΔH f. (b) State Hess s law. (c) Propanone, CO, burns in oxygen as shown by the

More information

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions:

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: Chemical Kinetics Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: reactant concentration temperature action of catalysts surface

More information

CHEM Chemical Kinetics

CHEM Chemical Kinetics Chemical Kinetics Catalysts A catalyst is a substance that increases the rate of the reaction but is neither created nor destroyed in the process. Catalysts can be divided into two broad categories. Homogeneous

More information

# Ans Workings / Remarks

# Ans Workings / Remarks # Ans Workings / Remarks 1 B Atomic mass and temperature affects the rate of diffusion of gas. The lower the atomic mass, the lighter the substance. The higher the temperature, the higher the rate of collision

More information

A New Age of Innovation in Plastics

A New Age of Innovation in Plastics A New Age of Innovation in Plastics Custom Polyolefins by Molecular Design: Dr. Jim Stevens Research Fellow The Dow Chemical Company JCS 12/02/2008 Page 1 Polyethylene is Everywhere Global demand exceeds

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Chemical equilibrium is the point at which the concentrations of all species are constant. A dynamic equilibrium exists when the rates of

More information

SCREENING OF N,N-BIDENTATE PYRIDINE-BASED LIGANDS IN COPPER AND PALLADIUM CATALYSED REACTIONS MAURIZIO SOLINAS

SCREENING OF N,N-BIDENTATE PYRIDINE-BASED LIGANDS IN COPPER AND PALLADIUM CATALYSED REACTIONS MAURIZIO SOLINAS SCREEIG OF,-BIDETATE PYRIDIE-BASED LIGADS I COPPER AD PALLADIUM CATALYSED REACTIOS MAURIZIO SOLIAS ITRO: Green Chemistry Principle #9 Catalytic reagents (as selective as possible) are superior to stoichiometric

More information

Global Catalyst Market

Global Catalyst Market Market Report Global Catalyst Market Third Edition Updated: March, 2015 Publisher: Acmite Market Intelligence Language: English Pages: 542 Price: from 1,490 Euro Abstract Benefiting from rapid growth in

More information

Catalysis-Science and Technology. Radha V Jayaram Institute of Chemical Technology, Mumbai

Catalysis-Science and Technology. Radha V Jayaram Institute of Chemical Technology, Mumbai Catalysis-Science and Technology Radha V Jayaram Institute of Chemical Technology, Mumbai 1 What does this mean? We see many such qualified arrows, often without any explanation or rationale. What does

More information

Silesian University of Technology, Poland Recoverable and recyclable catalysts for sustainable chemical processes

Silesian University of Technology, Poland Recoverable and recyclable catalysts for sustainable chemical processes Silesian University of Technology, Poland Recoverable and recyclable catalysts for sustainable chemical processes Anna Chrobok What are the challenges for the sustainable chemical industry today? reduce

More information

1.1 Basic Polymer Chemistry. 1.2 Polymer Nomenclature. 1.3 Polymer Synthesis. 1.4 Chain Growth Polymerization. Polymer =

1.1 Basic Polymer Chemistry. 1.2 Polymer Nomenclature. 1.3 Polymer Synthesis. 1.4 Chain Growth Polymerization. Polymer = 1.1 Basic Polymer hemistry Polymers are the largest class of soft materials: over 100 billion pounds of polymers made in US each year lassification systems 1.2 Polymer Nomenclature Polymer = Monomer =

More information

Fisika Polimer Ariadne L Juwono. Sem /2007

Fisika Polimer Ariadne L Juwono. Sem /2007 Chapter 4. Ionic and coordination (addition) polymerization 4.1. Similarities and contrast on ionic polymerization 4.2. Cationic polymerization 4.3. Anionic polymerization 4.4. Coordination polymerization

More information

AS Paper 1 and 2 Kc and Equilibria

AS Paper 1 and 2 Kc and Equilibria AS Paper 1 and 2 Kc and Equilibria Q1.When one mole of ammonia is heated to a given temperature, 50 per cent of the compound dissociates and the following equilibrium is established. NH 3(g) ½ N 2 (g)

More information

3.2 Alkanes. Refining crude oil. N Goalby chemrevise.org 40 C 110 C 180 C. 250 C fuel oil 300 C 340 C. Fractional Distillation: Industrially

3.2 Alkanes. Refining crude oil. N Goalby chemrevise.org 40 C 110 C 180 C. 250 C fuel oil 300 C 340 C. Fractional Distillation: Industrially 3.2 Alkanes Refining crude oil Fractional Distillation: Industrially Petroleum is a mixture consisting mainly of alkane hydrocarbons Petroleum fraction: mixture of hydrocarbons with a similar chain length

More information

Stoichiometry: Chemical Calculations. Chapter 3-4

Stoichiometry: Chemical Calculations. Chapter 3-4 Chapters 3-4 Stoichiometry: Chemical Calculations Slide 1 of 48 Molecular Masses And Formula Masses Molecular Masses Molecular mass is the sum of the masses of the atoms represented in a molecular formula.

More information

WJEC Eduqas AS Chemistry - Component 2 THERMOCHEMISTRY

WJEC Eduqas AS Chemistry - Component 2 THERMOCHEMISTRY WJEC Eduqas AS Chemistry - Component 2 THERMOCHEMISTRY enthalpy change of reaction, enthalpy change of combustion and standard molar enthalpy change of formation, Δ fh ϴ Hess s law and energy cycles concept

More information

GCE O' LEVEL PURE CHEMISTRY (5073/02) Suggested Answers for 2016 O Level Pure Chemistry Paper 2

GCE O' LEVEL PURE CHEMISTRY (5073/02) Suggested Answers for 2016 O Level Pure Chemistry Paper 2 Section A (50 M) Aa) trend The number of electron shell increases The number of valence electrons increases Proton number increases There is a change in character from metallic to non-metallic Only true

More information

Basic Organometallic Chemistry : Concepts, Syntheses, and Applications of Transition Metals. Table Of Contents: Foreword

Basic Organometallic Chemistry : Concepts, Syntheses, and Applications of Transition Metals. Table Of Contents: Foreword Basic Organometallic Chemistry : Concepts, Syntheses, and Applications of Transition Metals Table Of Contents: Foreword v Preface vii List of abbreviations ix Chapter 1 Introduction 1 (15) 1.1 What is

More information

AQA A2 CHEMISTRY TOPIC 5.4 TRANSITION METALS PART 2 REDOX REACTIONS AND CATALYSIS BOOKLET OF PAST EXAMINATION QUESTIONS

AQA A2 CHEMISTRY TOPIC 5.4 TRANSITION METALS PART 2 REDOX REACTIONS AND CATALYSIS BOOKLET OF PAST EXAMINATION QUESTIONS AQA A2 CHEMISTRY TOPIC 5.4 TRANSITION METALS PART 2 REDOX REACTIONS AND CATALYSIS BOOKLET OF PAST EXAMINATION QUESTIONS 1. Chemical reactions can be affected by homogeneous or by heterogeneous catalysts.

More information

Basics of Catalysis and Kinetics

Basics of Catalysis and Kinetics Basics of Catalysis and Kinetics Nobel laureates in catalysis: Haber (1918) Ziegler and Natta (1963) Wilkinson, Fischer (1973) Knowles, Noyori, Sharpless (2001) Grubbs, Schrock, Chauvin (2006) Ertl (2007)

More information

Alkenes (Olefins) Chapters 7 & 8 Organic Chemistry, 8 th Edition John McMurry

Alkenes (Olefins) Chapters 7 & 8 Organic Chemistry, 8 th Edition John McMurry Alkenes (Olefins) Chapters 7 & 8 Organic Chemistry, 8 th Edition John McMurry 1 Structure and Bonding 2 Structure and Bonding Rotation around the C=C bond is restricted 90 rotation The p orbitals are orthogonal

More information

14.11 Alkane Synthesis Using Organocopper Reagents

14.11 Alkane Synthesis Using Organocopper Reagents 14.11 Alkane Synthesis Using Organocopper Reagents Lithium Dialkylcuprates Lithium dialkylcuprates are useful synthetic reagents. They are prepared from alkyllithiums and a copper(i) halide. 2RLi + CuX

More information

Green Chemistry & Engineering for Pharmacuetical Industry Impact of Process Research / Route Scouting towards the Environment during API Life Cycle

Green Chemistry & Engineering for Pharmacuetical Industry Impact of Process Research / Route Scouting towards the Environment during API Life Cycle Green Chemistry & Engineering for Pharmacuetical Industry Impact of Process Research / Route Scouting towards the Environment during API Life Cycle Dhileep Krishnamurthy, Ph.D. Outline Introduction Green

More information

Green organic chemistry and its interdisciplinary applications / Vera M. Kolb. Boca Raton [etc.], cop Spis treści

Green organic chemistry and its interdisciplinary applications / Vera M. Kolb. Boca Raton [etc.], cop Spis treści Green organic chemistry and its interdisciplinary applications / Vera M. Kolb. Boca Raton [etc.], cop. 2016 Spis treści Preface Acknowledgments Author xiii xv xvii Chapter 1 Introduction to Green Chemistry

More information

Catalysis. Catalytic nanoparticles have been used for centuries to facilitate desirable chemical reactions and to suppress unwanted byproducts.

Catalysis. Catalytic nanoparticles have been used for centuries to facilitate desirable chemical reactions and to suppress unwanted byproducts. Catalysis Catalytic nanoparticles have been used for centuries to facilitate desirable chemical reactions and to suppress unwanted byproducts. Gerhard Ertl received the 2007 Chemistry Nobel Prize for converting

More information

The. Equilibrium. Constant. Chapter 15 Chemical Equilibrium. The Concept of Equilibrium. The Concept of Equilibrium. A System at Equilibrium

The. Equilibrium. Constant. Chapter 15 Chemical Equilibrium. The Concept of Equilibrium. The Concept of Equilibrium. A System at Equilibrium The Concept of Chapter 15 Chemical AP Chemistry 12 North Nova Education Centre 2017 Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. The Concept of As a system

More information

Kinetics. Chapter 14. Chemical Kinetics

Kinetics. Chapter 14. Chemical Kinetics Lecture Presentation Chapter 14 Yonsei University In kinetics we study the rate at which a chemical process occurs. Besides information about the speed at which reactions occur, kinetics also sheds light

More information

Green Chemistry: What Does Green Mean? Dr. Evan Beach and Dr. Karolina Mellor

Green Chemistry: What Does Green Mean? Dr. Evan Beach and Dr. Karolina Mellor Green Chemistry: What Does Green Mean? Dr. Evan Beach and Dr. Karolina Mellor NSF/GCI/ANSI 355 What green chemistry is not Banning/restricGng chemicals Making poligcal/value judgments Dogma Green Chemistry:

More information

GCSE OCR Revision Chemistry. GCSE OCR Revision Chemistry. GCSE OCR Revision Chemistry. Bonding. GCSE OCR Revision Chemistry

GCSE OCR Revision Chemistry. GCSE OCR Revision Chemistry. GCSE OCR Revision Chemistry. Bonding. GCSE OCR Revision Chemistry Particle Model and Atomic Structure The following symbols describe two different substances. Deduce all the information you can from these symbols. 13 C 12 6 6 C 1 Particle Model and Atomic Structure The

More information

ALE 9. Equilibrium Problems: ICE Practice!

ALE 9. Equilibrium Problems: ICE Practice! Name Chem 163 Section: Team Number: ALE 9. Equilibrium Problems: ICE Practice! (Reference: 17.5 Silberberg 5 th edition) Equilibrium Calculations: Show all work with correct significant figures. Circle

More information

Metallocene Catalysts for Ethylene Polymerization

Metallocene Catalysts for Ethylene Polymerization etallocene Catalysts for Ethylene Polymerization Dr. Syriac J. Palackal* and Dr. Atieh Abu Raqabah Sabic R&D Riyadh, Kingdom of Saudi Arabia ABSTRACT etallocene catalysts are the latest addition to the

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION Catalysis is an important process to improve the production of chemicals. This phenomenon can be employed in a chemical reaction that is favored thermodynamically but is very slow

More information

AQA TRILOGY Chemistry (8464) from 2016 Topics T5.1 Atomic structure and the periodic table (Paper 1) To pic. Student Checklist

AQA TRILOGY Chemistry (8464) from 2016 Topics T5.1 Atomic structure and the periodic table (Paper 1) To pic. Student Checklist Personalised Learning Checklist AQA TRILOGY Chemistry (8464) from 2016 s T5.1 Atomic structure and the periodic table (Paper 1) State that everything is made of atoms and recall what they are 5.1.1 A simple

More information

OH, is an important feedstock for the chemical industry.

OH, is an important feedstock for the chemical industry. 1 Methanol, CH 3 OH, is an important feedstock for the chemical industry. In the manufacture of methanol, carbon dioxide and hydrogen are reacted together in the reversible reaction shown below. CO 2 (g)

More information

Organometallic Catalysis

Organometallic Catalysis Organometallic Catalysis The catalysts we will study are termed homogeneous catalysts as they are dissolved in th e same solvent as the substrate. In contrast, heterogeneous catalysts, such as palladium

More information

!n[a] =!n[a] o. " kt. Half lives. Half Life of a First Order Reaction! Pressure of methyl isonitrile as a function of time!

!n[a] =!n[a] o.  kt. Half lives. Half Life of a First Order Reaction! Pressure of methyl isonitrile as a function of time! Half lives Half life: t 1/2 t 1/2 is the time it takes for the concentration of a reactant to drop to half of its initial value. For the reaction A! products Half Life of a First Order Reaction! Pressure

More information

CHEM 251 (4 credits): Description

CHEM 251 (4 credits): Description CHEM 251 (4 credits): Intermediate Reactions of Nucleophiles and Electrophiles (Reactivity 2) Description: An understanding of chemical reactivity, initiated in Reactivity 1, is further developed based

More information

Catalytic Chemistry. Bruce C. Gates. John Wiley & Sons, Inc. New York Chichester Brisbane Toronto Singapore. University of Delaware ^.'-'.

Catalytic Chemistry. Bruce C. Gates. John Wiley & Sons, Inc. New York Chichester Brisbane Toronto Singapore. University of Delaware ^.'-'. : s / ; '.... ;. : : ^.'-'. Catalytic Chemistry Bruce C. Gates University of Delaware John Wiley & Sons, Inc. New York Chichester Brisbane Toronto Singapore Contents List of Notation xix 1 INTRODUCTION

More information

Lesmahagow High School CfE Higher Chemistry. Chemical Changes & Structure Controlling the Rate

Lesmahagow High School CfE Higher Chemistry. Chemical Changes & Structure Controlling the Rate Lesmahagow High School CfE Higher Chemistry Chemical Changes & Structure Controlling the Rate E a Page 1 of 18 Learning Outcomes Controlling the Rate Circle a face to show how much understanding you have

More information

Properties of Compounds

Properties of Compounds Chapter 6. Properties of Compounds Comparing properties of elements and compounds Compounds are formed when elements combine together in fixed proportions. The compound formed will often have properties

More information

Personalised Learning Checklists AQA Chemistry Paper 2

Personalised Learning Checklists AQA Chemistry Paper 2 AQA Chemistry (8462) from 2016 Topics C4.6 The rate and extent of chemical change Calculate the rate of a chemical reaction over time, using either the quantity of reactant used or the quantity of product

More information

Stoichiometry of Gases

Stoichiometry of Gases CHAPTER 13 Stoichiometry of Gases Now that you have worked with relationships among moles, mass, and volumes of gases, you can easily put these to work in stoichiometry calculations. Many reactions have

More information

Lesson Aiming for 4 Aiming for 6 Aiming for 8. I can use the periodic table to find the relative atomic mass of all elements.

Lesson Aiming for 4 Aiming for 6 Aiming for 8. I can use the periodic table to find the relative atomic mass of all elements. Chemical calculations C4.1 Relative masses and moles I can use the periodic table to identify the relative atomic mass for the first 20 elements. I can calculate the relative formula mass for familiar

More information

Reaction Rates and Equilibrium

Reaction Rates and Equilibrium CHAPTER 7 14 SECTION Chemical Reactions Reaction Rates and Equilibrium KEY IDEAS As you read this section, keep these questions in mind: How can you increase the rate of a reaction? What does a catalyst

More information

GREEN CHEMISTRY & SUSTAINABLE INDUSTRIAL TECHNOLOGY

GREEN CHEMISTRY & SUSTAINABLE INDUSTRIAL TECHNOLOGY CHE00001M UNIVERSITY OF YORK MSc Examinations 2016 GREEN CHEMISTRY & SUSTAINABLE INDUSTRIAL TECHNOLOGY Time allowed: 2½ hours Answer Section A (Question 1) and TWO out of FOUR questions from Section B

More information

Paper Atomic structure and the periodic table

Paper Atomic structure and the periodic table Paper 1 4.1 Atomic structure and the periodic table 4.1.1 A simple model of the atom, symbols, relative atomic mass, electronic charge and isotopes Use the names and symbols of the first 20 elements in

More information

CHEMICAL KINETICS (RATES OF REACTION)

CHEMICAL KINETICS (RATES OF REACTION) Kinetics F322 1 CHEMICAL KINETICS (RATES OF REACTION) Introduction Chemical kinetics is concerned with the dynamics of chemical reactions such as the way reactions take place and the rate (speed) of the

More information

GREEN CHEMISTRY. N. MD. Akram. Asst. Prof of Chemistry, Santhiram Engineering College, Nandyal, Kurnool Dt, Andhra Pradesh.(India)

GREEN CHEMISTRY. N. MD. Akram. Asst. Prof of Chemistry, Santhiram Engineering College, Nandyal, Kurnool Dt, Andhra Pradesh.(India) GREEN CHEMISTRY N. MD. Akram Asst. Prof of Chemistry, Santhiram Engineering College, Nandyal, Kurnool Dt, Andhra Pradesh.(India) ABSTRACT Green chemistry is the most utilization of a set of principles

More information

2/11/2013 INTRODUCTION. STOICHIOMETRY General Chemistry. Uses of H 2 SO 4. Stoichiometry? Big Deal.

2/11/2013 INTRODUCTION. STOICHIOMETRY General Chemistry. Uses of H 2 SO 4. Stoichiometry? Big Deal. INTRODUCTION STOICHIOMETRY General Chemistry Billions of pounds of chemicals are produced each year across the world. These chemicals help manufacture: Medicines Computer chips and electronic instruments

More information

Abstract Process Economics Program Report 153C SINGLE-SITE CATALYSTS FOR PROPYLENE-BASED POLYMERS (June 2002)

Abstract Process Economics Program Report 153C SINGLE-SITE CATALYSTS FOR PROPYLENE-BASED POLYMERS (June 2002) Abstract Process Economics Program Report 153C SINGLE-SITE CATALYSTS FOR PROPYLENE-BASED POLYMERS (June 2002) Single-site catalysts (SSC) are considered one of the most significant innovations in the polymer

More information

Enthalpy changes

Enthalpy changes 2.3.1. Enthalpy changes In an exothermic change energy is transferred from the system (chemicals) to the surroundings. The have less energy than the If an enthalpy change occurs then energy is transferred

More information

Problem Solving. Percentage Yield

Problem Solving. Percentage Yield Skills Worksheet Problem Solving Percentage Yield Although we can write perfectly balanced equations to represent perfect reactions, the reactions themselves are often not perfect. A reaction does not

More information

Year 12 Chemistry Tutorial 9.2.A Synthetic Polymers

Year 12 Chemistry Tutorial 9.2.A Synthetic Polymers Year 12 Chemistry Tutorial 9.2.A Synthetic Polymers Module Topic 9.2 Production of Materials 9.2.A Synthetic Polymers Name Date Ethene 1. Match the statement on the left with the most appropriate answer

More information

GREEN CHEMISTRY. Dr. A. R. Ramesh Assistant Professor. Green Chemistry- Ramesh - GEC Kozhikode

GREEN CHEMISTRY. Dr. A. R. Ramesh Assistant Professor. Green Chemistry- Ramesh - GEC Kozhikode GREEN CHEMISTRY Dr. A. R. Ramesh Assistant Professor 1 What is Green Chemistry? Green chemistry can also be described as Sustainable chemistry. Chemistry that is benign by design. Pollution prevention

More information

N10/4/CHEMI/SP2/ENG/TZ0/XX CHEMISTRY STANDARD LEVEL PAPER 2. Thursday 11 November 2010 (afternoon) Candidate session number.

N10/4/CHEMI/SP2/ENG/TZ0/XX CHEMISTRY STANDARD LEVEL PAPER 2. Thursday 11 November 2010 (afternoon) Candidate session number. N10/4/CHEMI/SP2/ENG/TZ0/XX 88106105 CHEMISTRY STANDARD LEVEL PAPER 2 Thursday 11 November 2010 (afternoon) 1 hour 15 minutes 0 0 Candidate session number INSTRUCTIONS TO CANDIDATES Write your session number

More information