Introduction to Radiopharmaceutical chemistry. (Lecture

Size: px
Start display at page:

Download "Introduction to Radiopharmaceutical chemistry. (Lecture"

Transcription

1 Introduction to Radiopharmaceutical chemistry (Lecture 1) Outline 1. Introduction Radiopharmaceuticals, Basics on radiochemistry, Molecular imaging, Nuclear medicine, PET and SPECT, Radiopharmacology 2. Radionuclide production, Nuclear reactor, Cyclotron, Radionuclide generators in medicine Radionuclide generators 3. Radiometal pharmaceuticals I Radiopharmaceutical chemistry: 99m Tc-Radiopharmaceuticals, Kits 4. Radiometal pharmaceuticals II Radiopharmaceutical chemistry: Re, Cu, In, Ga, Y 5. Organic radiopharmaceuticals I Introduction to PET, 11 C-radiopharmaceuticals 6. Organic radiopharmaceuticals II 11 C-radiopharmaceuticals (continuation) 7. Organic radiopharmaceuticals III Radiofluorinations: 18 F-radiopharmaceuticals 8. Organic radiopharmaceuticals IV Radiohalogenations: Br, I, At 9. Radiopharmacology Diagnostics & Therapeutics 1

2 Molecular Imaging Molecular imaging of specific biological and physiological processes at the molecular level in the intact organism Optical imaging Radionuclide-based imaging Making the body biochemically transparent Molecular Imaging Gene expression Protein expression Protein function Physiological function 2

3 Application of radionuclides in life sciences Universal, efficient, simple igh sensitivity Studies of metabolism Mass balance, in vivo disribution (autoradiography) 14 C, 3, 32 P, 35 S Radiotracer-concept George de evesey 1943 Nobel Prize (Chemistry (Application of radionuclide-based indicators, Father of nuclear medicine) In vivo pharmacology/biochemistry Positron-emission-tomography (PET) Single photon emission computered tomography (SPECT) in vivo radiotracer techniques Molecular probes and the radiotracer principle Biochemical information 3

4 Radionuclides in medicine Nuclear medicine Nuclear medicine: Diagosis Use of gamma- and positron emitters Sensitivity = right positive/(right positive + false negative) Specificity = right negative/right negative + false positive) Nuklear medicine: Therapy Use of particle emitters (α, β - ) Antibody Iodine- 131 Yttrium-90 Indium-111 Rhenium-186, 188 Tumor cell Antigen Emission tomography - SPECT Gantry-design of a SPECT-camera 4

5 Emission tomography - PET O O O O 18 F O β kev BGO or LSO Scintillator crystals β kev Photomultiplier Emission tomography - PET 5

6 Emission tomography - PET Pathobiochemistry in vivo Glycolysis Active transport Neurotransmission Multidrug resistance ypoxia Apoptosis Angiogenesis Monitoring of gene therapy Inflammation, Infection Tumor-associated antigenes and receptors etc. smart radiotracers! 6

7 Selection criteria and use of molecular probes for nuclear medicine molecular imaging Can an appropriate compound be labeled with a suitable radionuclide? Target specificity igh membrane permeability Rapid blood clearance No or only slow peripheral metabolism igh specific activity (Radiotracer principle) Low non-specific binding (Target-to-Non-target ratio >>1) Only a limited number of transport and biochemical reaction steps to facilitate tracerkinetic modelling 1. Molecular probes based upon enzyme-mediated transformations 2. Molecular probes based upon stochiometrical binding interactions 3. Molecular probes for perfusion studies Opportunities and trends of radiopharmaceutical chemistry Making tumors visible as early as possible Better understanding of tumor biochemistry Therapy monitoring 7

8 Complex evaluation of tumor biology Number of tumor cells Clinical detection Sensitve detection Cure Complex evaluation Tod Number of tumor cells Clinical detection Sensitve detection Cure Gene expression? Metabolic activity? Angiogenesis? Tumor-associated binding sites? Apoptosis? ypoxia? 8

9 Opportunities and trends of radiopharmaceutical chemistry Molecular of neurobiological basis of cerebral function See, how the brain is working Opportunities and trends of radiopharmaceutical chemistry PET in drug development and evaluation Pharmacokinetics (Administration, distribution, elimination) Radiolabeled drug Pharmacodynamics (Drug effect on metabolism, blood flow, receptor occupancy etc.) Radiotracers (probes) + drug 9

10 RADIOPARMACEUTICAL CEMISTRY Nuclear pharmaceuticals Radiopharmaceuticals Radioactive drug - Diagnostics (Radiotracers) - Therapeutics Lead structure (high-throughput-screening, pathobiochemistry Target molecule Modification: Introduction of radionuclide Biodistribution, pharmacokinetics ( contrast, quantifiable, minimal radiation burden, max. effect in radiation therapy Labeling methods Radiotracer-lead structure Radionuclide production 10

11 Important terms Radiation and radiation energy β, γ, β +, α Radioaktivity Equation; 1 Ci = 3, Bq specific activity carrier-free, non-carrier-added, carrier-added alf-life (physical, biological, effective) Energy dose Nuclear reactions Nuclear reactor, Cyclotron Cross-section Activation equation (n,γ), (p,n), (p,α) and (d,n)-reactions Radiopharmaceutical chemistry Radiolabeling, radiotracer, lead structure radiochemical purity Good Manufacturing Practice (GMP) Radiopharmacology, Nuclear medicine Dose, Target/Nontarget, Sensitivity and specificity SPET, PET, in vitro, in vivo, Perfusion, clearance, Pharmacokinetics, Pharmacodynamics RADIOCEMISTRY Nuclear reactions Radionuclide production Radioaktive radiation Labeling methods Production of radiopharmaceuticals 11

12 RADIOCEMISTY Radionuclide production Nuclear reactionr Cyclotron Processing hot labs Radionuclide production Table of nuclide 12

13 Radionuclide production - Radioactivity Bq Czernobyl accident I-131, Xe-133, Cs-137, Kr-85, Sr-90 u.a. Spallation I-131, I-133/Xe-133, Mo-99/Tc-99m, Xe-135 u.a Thyroid ectomy K-40in adults Cs-137/l milk in Berlin after Czernobyl Radionuclide production Impurities with dramatic effects Radiation burden e.g. 125 I in 123 I, euthyreotic thyroid 533 mgy/mbq 125 I 5.6 mgy/mbq 123 I 1% of 125 I doubles radiation burden!!! 13

14 Radionuclide production Nuclear power plants Iod-131 era Iod-123 (13 h) Shorter physical half-lifes in the clinics Technetium-99m era PET era 11 C 20.4 min 14 N(p,α) 11 C 13 N 10.0 min 16 O(p,α) 13 N 15 O 2.0 min 14 N(d,n) 15 O 18 F min 20 Ne(d,α) 18 F 18 O(p,n) 18 F Radionuclides Diagnosis Iodine-123 Technetium-99m PET-Radionuclides Therapy Iodine-131 Radiometals (hard M 3+ ) C-11 F-18 I-123 Tc-99m authentic F for, O I for, O, C 3 dramatic alterations compound Increasing availability of radionuclides 14

15 TcO 4 - Iodide Active transport M Iodide 10-1 M Chloride hnis (mamma CA): TcO 4- Uptake D.. Moon et al., Nucl. Med. Biol. 28 (2001)

16 PET: Radiopharmaceuticals [ 18 F]FDG O besonders in irn und erz O O O 18 F O O C 2 O O O O O gute Permeabilität O O C 2 O O O exokinase Phosphatase 18 F-DG 18 F-DG 18 F-DG-6- P Plasma O Zelle O C 2 O O F O E in allen Organen, aber weniger in irn und erz D-Glucose 2-Desoxy-D-glucose 2-Fluor-2-desoxy-D-glucose Principle: Increased glycolysis in tumor cells (O. WARBURG) Glucose transporter (GLUT 1) and/or hexokinase Intracellular phosphorylation through hexokinase Intracellular trapping PET: Radiopharmaceuticals [ 18 F]FDG 18 F-FDG PET - Control Nuklearmedizin TU Dresden / PET-Zentrum Rossendorf 16

17 PET: Radiopharmaceuticals [ 18 F]FDG Primary tumour in the neck with lung metastesis R L R L R L Nuklearmedizin TU Dresden / PET-Zentrum Rossendorf PET: Radiopharmaceuticals [ 18 F]FDG Therapy control Morbus odgkin Lymphoma (before Chemotherapy) Nuklearmedizin TU Dresden / PET-Zentrum Rossendorf 17

18 PET: Radiopharmaceuticals [ 18 F]FDG Therapy control Morbus odgkin Lymphoma (after Chemotherapy) Nuklearmedizin TU Dresden / PET-Zentrum Rossendorf Radiopharmaceuticals: 3-O-Methyl-[ 18 F]FDOPA Amino acid transporter Blood-brain-barrier Tumour MeO O 2 N 18 F CO 2 activity (Bq/ccm ) Tumour Reference region Tumour / Brain ,5 3 2,5 2 1,5 1 0,5 tumour / non tumour Frame Midpoint Time [sec] MRT: Surgery defect Target/Non-Target OMFD-PET 18

19 PET: Radiopharmaceuticals - [ 18 F]FDOPA O 2 C O O 2 C Decarboxylation O O N 2 O N 2 O N 2 Tyrosine Dopa Dopamine 2 N CO 2 O O 18 F Control Decarboxylation disturbance Dopa to dopamine PET: Radiopharmaceuticals - [ 18 F]Fluoride O O P O O O O P O O O O P O O Ca 2+ Ca 2+ Ca 2+ PO 3- Ca 2+ 4 O - Ca 2+ PO 3- Ca 2+ 4 F - O - Ca 2+ Knochenmetastase Nuklearmedizin TU Dresden / PET-Zentrum Rossendorf 19

20 PET: Radiopharmaceuticals - [ 11 C]Acetats Precise mechanism unclear Increased lipid metabolism O * ONa Lymph nodemetastasis Rezidive Nuklearmedizin TU Dresden / PET-Zentrum Rossendorf 20

21 Strahlenschutz Gesamte Strahlenexposition 5-A-Regel Radiation protection Begrenzung der eingesetzten Aktivität Aufenthaltszeit begrenzen - Verringerung der Bestrahlungszeit Abstand halten Abschirmungen verwenden Aufnahme von radioaktiven Stoffen vermeiden (bei Umgang mit offenen Radionukliden) Kombination von Strahlenschutzmaßnahmen 1. Verringerung der Bestrahlungszeit Aufenthaltszeit begrenzen 2. Abstand halten 3. Abschirmungen verwenden 21

Radiochemistry and Radiopharmacy III

Radiochemistry and Radiopharmacy III Radiochemistry and Radiopharmacy III Compact course held at UFSCAR, September 20123 Ulrich Abram Freie Universität Berlin Institute of Chemistry and Biochemistry Radiochemistry and Radiopharmacy 1. Fundamentals

More information

Outline Chapter 14 Nuclear Medicine

Outline Chapter 14 Nuclear Medicine Outline Chapter 14 uclear Medicine Radiation Dosimetry I Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4 th ed. http://www.utoledo.edu/med/depts/radther Introduction Detectors for nuclear

More information

Bases of radioisotope diagnostic methods

Bases of radioisotope diagnostic methods Medical, pharmaceutical applications of radioisotopes Bases of radioisotope diagnostic methods Dr. István Voszka Basis of application: radioisotopes have identical behavior in the organism to corresponding

More information

Historical Perspective - Radiotracing -

Historical Perspective - Radiotracing - Historical Perspective - Radiotracing - 1911, first radiotracer experiment: 1943 Nobel Prize One of the first radiotracer experiments was an experiment in gastronomy. George de Hevesy, one of the most

More information

CLINICALLY USEFUL RADIONUCLIDES:

CLINICALLY USEFUL RADIONUCLIDES: INTRODUCTION It is important that Nuclear Medicine Technologists be familiar with the imaging properties of all commonly used radionuclides to insure correct choice of isotope for a particular study as

More information

PRODUCTION OF RADIOISOTOPES FOR IMAGING AND THERAPY AT LOW ENERGY

PRODUCTION OF RADIOISOTOPES FOR IMAGING AND THERAPY AT LOW ENERGY PRODUCTION OF RADIOISOTOPES FOR IMAGING AND THERAPY AT LOW ENERGY THOMAS J. RUTH TRIUMF Vancouver, BC, Canada truth@triumf.ca 1 Introduction The production of radioisotopes for use in biomedical procedures

More information

Best MeV. Best , 25 MeV

Best MeV. Best , 25 MeV Best 15 15 MeV 400 µa Best 25 20, 25 MeV 400 µa Best 28u/35 20, 28 35 15 MeV 400 1000 µa Best 70 70 35 MeV 700 µa 2014 Best Cyclotron Systems Best Cyclotron Systems 8765 Ash St., Unit 7, Vancouver, BC

More information

Radiation Detectors. How do we detect ionizing radiation? What are these effects? Types of Ionizing Radiation Detectors

Radiation Detectors. How do we detect ionizing radiation? What are these effects? Types of Ionizing Radiation Detectors Radiation Detectors 1 How do we detect ionizing radiation? Indirectly, by its effects as it traverses matter? What are these effects? Ionization and excitation of the atoms and molecules Heat 2 Types of

More information

Radiochemistry in nuclear medicine

Radiochemistry in nuclear medicine Lecce, Jan 14 2011 Radiochemistry in nuclear medicine Giancarlo Pascali, PhD radiochemist IFC-CNR, Pisa pascali@ifc.cnr.it Do not say contrast media (but Contrast media Mainly anatomical High injected

More information

1st Faculty of Medicine, Charles University in Prague Center for Advanced Preclinical Imaging (CAPI)

1st Faculty of Medicine, Charles University in Prague Center for Advanced Preclinical Imaging (CAPI) Radioation Resolution and Sensitivity Nuclear Imaging PET + SPECT Radioactive Decay (EC,Ɣ), (β -,Ɣ), (I.T.,Ɣ) β + Projection imaging collimator needed one angular view Projection imaging coincidence imaging,

More information

Radioisotopes in action. Diagnostic application of radioisotopes. Steps of diagnostic procedure. Information from various medical imaging techniques

Radioisotopes in action. Diagnostic application of radioisotopes. Steps of diagnostic procedure. Information from various medical imaging techniques Radioisotopes in action Diagnostic application of radioisotopes Steps of diagnostic procedure - Radioactive material introduced into the patient - Distribution and alteration of activity is detected -

More information

RADIOPHARMACEUTICALS

RADIOPHARMACEUTICALS RADIOPHARMACEUTICALS Samy Sadek, Ph.D. Associate Professor, New York Medical College. Radiopharmaceutical Chemist, St. Vincent's Hospital- Manhattan. 1 X-Ray Discovery: Roentgen Wilhelm Roentgen ca. 1895.

More information

Imaging: PET and SPECT

Imaging: PET and SPECT Imaging: PET and SPECT Positron Emission Tomography Single Photon Emission Computed Tomography PET and SPECT Properties of ideal imaging nuclides, biological, chemical, physical Production of radionuclides

More information

Radiotracers for Early Diagnosis - ReSearching for a Better Life!

Radiotracers for Early Diagnosis - ReSearching for a Better Life! Radiotracers for Early Diagnosis - ReSearching for a Better Life! CONTACT INFORMATION: Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN- HH 30 Reactorului Street 077125 Bucharest-Magurele,

More information

Laboratory 3: Kit Preparation and Chromatography. Design Considerations for a Radiopharmaceutical

Laboratory 3: Kit Preparation and Chromatography. Design Considerations for a Radiopharmaceutical Laboratory 3: Kit Preparation and Chromatography PART 1: KIT PREPARATION Introduction In nuclear medicine, radionuclides are rarely used in their simplest chemical form. Instead they are incorporated into

More information

Positron Emission Tomography Dr. William C. Uhland Tyco-Mallinckrodt Pharmaceuticals, Maryland Heights, Missouri, USA

Positron Emission Tomography Dr. William C. Uhland Tyco-Mallinckrodt Pharmaceuticals, Maryland Heights, Missouri, USA Positron Emission Tomography Dr. William C. Uhland Tyco-Mallinckrodt Pharmaceuticals, Maryland Heights, Missouri, USA e + Overview of Lecture A historical perspective A conceptual understanding of P.E.T.

More information

Dosimetry of patients injected with tracers Ga-68, Zr-89 and Lu-177. Bruno Vanderlinden

Dosimetry of patients injected with tracers Ga-68, Zr-89 and Lu-177. Bruno Vanderlinden Dosimetry of patients injected with tracers Ga-68, Zr-89 and Lu-177 Bruno Vanderlinden What is NM speciality? Imaging radiology Physics Diagnostic Treatment assessment Clinical pathology Biological marker

More information

Medical Applications of Nuclear Radiation and Isotopes

Medical Applications of Nuclear Radiation and Isotopes Mitglied der Helmholtz-Gemeinschaft Medical Applications of Nuclear Radiation and Isotopes Syed M. Qaim Forschungszentrum Jülich and Universität zu Köln, Germany E-mail: s.m.qaim@fz-juelich.de Lecture

More information

Positron Emission Tomography

Positron Emission Tomography Positron Emission Tomography CERN Accelerator School Small Accelerators Zeegse, the Netherlands A.M.J. Paans Nuclear Medicine & Molecular Imaging UMC Groningen Elements of Life PET-nuclide Hydrogen Carbon

More information

Radioisotopes and PET

Radioisotopes and PET Radioisotopes and PET 1 Radioisotopes Elements are defined by their number of protons, but there is some variation in the number of neutrons. Atoms resulting from this variation are called isotopes. Consider

More information

Structure of the course

Structure of the course Structure of the course 1) Introduc1on 2) Interac1on of par1cles with ma9er } principles / tools 3) Therapy with proton and ion beams 4) Sources for nuclear medicine 5) X- ray sources sources 6) Image

More information

III. Proton-therapytherapy. Rome SB - 2/5 1

III. Proton-therapytherapy. Rome SB - 2/5 1 Outline Introduction: an historical review I Applications in medical diagnostics Particle accelerators for medicine Applications in conventional radiation therapy II III IV Hadrontherapy, the frontier

More information

Bioimage Informatics. Lecture 23, Spring Emerging Applications: Molecular Imaging

Bioimage Informatics. Lecture 23, Spring Emerging Applications: Molecular Imaging Bioimage Informatics Lecture 23, Spring 2012 Emerging Applications: Molecular Imaging Lecture 23 April 25, 2012 1 Outline Overview of molecular imaging Molecular imaging modalities Molecular imaging applications

More information

Nuclear Medicine Intro & Physics from Medical Imaging Signals and Systems, Chapter 7, by Prince and Links

Nuclear Medicine Intro & Physics from Medical Imaging Signals and Systems, Chapter 7, by Prince and Links Nuclear Medicine Intro & Physics from Medical Imaging Signals and Systems, Chapter 7, by Prince and Links NM - introduction Relies on EMISSION of photons from body (versus transmission of photons through

More information

Radiopharmacy. Prof. Roger Schibli Department of Chemistry and Applied Biosciences ETHZ Center for Radiopharmaceutical Science ETH-PSI-USZ

Radiopharmacy. Prof. Roger Schibli Department of Chemistry and Applied Biosciences ETHZ Center for Radiopharmaceutical Science ETH-PSI-USZ Wider Horizons for Pharmacists Radiopharmacy Prof. Roger Schibli Department of Chemistry and Applied Biosciences ETHZ Center for Radiopharmaceutical Science ETH-PSI-USZ Radiopharmacy? 7.12.2012 Institute

More information

Radioisotopes in action. Diagnostic application of radioisotopes. Steps of diagnostic procedure. Information from various medical imaging techniques

Radioisotopes in action. Diagnostic application of radioisotopes. Steps of diagnostic procedure. Information from various medical imaging techniques Radioisotopes in action Diagnostic application of radioisotopes Steps of diagnostic procedure - Radioactive material introduced into the patient - Distribution and alteration of activity is detected -Monitoring

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-302 Dr. E. Rizvi Lecture 24 Medical Imaging Effects of Radiation We now know what radiation is But what does it mean for our bodies? Radioactivity is quantified in

More information

69 Ga Ga

69 Ga Ga Stable isotope Relative atomic mass Mole fraction 69 Ga 68.925 574 0.601 08 71 Ga 70.924 703 0.398 92 Gallium isotopes in medicine 68 Ga is a radioactive isotope that emits positrons, which are used to

More information

Synthesis and stability of [ 77 Br]-m-Bromobenzylguanidine ( 77 Br-MBBG)

Synthesis and stability of [ 77 Br]-m-Bromobenzylguanidine ( 77 Br-MBBG) Synthesis and stability of [ 77 Br]-m-Bromobenzylguanidine ( 77 Br-MBBG) Shigeki Watanabe 1 [ watanabe.shigeki@jaea.go.jp ] Noriko S. Ishioka 1, Ji Xin Liang 1, Hirofumi Hanaoka 2, Yasuhiko iida 2,3, Keigo

More information

Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA ramsey

Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA   ramsey SPECIAL FEATURE: MEDICAL PHYSICS www.iop.org/journals/physed Nuclear medicine Ramsey D Badawi Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA E-mail: ramsey badawi@dfci.harvard.edu

More information

Tomography is imaging by sections. 1

Tomography is imaging by sections. 1 Tomography is imaging by sections. 1 It is a technique used in clinical medicine and biomedical research to create images that show how certain tissues are performing their physiological functions. 1 Conversely,

More information

Nuclear Medicine Treatments and Clinical Applications

Nuclear Medicine Treatments and Clinical Applications INAYA MEDICAL COLLEGE (IMC) RAD 243- LECTURE 2 Nuclear Medicine Treatments and Clinical Applications DR. MOHAMMED MOSTAFA EMAM Next Lectures Outlines Introduction to Nuclear Physics Physics of Radioactivity

More information

Nuclear Medicine RADIOPHARMACEUTICAL CHEMISTRY

Nuclear Medicine RADIOPHARMACEUTICAL CHEMISTRY Nuclear Medicine RADIOPHARMACEUTICAL CHEMISTRY An alpha particle consists of two protons and two neutrons Common alpha-particle emitters Radon-222 gas in the environment Uranium-234 and -238) in the environment

More information

Physics in Nuclear Medicine

Physics in Nuclear Medicine SIMON R. CHERRY, PH.D. Professor Department of Biomedical Engineering University of California-Davis Davis, California JAMES A. SORENSON, PH.D. Emeritus Professor of Medical Physics University of Wisconsin-Madison

More information

Radiochemistry and Radiopharmacy IV

Radiochemistry and Radiopharmacy IV Radiochemistry and Radiopharmacy IV Compact course held at UFSCAR, September 2013 Ulrich Abram Freie Universität Berlin Institute of Chemistry and Biochemistry Radiochemistry and Radiopharmacy 1. Fundamentals

More information

Beyond FDG Manufacturing of 11 C and 18 F Radiopharmaceuticals. Krzysztof Kilian

Beyond FDG Manufacturing of 11 C and 18 F Radiopharmaceuticals. Krzysztof Kilian Beyond FDG Manufacturing of 11 C and 18 F Radiopharmaceuticals Krzysztof Kilian II Symposium on Positron Emission Tomography September 21st - 24th 2014, Jagiellonian University, Kraków, Poland Outline

More information

PHY138Y Nuclear and Radiation Section

PHY138Y Nuclear and Radiation Section PHY138Y Supplementary Notes V: Radioisotopes in Medicine. A.W. Key Page 1 of 10 PHY138Y Nuclear and Radiation Section Supplementary Notes V Radioisotopes in Medicine Contents. 5.1 Introduction 5.2 Radioisotopes

More information

Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield.

Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield. Nuclear Radiation Natural Radioactivity A person working with radioisotopes wears protective clothing and gloves and stands behind a shield. 1 Radioactive Isotopes A radioactive isotope has an unstable

More information

Essentials of nuclear medicine

Essentials of nuclear medicine Essentials of nuclear medicine Medical imaging CT Rtg X- rays usg Ultrasound MR Nuclear Magnetic Resonance Nuclear Medicine SPECT PET A conventional radiological, ultrasound and magnetic resonance diagnostics

More information

Isotope Production for Nuclear Medicine

Isotope Production for Nuclear Medicine Isotope Production for Nuclear Medicine Eva Birnbaum Isotope Program Manager February 26 th, 2016 LA-UR-16-21119 Isotopes for Nuclear Medicine More than 20 million nuclear medicine procedures are performed

More information

Differentiating Chemical Reactions from Nuclear Reactions

Differentiating Chemical Reactions from Nuclear Reactions Differentiating Chemical Reactions from Nuclear Reactions 1 CHEMICAL Occurs when bonds are broken or formed. Atoms remained unchanged, though may be rearranged. Involves valence electrons Small energy

More information

PANEL DISCUSSION. Radionuclides and Health A promising future! OCTOBER 14-16, 2014 PARIS LE BOURGET FRANCE

PANEL DISCUSSION. Radionuclides and Health A promising future! OCTOBER 14-16, 2014 PARIS LE BOURGET FRANCE PANEL DISCUSSION Radionuclides and Health A promising future! Hosted by Richard Zimmermann, Chrysalium Consulting Discussion coordinated by François Sarkozy, President of FSNB Health & Care Speakers: Remigiusz

More information

Functional Neuroimaging with PET

Functional Neuroimaging with PET Functional Neuroimaging with PET Terry Oakes troakes@wisc.edu W.M.Keck Lab for Functional Brain Imaging and Behavior Seeing the Brain Just look at it! Anatomic Images (MRI) Functional Images PET fmri (Just

More information

Radiopharmacy quality control

Radiopharmacy quality control Radiopharmacy quality control P. Maltby, Liverpool (UK) 1. INTRODUCTION The overwhelming majority of radiopharmaceuticals used for diagnosis and therapy in Nuclear Medicine are administered to patients

More information

Center for Design and Synthesis of Radiopharmaceuticals for Molecular Targeting CERAD on the Polish Roadmap for Research Infrastructures

Center for Design and Synthesis of Radiopharmaceuticals for Molecular Targeting CERAD on the Polish Roadmap for Research Infrastructures Center for Design and Synthesis of Radiopharmaceuticals for Molecular Targeting CERAD on the Polish Roadmap for Research Infrastructures Renata Mikolajczak National Centre for Nuclear Research, Warsaw,

More information

Lesson 14. Radiotracers

Lesson 14. Radiotracers Lesson 14 Radiotracers Introduction Basic principle: All isotopes of a given element will behave identically in most physical, environmental and biological environments. Ea sier to detect radioactive atoms

More information

MEDICAL EQUIPMENT: NUCLEAR MEDICINE. Prof. Yasser Mostafa Kadah

MEDICAL EQUIPMENT: NUCLEAR MEDICINE. Prof. Yasser Mostafa Kadah MEDICAL EQUIPMENT: NUCLEAR MEDICINE Prof. Yasser Mostafa Kadah www.k-space.org Recommended Textbook Introduction to Medical Imaging: Physics, Engineering and Clinical Applications, by Nadine Barrie Smith

More information

Radiopharmaceuticals for Nuclear Cardiac Imaging: Generator Systems for Tc-99m and Rb-82. Charles W. Beasley, Ph.D. Associate Professor of Radiology

Radiopharmaceuticals for Nuclear Cardiac Imaging: Generator Systems for Tc-99m and Rb-82. Charles W. Beasley, Ph.D. Associate Professor of Radiology Radiopharmaceuticals for Nuclear Cardiac Imaging: Generator Systems for Tc-99m and Rb-82 Charles W. Beasley, Ph.D. Associate Professor of Radiology 1 Objectives List common SPECT MPI agents Describe preparation

More information

COMMITTEE FOR HUMAN MEDICINAL PRODUCTS (CHMP) GUIDELINE ON RADIOPHARMACEUTICALS

COMMITTEE FOR HUMAN MEDICINAL PRODUCTS (CHMP) GUIDELINE ON RADIOPHARMACEUTICALS European Medicines Agency Inspections London, 26 November 2008 Doc. Ref. EMEA/CHMP/QWP/306970/2007 COMMITTEE FOR HUMAN MEDICINAL PRODUCTS (CHMP) GUIDELINE ON RADIOPHARMACEUTICALS DRAFT AGREED BY QWP September

More information

ADME studies with radiolabeled compounds. Biomedical Applications of Radioisotopes and Pharmacokinetics Unit

ADME studies with radiolabeled compounds. Biomedical Applications of Radioisotopes and Pharmacokinetics Unit ADME studies with radiolabeled compounds Miguel Ángel Morcillo Alonso Biomedical Applications of Radioisotopes and Pharmacokinetics Unit CIEMAT (Centro de Investigaciones Energéticas, Medioambientales

More information

KIVI 9 Oct 2015 Fysische Beeldtechnieken 18 feb

KIVI 9 Oct 2015 Fysische Beeldtechnieken 18 feb 1 2 3 Dutch Isotopes Valley Stable Isotopes 4 Patient-hospital: how to recognize the disorder? How to find a targeting molecule? How to make new radionuclides? How to combine? How to test stability? How

More information

General, Organic, and Biological Chemistry, 3e (Frost) Chapter 2 Atoms and Radioactivity. 2.1 Multiple-Choice

General, Organic, and Biological Chemistry, 3e (Frost) Chapter 2 Atoms and Radioactivity. 2.1 Multiple-Choice General, Organic, and Biological Chemistry, 3e (Frost) Chapter 2 Atoms and Radioactivity 2.1 Multiple-Choice 1) The smallest particle of an element that can be identified as that element is: A) a proton

More information

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc. Lecture Presentation Chapter 21, Inc. James F. Kirby Quinnipiac University Hamden, CT Energy: Chemical vs. Chemical energy is associated with making and breaking chemical bonds. energy is enormous in comparison.

More information

What is scintigraphy? The process of obtaining an image or series of sequential images of the distribution of a radionuclide in tissues, organs, or

What is scintigraphy? The process of obtaining an image or series of sequential images of the distribution of a radionuclide in tissues, organs, or Let's remind... What is nuclear medicine? Nuclear medicine can be broadly divided into two branches "in vitro" and "in vivo" procedures. There are numerous radioisotopic "in vitro" procedures for genotyping

More information

Introduction to SPECT & PET TBMI02 - Medical Image Analysis 2017

Introduction to SPECT & PET TBMI02 - Medical Image Analysis 2017 Introduction to SPECT & PET TBMI02 - Medical Image Analysis 2017 Marcus Ressner, PhD, Medical Radiation Physicist, Linköping University Hospital Content What is Nuclear medicine? Basic principles of Functional

More information

LIFTING HANDLE SUPPORT LUCITE TUBE GLASS COLUMN. VOLUME - 20 ml RETAINER. ALUMINA PACKING 10g (Al ) GLASS FRIT

LIFTING HANDLE SUPPORT LUCITE TUBE GLASS COLUMN. VOLUME - 20 ml RETAINER. ALUMINA PACKING 10g (Al ) GLASS FRIT radio pharmaceuticals Radioisotopes are being used to an ever-increasing extent in medicine for diagnosis and therapy. In this contributed article, Walter Wolf, of the School of Pharmacy, University of

More information

Chapter. Nuclear Chemistry

Chapter. Nuclear Chemistry Chapter Nuclear Chemistry Nuclear Reactions 01 Chapter 22 Slide 2 Chapter 22 Slide 3 Alpha Decay: Loss of an α-particle (a helium nucleus) 4 2 He 238 92 U 234 4 U He 90 + 2 Chapter 22 Slide 4 Beta Decay:

More information

6: Positron Emission Tomography

6: Positron Emission Tomography 6: Positron Emission Tomography. What is the principle of PET imaging? Positron annihilation Electronic collimation coincidence detection. What is really measured by the PET camera? True, scatter and random

More information

Positron Annihilation in Material Research

Positron Annihilation in Material Research Positron Annihilation in Material Research Introduction Positron sources, positron beams Interaction of positrons with matter Annihilation channels: Emission of 1, 2 or 3 γ-quanta Annihilation spectroscopies:

More information

LSC for Quality Control of 99m TC Eluate from 99 Mo- 99m Tc Generator

LSC for Quality Control of 99m TC Eluate from 99 Mo- 99m Tc Generator LSC2017 Conference 1-5th May, 2017, Copenhagen LSC for Quality Control of 99m TC Eluate from 99 Mo- 99m Tc Generator Xiaolin Hou Technical University of Denmark, Center for Nuclear Technologies Roskilde,

More information

Positron Emission Tomography Basics: Radiochemistry. N. Scott Mason, Ph.D. Radiochemist University of Pittsburgh PET Facility

Positron Emission Tomography Basics: Radiochemistry. N. Scott Mason, Ph.D. Radiochemist University of Pittsburgh PET Facility Positron Emission Tomography Basics: Radiochemistry. Scott Mason, Ph.D. Radiochemist PET Facility What is PET? Positron Emission Tomography In-Vivo Imaging and Quantification of rgan/tissue Function Uses

More information

www.aask24.com www.aask24.com www.aask24.com P=Positron E= Emission T=Tomography Positron emission or beta plus decay (+ ) is a particular type of radioactive decay, in which a proton inside a radionuclide

More information

Medical Physics. Nuclear Medicine Principles and Applications

Medical Physics. Nuclear Medicine Principles and Applications Medical Physics Nuclear Medicine Principles and Applications Dr Roger Fulton Department of PET & Nuclear Medicine Royal Prince Alfred Hospital Sydney Email: rfulton@mail.usyd.edu.au Lectures: http://www-personal.usyd.edu.au/~rfulton/medical_physics

More information

This Week. 3/23/2017 Physics 214 Summer

This Week. 3/23/2017 Physics 214 Summer This Week Atoms and nuclei What are we made of? The periodic table Why does it stop? How were the elements made? Radioactive decay Useful but can be toxic Discovery of X Rays: Cathode Rays and TV sets

More information

General, Organic, and Biochemistry, 2e (Frost) Chapter 2 Atoms and Radioactivity. 2.1 Multiple-Choice

General, Organic, and Biochemistry, 2e (Frost) Chapter 2 Atoms and Radioactivity. 2.1 Multiple-Choice General, Organic, and Biochemistry, 2e (Frost) Chapter 2 Atoms and Radioactivity 2.1 Multiple-Choice 1) Two atoms must represent the same element if they both have the same: A) number of electron shells

More information

A. I, II, and III B. I C. I and II D. II and III E. I and III

A. I, II, and III B. I C. I and II D. II and III E. I and III BioE 1330 - Review Chapters 7, 8, and 9 (Nuclear Medicine) 9/27/2018 Instructions: On the Answer Sheet, enter your 2-digit ID number (with a leading 0 if needed) in the boxes of the ID section. Fill in

More information

Structure of Biological Materials

Structure of Biological Materials ELEC ENG 3BA3: Structure of Biological Materials Notes for Lecture #19 Monday, November 22, 2010 6.5 Nuclear medicine imaging Nuclear imaging produces images of the distribution of radiopharmaceuticals

More information

PET Tracer Kinetic Modeling In Drug

PET Tracer Kinetic Modeling In Drug PET Tracer Kinetic Modeling In Drug Discovery Research Applications Sandra M. Sanabria-Bohórquez Imaging Merck & Co., Inc. Positron Emission Tomography - PET PET is an advanced d imaging i technique permitting

More information

Bioengineering 508: Physical Aspects of Medical Imaging Homework for Oct. 25

Bioengineering 508: Physical Aspects of Medical Imaging   Homework for Oct. 25 Bioengineering 508: Physical Aspects of Medical Imaging http://courses.washington.edu/bioen508/ For questions, remarks, discussions, errors in the book: Class Discussion Board (link from class website)

More information

Peptides as Radiopharmaceuticals: CMC Perspectives

Peptides as Radiopharmaceuticals: CMC Perspectives s as Radiopharmaceuticals: CMC Perspectives Ravindra K. Kasliwal, Ph.D. Office of New Drug Products (ONDP) Office of Pharmaceutical Quality (OPQ) Center for Drug Evaluation and Research (CDER) Food and

More information

PREPARATION AND QUALITY CONTROL OF 99m Tc-MDP

PREPARATION AND QUALITY CONTROL OF 99m Tc-MDP 2005 International Nuclear Atlantic Conference INAC 2005 Santos, SP, Brazil, August 28 to September 2, 2005 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR ABEN ISBN: 8599141015 PREPARATION AND QUALITY CONTROL

More information

TRIUMF TR13. Date form last updated: 2016 May 29. Completed by: David Prevost. 1. Cyclotron Facility Contact info. Institute (name/address):

TRIUMF TR13. Date form last updated: 2016 May 29. Completed by: David Prevost. 1. Cyclotron Facility Contact info. Institute (name/address): TRIUMF TR13 Date form last updated: 2016 May 29 Completed by: David Prevost 1. Cyclotron Facility Contact info Institute (name/address): Institution URL: Person in charge (name/ph#/email): Position/title:

More information

Radionuclide Imaging MII Detection of Nuclear Emission

Radionuclide Imaging MII Detection of Nuclear Emission Radionuclide Imaging MII 3073 Detection of Nuclear Emission Nuclear radiation detectors Detectors that are commonly used in nuclear medicine: 1. Gas-filled detectors 2. Scintillation detectors 3. Semiconductor

More information

EPFL SB - 2/4 1

EPFL SB - 2/4 1 Outline 1. Historical introduction and basics of radiation protection 2. Modern medical diagnostics o CT, NMR, SPECT, PET o 18-F production o The SWAN project in Bern 3. Particle accelerators for radioisotope

More information

Table of Contents. 1 Introduction 1

Table of Contents. 1 Introduction 1 Table of Contents 1 Introduction 1 1.1 Nuclear medicine 4 1.1.1 Nucler medicine therapy 4 1.1.2 Nuclear medicine imaging 6 i. Single photon emission computer tomography (SPECT) 7 ii. Position emission

More information

Overview of Nuclear Medical Imaging Instrumentation and Techniques*

Overview of Nuclear Medical Imaging Instrumentation and Techniques* Overview of Nuclear Medical Imaging Instrumentation and Techniques* William W. Moses Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 USA Abstract. Nuclear medical imaging

More information

SODIUM PERTECHNETATE ( 99m Tc) INJECTION (FISSION): Revised Final text for addition to The International Pharmacopoeia (January September 2009)

SODIUM PERTECHNETATE ( 99m Tc) INJECTION (FISSION): Revised Final text for addition to The International Pharmacopoeia (January September 2009) September 2009 RESTRICTED SODIUM PERTECHNETATE ( 99m Tc) INJECTION (FISSION): Revised Final text for addition to The International Pharmacopoeia (January September 2009) [Note from the Secretariat: This

More information

PART II VIII. CONCERNING CHEMICAL. PHARMACEUTICAL AND BIOLOGICAL DOCUMENTATION FOR RADIOPHARMACEUTICAL PRODUCTS.

PART II VIII. CONCERNING CHEMICAL. PHARMACEUTICAL AND BIOLOGICAL DOCUMENTATION FOR RADIOPHARMACEUTICAL PRODUCTS. PART II VIII. CONCERNING CHEMICAL. PHARMACEUTICAL AND BIOLOGICAL DOCUMENTATION FOR RADIOPHARMACEUTICAL PRODUCTS. The principle of GMP and the detailed guidelines are applicable to all operations which

More information

Syllabus for PG Medical Course M.D. Nuclear Medicine.

Syllabus for PG Medical Course M.D. Nuclear Medicine. Syllabus for PG Medical Course M.D. Nuclear Medicine. Basics Sciences & Instrumentations of Nuclear Medicine: Statistics (50 hrs) Population-Sample -kinds of samples -statistical methods-types of measurements

More information

State Atomic Energy Corporation Rosatom Russian Radiation Technologies: opportunities to success

State Atomic Energy Corporation Rosatom Russian Radiation Technologies: opportunities to success State Atomic Energy Corporation Rosatom Russian Radiation Technologies: opportunities to success M.Batkov, Director Radiation Technologies Program 15.04.2013 Rosatom is the largest hi-tech manufacturer

More information

THE INTERNATIONAL PHARMACOPOEIA RADIOPHARMACEUTICALS: GENERAL MONOGRAPH REVISION. (June 2013)

THE INTERNATIONAL PHARMACOPOEIA RADIOPHARMACEUTICALS: GENERAL MONOGRAPH REVISION. (June 2013) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 THE INTERNATIONAL PHARMACOPOEIA Working document QAS/13.542 June 2013 RESTRICTED

More information

Nuclear Medicine: Physics and Imaging Methods (SPECT and PET)

Nuclear Medicine: Physics and Imaging Methods (SPECT and PET) EL-GY 6813 / BE-GY 6203 / G16.4426 Medical Imaging Nuclear Medicine: Physics and Imaging Methods (SPECT and PET) Jonathan Mamou and Yao Wang Polytechnic School of Engineering New York University, Brooklyn,

More information

Applications of Nuclear Physics Technology

Applications of Nuclear Physics Technology Jefferson Lab and SBIR/STTR Program Applications of Nuclear Physics Technology Particles & Detection Drew Weisenberger Tech Transfer Workshop, CUA, Jan. 11-12, 2018 Beside the comfort of knowledge, every

More information

Radionuclide Imaging MII Positron Emission Tomography (PET)

Radionuclide Imaging MII Positron Emission Tomography (PET) Radionuclide Imaging MII 3073 Positron Emission Tomography (PET) Positron (β + ) emission Positron is an electron with positive charge. Positron-emitting radionuclides are most commonly produced in cyclotron

More information

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc. Lecture Presentation Chapter 21, Inc. James F. Kirby Quinnipiac University Hamden, CT Energy: Chemical vs. Chemical energy is associated with making and breaking chemical bonds. energy is enormous in comparison.

More information

Nuclear Chemistry. Chapter 23

Nuclear Chemistry. Chapter 23 Nuclear Chemistry Chapter 23 n/p too large beta decay X Y n/p too small positron decay or electron capture Nuclear Stability Certain numbers of neutrons and protons are extra stable n or p = 2, 8, 20,

More information

Some nuclei are unstable Become stable by ejecting excess energy and often a particle in the process Types of radiation particle - particle

Some nuclei are unstable Become stable by ejecting excess energy and often a particle in the process Types of radiation particle - particle Radioactivity George Starkschall, Ph.D. Lecture Objectives Identify methods for making radioactive isotopes Recognize the various types of radioactive decay Interpret an energy level diagram for radioactive

More information

From Isotopes to Images: Accelerator Production of Radionuclides for Nuclear Medicine

From Isotopes to Images: Accelerator Production of Radionuclides for Nuclear Medicine From Isotopes to Images: Accelerator Production of Radionuclides for Nuclear Medicine Suzanne Lapi, Associate Professor of Radiology Director, UAB Cyclotron facility What are isotopes used for? The tracer

More information

Chapter 21 Nuclear Chemistry: the study of nuclear reactions

Chapter 21 Nuclear Chemistry: the study of nuclear reactions Chapter 2 Nuclear Chemistry: the study of nuclear reactions Learning goals and key skills: Write balanced nuclear equations Know the difference between fission and fusion Predict nuclear stability in terms

More information

Unit 12: Nuclear Chemistry

Unit 12: Nuclear Chemistry Unit 12: Nuclear Chemistry 1. Stability of isotopes is based on the ratio of neutrons and protons in its nucleus. Although most nuclei are stable, some are unstable and spontaneously decay, emitting radiation.

More information

The isotope revolution that can change imaging and therapy

The isotope revolution that can change imaging and therapy The isotope revolution that can change imaging and therapy Mikael Jensen Professor of Applied Nuclear Physics The Hevesy Laboratory DTU Nutech, Technical University of Denmark George Hevesy 5.5 MeV protons

More information

11/10/2014. Chapter 1: Introduction to Medical Imaging. Projection (Transmission) vs. Emission Imaging. Emission Imaging

11/10/2014. Chapter 1: Introduction to Medical Imaging. Projection (Transmission) vs. Emission Imaging. Emission Imaging Chapter 1: Introduction to Medical Imaging Overview of Modalities Properties of an Image: Limitations on Information Content Contrast (both object & image): Brightness difference Sharpness (blur): Smallest

More information

ELG7173 Topics in signal Processing II Computational Techniques in Medical Imaging

ELG7173 Topics in signal Processing II Computational Techniques in Medical Imaging ELG7173 Topics in signal Processing II Computational Techniques in Medical Imaging Topic #1: Intro to medical imaging Medical Imaging Classifications n Measurement physics Send Energy into body Send stuff

More information

The Chemical Context of Life. Chapter 2

The Chemical Context of Life. Chapter 2 The Chemical Context of Life Chapter 2 A Chemical Connection to Biology HCO 2 H. Methanoic acid Ex. Ants maintain Duroia hirsuta devil s gardens, in Peru by injecting formic acid into other plants Ants

More information

Low Energy Medical Isotope Production. Naomi Ratcliffe IIAA, University of Huddersfield UK

Low Energy Medical Isotope Production. Naomi Ratcliffe IIAA, University of Huddersfield UK Low Energy Medical Isotope Production Naomi Ratcliffe naomi.ratcliffe@hud.ac.uk IIAA, University of Huddersfield UK Overview: Nuclear Medicine Cover the use of radioactive isotopes for diagnostic and therapy

More information

Applications of Nuclear and Particle Physics Technology: Particles & Detection A Brief Overview

Applications of Nuclear and Particle Physics Technology: Particles & Detection A Brief Overview 21st Particles and Nuclei International Conference (PANIC 2017) International Journal of Modern Physics: Conference Series Vol. 46 (2018) 1860008 (8 pages) The Author(s) DOI: 10.1142/S201019451860008X

More information

Fusion Gamma radiation Half-life Radioactive tracer

Fusion Gamma radiation Half-life Radioactive tracer Unit Vocabulary: Alpha particle Artificial transmutation Beta particle Fission Fusion Gamma radiation Half-life Radioactive tracer Radioisotope Transmutation Unit Objectives: Upon completion of this unit

More information

A dual scintillator - dual silicon photodiode detector module for intraoperative gamma\beta probe and portable anti-compton spectrometer

A dual scintillator - dual silicon photodiode detector module for intraoperative gamma\beta probe and portable anti-compton spectrometer University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2008 A dual scintillator - dual silicon photodiode detector module for

More information

Basic physics of nuclear medicine

Basic physics of nuclear medicine Basic physics of nuclear medicine Nuclear structure Atomic number (Z): the number of protons in a nucleus; defines the position of an element in the periodic table. Mass number (A) is the number of nucleons

More information

Mayneord-Phillips Summer School St Edmund Hall, University of Oxford July Proton decays to n, e +, ν

Mayneord-Phillips Summer School St Edmund Hall, University of Oxford July Proton decays to n, e +, ν Positron Emission Tomography Physics & Instrumentation Dimitra G. Darambara, Ph.D Multimodality Molecular Imaging Joint Department of Physics RMH/ICR Outline Introduction PET Physics overview Types of

More information