Structure and Modeling of Polyhedral Oligomeric Silsesquioxane (POSS) Systems

Size: px
Start display at page:

Download "Structure and Modeling of Polyhedral Oligomeric Silsesquioxane (POSS) Systems"

Transcription

1 Structure and Modeling of Polyhedral ligomeric lsesquioxane (PSS) Systems by Stanley Anderson (Westmont College) Michael Bowers (UCSB) Erin Shammel Baker, Jennifer Gidden (UCSB) Shawn Phillips, Tim Haddad, Sandra Tomscak, (Edwards Air Force Base)

2 Prof. Michael T. Bowers Bowers Group: Erin Shammel Baker Dr. Thomas Wyttenbach Dr. Jennifer Gidden Dr. John Bushnell Edwards AFB PSS Group Shawn Phillips,Tim Haddad, Sandra Tomczyk, Joe Mabry $$$$ AFSR NRC/NAS Senior Associateship Acknowledgments

3 utline Introduction and Concepts Ion Mobility Experiment Modeling Structures with AMBER Some Examples of PSS Studies

4 Concepts E F friction Ion F el p(he) v = const. v = K E Drift cell K = ion mobility

5 K = f (T, p, q, µ, σ) T = temperature p = pressure q = ion charge µ = reduced mass K = ion mobility σ = collision cross section σ = f ( ) He ion interaction Ion shape

6 Ion Mobility Experiment Ion Source MS1 Drift Cell MS2 Detector Drift cell E in 1 5 torr He out v d

7 Ion Mobility Experiment Ion Source MS1 Drift Cell MS2 Detector Drift cell in out v d

8 Time-of-Flight (TF) Mass Spectrometry hν TF Mode Source TF Detector TF Quadrupole Drift Cell Glass l = 20 cm p = ~1.5 torr He Erin S. Baker, Jennifer Gidden, David P. Fee, Paul R. Kemper, Stanley E. Anderson, and Michael T. Bowers, Int. J. Mass Spectrom. 2003, 227,

9 Time-of-Flight (TF) Mass Spectrometry hν TF Mode TF Detector TF Drift Cell Quadrupole Source Mass Spectrum m/z

10 Time-of-Flight (TF) Mass Spectrometry hν Ion Mobility Mode + - Source TF Drift Cell Glass, l = 20 cm p = ~1.5 torr He E = v Quadrupole Detector ngle Structure Arrival Time Distributions Multiple Structures

11 Experiment versus Theory Experimental Method ATD Mobility (K) Intensity v d = K E = t A l t o Time (s)

12 Experiment versus Theory Experimental Method ATD Reduced Mobility (K o ) Intensity v d K = K E = t = K o A 760 T p 273 l t o Time (s) E = V l

13 Experiment versus Theory Experimental Method ATD Reduced Mobility (K o ) Intensity v d K = K E = t = K o A 760 T p 273 l t o 2 l p t A = + t K 760 T V o o Time (s) E = V l

14 Experiment versus Theory Experimental Method Reduced Mobility (K o ) l p t A = + t K 760 T V o o t A (µs) slope = l K 2 o T p/v (torr/v)

15 Experiment versus Theory Experimental Method Reduced Mobility (K o ) Collision Cross-Section (σ) 2 l K o = slope 760 T σ = 1/ 2 3e 2π 1 16N o kbt µ K o (1,1) σ Ω

16 Experiment versus Theory Theoretical Method Molecular Mechanics/Dynamics AMBER (Annealing/Energy Minimization) Structures

17 Experiment versus Theory Theoretical Method Molecular Mechanics/Dynamics AMBER (Annealing/Energy Minimization) Structures Dynamics simulations for 30 ps at K Cool structures to 50K using 10 ps dynamics Energy minimize the structure Use final structure as initial structure for next cycle

18 Experiment versus Theory Theoretical Method Structures Collision Cross-Sections (σ) SIGMA 280 Cross-Section (Å 2 ) Relative Energy (kcal/mol)

19 Experiment versus Theory Experimental Method: ATDs Mobilities (K) Collision Cross-Sections (σ) Compare Theoretical Method: Molecular Mechanics/Dynamics Structures Collision Cross-Sections (σ)

20 Examples of Bower s Group Research Projects licon-xygen Cage (PSS) Monomer and Polymer Characterization Polyvinylene Polymers Structure of lver Clusters Deposited on Surfaces Structure of DNA Double-Helix ligomers Structure of xytocin and the Role of Metal Ions Beta-Amyloid (Alzeimer s) Protein Structures

21 Examples of Bower s Group Research Projects licon-xygen Cage (PSS) Monomer and Polymer Characterization Polyvinylene Polymers Structure of lver Clusters Deposited on Surfaces Structure of DNA Double-Helix ligomers Structure of xytocin and the Role of Metal Ions Beta-Amyloid (Alzeimer s) Protein Structures

22 Why Study licon-based Materials? A wide range of application from polymer modifiers to lubricants Improves physical and thermal properties of polymer systems Addition of silicon-oxygen substituents gives polymers with extended temperature ranges reduced flammability lower thermal conductivity reduced viscosity resistance to atomic oxygen low density Major interest and funding by the Air Force!

23 Anatomy of a Polyhedral ligomeric lsesquioxane (PSS ) Molecule Nonreactive organic (R) groups for solubilization and compatibilization. Nanoscopic in size with an - distance of 0.5 nm and a R-R distance of 1.5 nm. R R R R X R R R May possess one or more reactive groups suitable for polymerization or grafting. Thermally and chemically robust hybrid (organicinorganic) framework. Precise three-dimensional structure for molecular level reinforcement of polymer segments and coils. PAS

24 PSS : Versatile Structures Closed Cage pen Cage T 8 = R R R R R R R = Me, Et, i-bu, Cp, Cy, i-ctyl, Ph R R R H H R R H R R R R R = i-butyl, Et T 8 T 10 T 12 PAS

25 Goals of PSS Work Understand how structure and functionality of PSS monomers affects polymer structure and properties Interact with synthetic chemists to characterize products and reaction intermediates Create materials with tailored properties.

26 Application f Ion Mobility to PSS Characterization Ion Mobility Molecular Modeling Cross-Sectional Areas 3-D Structural Information Identify Mixture Distributions How PSS attaches to polymers Structures of Intermediates impurities in synthesis Structural differences with different R groups How structure changes with size (PSS oligomers)

27 AMBER Modifications for PSS Modeling New parameters for all bonds, angles, dihedrals, and torsions (adapted from and -X parameters obtained from polysiloxane work). Ref: H.Sun and D. Rigby, Spectrochimica Acta A, 1997, 53, Krueger, Et. al., Atom charges for and obtained from Gaussian calculations on model systems and x-ray structures; adjusted using AMBER RESP protocol. Starting structures generated in Hyperchem and imported into AMBER.

28 PSS System PSS Cross-Sections (Å 2 ) x-ray MALDI -TF (Na + ) * Theory (Na + ) 222 Cy 6 T Cy 6 T 6 (H) Cy 7 T 7 (H) 3 Cy 8 T 8 (H) Vi 10 T Vi 12 T Cp 4 D 4 (H) Ph 4 D 4 (H) from Tim Haddad at ERC Inc., Air Force Research Laboratory similar values for H + similar values for neutral Ref: J. Gidden, P.R. Kemper, E. Shammel, D.P. Fee, S Anderson, M.T. Bowers, Int. J. Mass Spectrom. 222 (2003) 63.

29 Ref: Erin S. Baker, Jennifer Gidden, David P. Fee, Paul R. Kemper, Stanley E. Anderson, and Michael T. Bowers, Int. J. Mass Spectrom. 2003, 227,

30 Spectrum of Na + Sty 8 T 8 MALDI-TF Mass Spectrum of Na + Sty 8 T Arrival Time Distribution Intensity (arb. units) 0.2 (Matrix Peaks) Na + Sty Na + Sty 8 T 8 T Mass m/z / charge

31 Experiment Complements Theory! Theoretical Structures Cross-Sections (σ) Cross-Section (Å 2 ) Relative Energy (kcal/mol)

32 Experiment Complements Theory! Theoretical Structures Cross-Sections (σ) Cross-Section (Å 2 ) Relative Energy (kcal/mol)

33 Experiment Complements Theory! Theoretical Structures Cross-Sections (σ) Cross-Section (Å 2 ) Relative Energy (kcal/mol)

34 Experiment Complements Theory! Theoretical Structures Cross-Sections (σ) Cross-Section (Å 2 ) Relative Energy (kcal/mol)

35 Na + Sty 8 T 8 ATD

36 Na + Sty 8 T 8 ATD

37 Na + Sty 8 T 8 ATD

38 Na + Sty 8 T 8 ATD Theory 2 pairs Ω = 338 Å 2 Ω EXPT = 340 Å 2 Theory 3 pairs Ω = 328 Å 2 Ω EXPT = 330 Å 2 Theory 4 pairs Ω = 320 Å 2 Ω EXPT = 324 Å 2 Theory cis impurities Ω = 295, 307 Å 2 Ω EXPT = 293, 310 Å 2 Arrival Time (µs)

39 PSS Aniline Cp Cp Cp NH 2 Cp Cp Cp Cp

40 Na + Cp 7 T 8 Aniline Mass Spectrum Intensity H + Na m/z

41 Na + Cp 7 T 8 Aniline Mass Spectrum σ EXPT = 243 Å2 Intensity H + Na m/z

42 Na + Cp 7 T 8 Aniline Mass Spectrum Intensity σ EXPT = 243 Å2 Theory σ ortho = 246 Å 2 σ meta = 247 Å2 σ para = 247 Å 2 H + Na m/z

43 Imidophenyl PSS R R R R R R R N R =

44 Na + Cp 7 T 8 Imidophenyl Mass Spectrum Intensity Na + H m/z

45 Na + Cp 7 T 8 Imidophenyl Mass Spectrum & ATD σ EXPT = 251 Å2 Intensity Na + H m/z

46 Na + Cp 7 T 8 Imidophenyl Theoretical Structures σ EXPT ortho = 251 Å2 para σ Theory = 252 Å 2 σ EXPT = 251 Å2 σ Theory = 269 Å 2 meta σ EXPT = 251 Å2 σ Theory = 262 Å 2

47 PSS ligomers: Na + Cp 7 T 8 PMA H CH 3 CH2 n H methacrylate PMA = propyl- H 2 C CH 2 H 2 C R R R R R R R R =

48 Na + Cp 7 T 8 PMA Mass Spectrum Na + 1-mer Intensity Na + 2-mer Na + 3-mer Mass / charge

49 Na + Cp 7 T 8 PMA ligomer ATDs Na + 1-mer σ = 248 Å 2 Na + 2-mer σ = 378, 402 Å 2 Na + 3-mer σ = 539 Å Arrival Time (µs)

50 Na + Cp 7 T 8 PMA Monomer Theoretical Structure Na + 1-mer σ EXPT = 248 Å2 σ Theory = 251 Å 2

51 Na + Cp 7 T 8 PMA Dimer Theoretical Structures Na + bonds to a Face Na + bonds to Face and Backbone s Na + 2-mer Na + 2-mer σ EXPT = 378, 402 Å2 σ EXPT = 378, 402 Å2 σ Theory = 377 Å 2 σ Theory = 397 Å 2

52 Na + Cp 7 T 8 PMA Dimer Theoretical Structures Na + bonds to a Face Na + bonds to Face and Backbone s Na + 2-mer Na + 2-mer σ EXPT = 378, 402 Å2 σ EXPT = 378, 402 Å2 σ Theory = 377 Å 2 σ Theory = 397 Å 2

53 Na + Cp 7 T 8 PMA Trimer Theoretical Structures Na + 3-mer σ EXPT = 539 Å2 σ Theory = 549 Å 2

54 Na + Cp 7 T 8 PMA Trimer Theoretical Structures Na + 3-mer σ EXPT = 539 Å2 σ Theory = 549 Å 2

55 6-mers Comparison PMMA i-bu7t8-pma

56 PSS Summary and Future Directions We think we understand monomer structure of a variety of PSS s conformers, isomers and can model these successfully. We can analyze mixtures quantitatively and identify impurities ur knowledge of PSS structures are helping to understand how PSS can interact at the molecular level and result in property enhancements. What is the future direction? Want to be able to use what we ve learned to understand how PSS is interacting in oligomers and polymers. We are working on higher oligomers of PMA as well as on polyimide polymers!

57 In conclusion Thanks for coming.

58

Gas-Phase DNA Helix Conformations

Gas-Phase DNA Helix Conformations Gas-Phase DNA Helix Conformations Erin Shammel Baker, Jennifer Gidden, Alessandra Ferzoco, Thomas Wyttenbach and Michael Bowers utline Experimental Method Theoretical Method Instrumentation DNA Background

More information

Conformations of Reaction Products: Polymers and Organic Phenyl/Vinyl Linkages

Conformations of Reaction Products: Polymers and Organic Phenyl/Vinyl Linkages Conformations of Reaction Products: Polymers and Organic Phenyl/Vinyl Linkages Erin Shammel Baker, Jennifer Gidden, Glenn Bartholomew, Guillermo Bazan, and Michael T. Bowers (UCSB) James Scrivens and Anthony

More information

Application of ion mobility to the gas-phase conformational analysis of polyhedral oligomeric silsesquioxanes (POSS)

Application of ion mobility to the gas-phase conformational analysis of polyhedral oligomeric silsesquioxanes (POSS) International Journal of Mass Spectrometry 222 (2003) 63 73 Application of ion mobility to the gas-phase conformational analysis of polyhedral oligomeric silsesquioxanes (POSS) Jennifer Gidden, Paul R.

More information

Hydration of Nucleotides Thomas Wyttenbach, Dengfeng Liu, and Michael T. Bowers

Hydration of Nucleotides Thomas Wyttenbach, Dengfeng Liu, and Michael T. Bowers http://bowers.chem.ucsb.edu/ ydration of ucleotides Thomas Wyttenbach, Dengfeng Liu, and Michael T. Bowers ASMS 2006 Why study hydration? Is a certain property of a molecule (e.g. conformation) inherent

More information

FOCUS: ION THERMOCHEMISTRY

FOCUS: ION THERMOCHEMISTRY Gas-Phase Conformations of Cationized Poly(styrene) Oligomers FOCUS: ION THERMOCHEMISTRY Jennifer Gidden and Michael T. Bowers Department of Chemistry and Biochemistry, University of California, Santa

More information

AFOSR 875 North Randolph Street Suite 325, Room 3112

AFOSR 875 North Randolph Street Suite 325, Room 3112 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

POSS for Surface Modification and and Corrosion Prevention

POSS for Surface Modification and and Corrosion Prevention PSS for Surface Modification and and Corrosion Prevention Bill einerth Presented at the Nanostructured Chemicals Workshop September 7 th - 8 th, 2000 18237 Mount Baldy Circle Fountain Valley, CA 92708

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Ion mobility-mass spectrometry reveals a conformational conversion from random assembly to beta-sheet in amyloid fibril formation Christian Bleiholder, Nicholas F. Dupuis, Thomas

More information

Zwitterionic i-motif structures are preserved in DNA negatively charged ions. produced by electrospray mass spectrometry

Zwitterionic i-motif structures are preserved in DNA negatively charged ions. produced by electrospray mass spectrometry S1 Zwitterionic i-motif structures are preserved in DNA negatively charged ions produced by electrospray mass spectrometry Frederic Rosu 1*, Valérie Gabelica 1, Laure Joly 1, Gilles Grégoire 2, Edwin De

More information

Supplementary information

Supplementary information Supplementary information doi: 10.1038/nchem.247 Amyloid!-Protein Oligomerization and the Importance of Tetramers and Dodecamers in the Aetiology of Alzheimer s Disease Summer L. Bernstein, Nicholas F.

More information

Structure Determination. How to determine what compound that you have? One way to determine compound is to get an elemental analysis

Structure Determination. How to determine what compound that you have? One way to determine compound is to get an elemental analysis Structure Determination How to determine what compound that you have? ne way to determine compound is to get an elemental analysis -basically burn the compound to determine %C, %H, %, etc. from these percentages

More information

P O L Y M E R S. The Academic Support Daytona State College (Science 106, Page 1 of 25

P O L Y M E R S. The Academic Support Daytona State College (Science 106, Page 1 of 25 P O L Y M E R S The Academic Support Center @ Daytona State College (Science 106, Page 1 of 25 POLYMERS Polymers are large, long-chain molecules. found in nature, including cellulose in plants, starches

More information

Microstructural and conformational studies of polyether copolymers

Microstructural and conformational studies of polyether copolymers International Journal of Mass Spectrometry 238 (2004) 287 297 Microstructural and conformational studies of polyether copolymers Anthony T. Jackson a,, James H. Scrivens a, Jonathan P. Williams b,1, Erin

More information

Macromolecular Chemistry

Macromolecular Chemistry Macromolecular Chemistry Lecture 5 Step Growth Chain Growth Paul Flory Clears Things Up Polymer Structure is distinct from polymerization process Addition Polymerization H H Condensation Polymerization

More information

Investigation of the Role and Form. Formation. Michael Enright

Investigation of the Role and Form. Formation. Michael Enright Investigation of the Role and Form of Silver Catalysts in C N Bond Formation Michael Enright Ripon College Importance Carbon Nitrogen Bonds Medicine Biological compounds Make C N bonds whenever we want

More information

Salt Bridges: Aggregation, Hydration, and. Fragmentation of Peptides and Oligonucleotides

Salt Bridges: Aggregation, Hydration, and. Fragmentation of Peptides and Oligonucleotides Salt Bridges: Aggregation, Hydration, and Fragmentation of Peptides and ligonucleotides UCSB: Thomas Wyttenbach, Perdita Barran, Jennifer Gidden, Summer Bernstein, Dengfeng Liu, Mike Bowers U. Arizona:

More information

Mass Spectrometry. Electron Ionization and Chemical Ionization

Mass Spectrometry. Electron Ionization and Chemical Ionization Mass Spectrometry Electron Ionization and Chemical Ionization Mass Spectrometer All Instruments Have: 1. Sample Inlet 2. Ion Source 3. Mass Analyzer 4. Detector 5. Data System http://www.asms.org Ionization

More information

Developments in Nanoscience: Polyhedral Oligomeric. Tel: , Fax:

Developments in Nanoscience: Polyhedral Oligomeric. Tel: , Fax: Developments in Nanoscience: Polyhedral ligomeric lsesquioxane (PSS)-Polymers Timothy S. Haddad a, Sandra J. Tomczak b, Shawn H. Phillips b,* a ERC Inc., Edwards AFB, CA 9352407680 timothy.haddad@edwards.af.mil

More information

Mass Spectrometry and Proteomics - Lecture 2 - Matthias Trost Newcastle University

Mass Spectrometry and Proteomics - Lecture 2 - Matthias Trost Newcastle University Mass Spectrometry and Proteomics - Lecture 2 - Matthias Trost Newcastle University matthias.trost@ncl.ac.uk Previously: Resolution and other basics MALDI Electrospray 40 Lecture 2 Mass analysers Detectors

More information

Supplementary information Silver (I) as DNA glue: Ag + - mediated guanine pairing revealed by removing Watson- Crick constraints

Supplementary information Silver (I) as DNA glue: Ag + - mediated guanine pairing revealed by removing Watson- Crick constraints Supplementary information Silver (I) as DNA glue: Ag + - mediated guanine pairing revealed by removing Watson- Crick constraints Steven M. Swasey [b], Leonardo Espinosa Leal [c], Olga Lopez- Acevedo [c],

More information

[RSiO 1.5 ] n Nanobuilding Blocks for Photonic and Electronic Applications

[RSiO 1.5 ] n Nanobuilding Blocks for Photonic and Electronic Applications [ 1.5 ] n Nanobuilding Blocks for Photonic and Electronic Applications. M. Laine, J.H. Jung, J. Furgal, S. Sulaiman, J. Zhang JS. Clark, T. Goodson, T. Mizuno Materials Sci. & Eng., Macromolecular Sci.

More information

2.76/2.760 Multiscale Systems Design & Manufacturing

2.76/2.760 Multiscale Systems Design & Manufacturing 2.76/2.760 Multiscale Systems Design & Manufacturing Fall 2004 Polymer, Protein, Complexity Nanoimprinting PMMA silicon Dry etching Heat & Pressure Metal Lift-off Cooling & Separation Remove polymer S.

More information

1. (5) Draw a diagram of an isomeric molecule to demonstrate a structural, geometric, and an enantiomer organization.

1. (5) Draw a diagram of an isomeric molecule to demonstrate a structural, geometric, and an enantiomer organization. Organic Chemistry Assignment Score. Name Sec.. Date. Working by yourself or in a group, answer the following questions about the Organic Chemistry material. This assignment is worth 35 points with the

More information

SUPPLEMENTAL MATERIAL

SUPPLEMENTAL MATERIAL SUPPLEMENTAL MATERIAL Systematic Coarse-Grained Modeling of Complexation between Small Interfering RNA and Polycations Zonghui Wei 1 and Erik Luijten 1,2,3,4,a) 1 Graduate Program in Applied Physics, Northwestern

More information

Ion-mobility mass spectrometry of polyoxometalate Keplerate clusters and their supramolecular assemblies

Ion-mobility mass spectrometry of polyoxometalate Keplerate clusters and their supramolecular assemblies SUPPLEMENTARY INFORMATION Table of Contents Summary 1. General materials and methods 2. High-resolution mass spectra 3. Ion-mobility mass spectra 4. Fragmentation of clusters in the TWIMS drift tube 5.

More information

Section Practice Exam II Solutions

Section Practice Exam II Solutions Paul Bracher Chem 30 Section 7 Section Practice Exam II s Whether problems old r problems new, You d better practice, r you ll fail exam II. -- Anonymous TF Problem 1 a) Rank the following series of electrophiles

More information

PAPER No. 6: PHYSICAL CHEMISTRY-II (Statistical

PAPER No. 6: PHYSICAL CHEMISTRY-II (Statistical Subject Chemistry Paper No and Title Module No and Title Module Tag 6, PHYSICAL -II (Statistical 32, Concept of Number average and Mass average molecular weights CHE_P6_M32 TABLE OF CONTENTS 1. Learning

More information

Part III : M6 Polymeric Materials

Part III : M6 Polymeric Materials 16/1/004 Part III : M6 Polymeric Materials Course overview, motivations and objectives Isolated polymer chains Dr James Elliott 1.1 Course overview Two-part course building on Part IB and II First 6 lectures

More information

Development of Photosensitive Polyimides for LCD with High Aperture Ratio. May 24, 2004

Development of Photosensitive Polyimides for LCD with High Aperture Ratio. May 24, 2004 Development of Photosensitive Polyimides for LCD with High Aperture Ratio May 24, 2004 utline Why is polymer dielectric required for TFT LCD? Requirements of the polymer dielectrics What is polyimide?

More information

Polyhedral Oligomeric Silsesquioxane (POSS)-Based Polymers

Polyhedral Oligomeric Silsesquioxane (POSS)-Based Polymers APPLIED ORGANOMETALLIC CHEMISTRY Appl. Organometal. Chem. 12, 707 713 (1998) Polyhedral Oligomeric Silsesquioxane (POSS)-Based Polymers Joseph J. Schwab 1 * and Joseph D. Lichtenhan 2 1 Hughes STX Corporation,

More information

Some questions and answers that we will get out of this example synthesis:

Some questions and answers that we will get out of this example synthesis: UTLINE 535 LECTURE 3 (2004) Page 22 The Synthesis of Cubane I am showing you this synthesis because it is elegant and exemplifies many different concepts. We can use it to talk in context about the philosophical

More information

Amorphous Polymers: Polymer Conformation Laboratory 1: Module 1

Amorphous Polymers: Polymer Conformation Laboratory 1: Module 1 D E P A R T M E N T O F M A T E R I A L S S C I E N C E A N D E N G I N E E R I N G M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y 3.014 Materials Laboratory Fall 2008 Amorphous Polymers:

More information

Hydrogen Abstraction/Acetylene Addition Revealed

Hydrogen Abstraction/Acetylene Addition Revealed Hydrogen Abstraction/Acetylene Addition Revealed Dorian S. N. Parker, Ralf I. Kaiser,* Tyler P. Troy, and Musahid Ahmed* University of Hawaii at Manoa, USA Lawrence Berkeley National Laboratory, USA Angew.

More information

Lecture No. (1) Introduction of Polymers

Lecture No. (1) Introduction of Polymers Lecture No. (1) Introduction of Polymers Polymer Structure Polymers are found in nature as proteins, cellulose, silk or synthesized like polyethylene, polystyrene and nylon. Some natural polymers can also

More information

Wood Chemistry. Cellulose: the Basics. Cellulose: More Basics. PSE 406/Chem E 470. Reducing End Groups. Lecture 5 Cellulose.

Wood Chemistry. Cellulose: the Basics. Cellulose: More Basics. PSE 406/Chem E 470. Reducing End Groups. Lecture 5 Cellulose. : the Basics PSE 406/Chem E 470 Lecture 5 PSE 406: Lecture 5 1 Linear polymer made up of -d glucopyranose units linked with 1 4 glycosidic bonds. Repeating unit glucose (cellobiose) Glucopyranose units

More information

Chapter 25 Organic and Biological Chemistry

Chapter 25 Organic and Biological Chemistry Chapter 25 Organic and Biological Chemistry Organic Chemistry The chemistry of carbon compounds. Carbon has the ability to form long chains. Without this property, large biomolecules such as proteins,

More information

Ion mobility spectrometry (IM) has become an

Ion mobility spectrometry (IM) has become an Journal of Biomolecular Techniques 3:56 6 00 ABRF R AB F REVIEWS A Fundamental Introduction to Ion Mobility Mass Spectrometry Applied to the Analysis of Biomolecules Guido F. Verbeck, Brandon T. Ruotolo,

More information

Modification of Solid Polymer Surface O e.g. the of PMMA slab C OCH 3

Modification of Solid Polymer Surface O e.g. the of PMMA slab C OCH 3 10.569 Synthesis of Polymers Prof. Paula Hammond Lecture 31: Living Free adical Approaches: Stable Free adical Polymerization, Atom Transfer adical Polymerization odification of Solid Polymer Surface e.g.

More information

Other Methods for Generating Ions 1. MALDI matrix assisted laser desorption ionization MS 2. Spray ionization techniques 3. Fast atom bombardment 4.

Other Methods for Generating Ions 1. MALDI matrix assisted laser desorption ionization MS 2. Spray ionization techniques 3. Fast atom bombardment 4. Other Methods for Generating Ions 1. MALDI matrix assisted laser desorption ionization MS 2. Spray ionization techniques 3. Fast atom bombardment 4. Field Desorption 5. MS MS techniques Matrix assisted

More information

Chapter 11. Polymer Structures. Natural vs man-made

Chapter 11. Polymer Structures. Natural vs man-made . Polymer Structures Polymers: materials consisting of long molecules - the word polymer comes from the Greek Polys = many Meros = parts Macromolecules (long size of the chains) many parts - typically,

More information

Lab Week 4 Module α 3. Polymer Conformation. Lab. Instructor : Francesco Stellacci

Lab Week 4 Module α 3. Polymer Conformation. Lab. Instructor : Francesco Stellacci 3.014 Materials Laboratory Dec. 9 th Dec.14 th, 2004 Lab Week 4 Module α 3 Polymer Conformation Lab. Instructor : Francesco Stellacci OBJECTIVES 9 Review random walk model for polymer chains 9 Introduce

More information

Preparation and Characterization of Organic/Inorganic Polymer Nanocomposites

Preparation and Characterization of Organic/Inorganic Polymer Nanocomposites Preparation and Characterization of rganic/inorganic Polymer Nanocomposites Proceedings of European Congress of Chemical Engineering (ECCE-6) Copenhagen, 16-20 September 2007 Preparation and Characterization

More information

DISSOCIATION OF GAS IONS IN AIR BEFORE MASS SPECTROMETERS USING ELECTRIC FIELDS FROM FIELD DEPENDENT MOBILITY SPECTROMETERS

DISSOCIATION OF GAS IONS IN AIR BEFORE MASS SPECTROMETERS USING ELECTRIC FIELDS FROM FIELD DEPENDENT MOBILITY SPECTROMETERS DISSOCIATION OF GAS IONS IN AIR BEFORE MASS SPECTROMETERS USING ELECTRIC FIELDS FROM FIELD DEPENDENT MOBILITY SPECTROMETERS X. An, J.A. Stone, and G.A. Eiceman * Department of Chemistry and Biochemistry

More information

CHEM 240: Survey of Organic Chemistry at North Dakota State University Midterm Exam 02 - Tue, 23 Sep 2014!! Name:! KEY!

CHEM 240: Survey of Organic Chemistry at North Dakota State University Midterm Exam 02 - Tue, 23 Sep 2014!! Name:! KEY! CEM 240: Survey of rganic Chemistry at orth Dakota State University Midterm Exam 02 - Tue, 23 Sep 2014!! ame:! KEY! Please read through each question carefully and answer in the spaces provided. A good

More information

Drift Tube Ion Mobility Measurements for Thermochemistry, Kinetics and Polymerization of Cluster Ions

Drift Tube Ion Mobility Measurements for Thermochemistry, Kinetics and Polymerization of Cluster Ions Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2007 Drift Tube Ion Mobility Measurements for Thermochemistry, Kinetics and Polymerization of Cluster Ions

More information

The Structure of Small Protonated Peptides Containing Arginine and the Effect of Hydration

The Structure of Small Protonated Peptides Containing Arginine and the Effect of Hydration The Structure of Small Protonated Peptides Containing Arginine and the Effect of Hydration Thomas Wyttenbach, Denfeng Liu, Perdita Barran, Michael T. Bowers University of California, Santa Barbara Vicki

More information

MASS SPECTROMETRY. Topics

MASS SPECTROMETRY. Topics MASS SPECTROMETRY MALDI-TOF AND ESI-MS Topics Principle of Mass Spectrometry MALDI-TOF Determination of Mw of Proteins Structural Information by MS: Primary Sequence of a Protein 1 A. Principles Ionization:

More information

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS)

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS) Reactions of Aromatic Compounds Reading: Wade chapter 17, sections 17-1- 17-15 Study Problems: 17-44, 17-46, 17-47, 17-48, 17-51, 17-52, 17-53, 17-59, 17-61 Key Concepts and Skills: Predict and propose

More information

Timescales of Protein Dynamics

Timescales of Protein Dynamics Timescales of Protein Dynamics From Henzler-Wildman and Kern, Nature 2007 Dynamics from NMR Show spies Amide Nitrogen Spies Report On Conformational Dynamics Amide Hydrogen Transverse Relaxation Ensemble

More information

Supplementary Information

Supplementary Information 1 Supplementary Information Figure S1 The V=0.5 Harker section of an anomalous difference Patterson map calculated using diffraction data from the NNQQNY crystal at 1.3 Å resolution. The position of the

More information

Organic Chemistry. Second Edition. Chapter 19 Aromatic Substitution Reactions. David Klein. Klein, Organic Chemistry 2e

Organic Chemistry. Second Edition. Chapter 19 Aromatic Substitution Reactions. David Klein. Klein, Organic Chemistry 2e Organic Chemistry Second Edition David Klein Chapter 19 Aromatic Substitution Reactions Copyright 2015 John Wiley & Sons, Inc. All rights reserved. Klein, Organic Chemistry 2e 19.1 Introduction to Electrophilic

More information

ORGANIC CHEMISTRY. Classification of organic compounds

ORGANIC CHEMISTRY. Classification of organic compounds ORGANIC CHEMISTRY Organic chemistry is very important branch of chemistry and it study the compounds which contain carbon (C) and hydrogen (H), in general, and may contains other atoms such as oxygen (O),

More information

Chemistry Instrumental Analysis Lecture 28. Chem 4631

Chemistry Instrumental Analysis Lecture 28. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 28 Two types in general use: -packed (stationary phase) -open tubular or capillary determine selectivity and efficiency of the sample. Column Materials Column

More information

Theoretical study of unusual Bis(amino) (2,4,6-tri-t-butylphenyl)borane B(NH 2 ) 2 NHAr)

Theoretical study of unusual Bis(amino) (2,4,6-tri-t-butylphenyl)borane B(NH 2 ) 2 NHAr) Theoretical study of unusual Bis(amino) (2,4,6-tri-t-butylphenyl)borane B(NH 2 ) 2 NHAr) Hatam A. Jasim 1* Hanan M. Ali 2 1* Depart. Of Pharmaceutical Chemistry, College of Pharmacy, University of Basra

More information

Nano-ECRIS project: a new ECR ion source at Toyo University to produce endohedral fullerenes

Nano-ECRIS project: a new ECR ion source at Toyo University to produce endohedral fullerenes The Bio-Nano Nano-ECRIS project: a new ECR ion source at Toyo University to produce endohedral fullerenes ECRIS 2008 18th International Workshop on ECR Ion Sources Chicago, Illinois USA - September 15-18,

More information

Synthesis and Characterization of Fluoropropyl POSS

Synthesis and Characterization of Fluoropropyl POSS Synthesis and Characterization of Fluoropropyl PSS Wade Grabow Edwards AFB, CA AFL/PSP eport Documentation Page Form Approved MB No. 0704-0188 Public reporting burden for the collection of information

More information

Organic and Biochemical Molecules. 1. Compounds composed of carbon and hydrogen are called hydrocarbons.

Organic and Biochemical Molecules. 1. Compounds composed of carbon and hydrogen are called hydrocarbons. Organic and Biochemical Molecules 1. Compounds composed of carbon and hydrogen are called hydrocarbons. 2. A compound is said to be saturated if it contains only singly bonded carbons. Such hydrocarbons

More information

AN INTEGRATED SYSTEM USING TEMPERATURE BASED SAMPLING FOR POLYMER CHARACTERIZATION

AN INTEGRATED SYSTEM USING TEMPERATURE BASED SAMPLING FOR POLYMER CHARACTERIZATION AN INTEGRATED SYSTEM USING TEMPERATURE BASED SAMPLING FOR POLYMER CHARACTERIZATION Paper # 164-8P Pittsburgh Conference 24 T. Wampler, C. Zawodny, L. Mancini CDS Analytical, Inc 465 Limestone Road, Oxford,

More information

Dissociation of Even-Electron Ions

Dissociation of Even-Electron Ions Dissociation of Even-Electron Ions Andrea Raffaelli CNR Istituto di Fisiologia Clinica Via Moruzzi, 1, 56124 Pisa. E-Mail: andrea.raffaelli@cnr.it Web: http://raffaelli.ifc.cnr.it A Simple? ESI Spectrum

More information

Lecture 27 More Polymers

Lecture 27 More Polymers Lecture 27 More Polymers Step Chain April 25, 2018 Where: MEZ 1.306!! Final Exam When: Friday, May 11 th, 2:00 5:00 PM Do: Study lecture notes, homework, reading Practice: Hydrolysis, signatures and synthesis.

More information

ion mobility spectrometry IR spectroscopy

ion mobility spectrometry IR spectroscopy Debasmita Gho 29.10.2016 Introducti on Owing to its accuracy, sensitivity, and speed, mass spectrometry (MS) coupled to fragmentation techniques is the method of choice for determining the primary structure

More information

Force Fields for Classical Molecular Dynamics simulations of Biomolecules. Emad Tajkhorshid

Force Fields for Classical Molecular Dynamics simulations of Biomolecules. Emad Tajkhorshid Force Fields for Classical Molecular Dynamics simulations of Biomolecules Emad Tajkhorshid Theoretical and Computational Biophysics Group, Beckman Institute Departments of Biochemistry and Pharmacology,

More information

Steering the Geometry of Butterfly-Shaped Dimetal Carbide Cluster. within a Carbon Cage via Trifluoromethylation of Y 2 C 82 (6)

Steering the Geometry of Butterfly-Shaped Dimetal Carbide Cluster. within a Carbon Cage via Trifluoromethylation of Y 2 C 82 (6) Supporting Information for: Steering the Geometry of Butterfly-Shaped Dimetal Carbide Cluster within a Carbon Cage via Trifluoromethylation of Y 2 C 2 @C 82 (6) Fei Jin, a Nadezhda B. Tamm, b Sergey I.

More information

Polypropylene. Monomer. mer

Polypropylene. Monomer. mer Polymer Polymer: Maromolecule built-up by the linking together of a large no. of small molecules Ex. Nucleic acid, paper, bakelite,pvc Monomer: The small molecule which combine with each other Mer: The

More information

1,1,2-Tribromoethane. Spin-Spin Coupling

1,1,2-Tribromoethane. Spin-Spin Coupling NMR Spin oupling Spin-Spin oupling Spectra usually much more complicated than a series of single lines, one for each type of hydrogen. Peaks are often split into a number of smaller peaks, sometimes with

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2005 69451 Weinheim, Germany Synthesis of Homoallylic Sulfones Using a Novel Decarboxylative Claisen Rearrangement Reaction** Damien Bourgeois, Donald Craig,* N. Paul King,

More information

Hyeyoung Shin a, Tod A. Pascal ab, William A. Goddard III abc*, and Hyungjun Kim a* Korea

Hyeyoung Shin a, Tod A. Pascal ab, William A. Goddard III abc*, and Hyungjun Kim a* Korea The Scaled Effective Solvent Method for Predicting the Equilibrium Ensemble of Structures with Analysis of Thermodynamic Properties of Amorphous Polyethylene Glycol-Water Mixtures Hyeyoung Shin a, Tod

More information

Potential Energy (hyper)surface

Potential Energy (hyper)surface The Molecular Dynamics Method Thermal motion of a lipid bilayer Water permeation through channels Selective sugar transport Potential Energy (hyper)surface What is Force? Energy U(x) F = " d dx U(x) Conformation

More information

1. Which of the following reactions would have the smallest energy of activation?.

1. Which of the following reactions would have the smallest energy of activation?. Name: Date: 1. Which of the following reactions would have the smallest energy of activation?. A) +. +. B) + +. C) +.. + D) +.. + E) +.. + 2. Which of the following reactions would have the smallest energy

More information

Timescales of Protein Dynamics

Timescales of Protein Dynamics Timescales of Protein Dynamics From Henzler-Wildman and Kern, Nature 2007 Summary of 1D Experiment time domain data Fourier Transform (FT) frequency domain data or Transverse Relaxation Ensemble of Nuclear

More information

Chapter 17 Reactions of Aromatic Compounds

Chapter 17 Reactions of Aromatic Compounds rganic Chemistry, 6 th Edition L. G. Wade, Jr. Chapter 17 Reactions of Aromatic Compounds Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice all Electrophilic

More information

Research and Development of Parylene Thin-Film Deposition and Application for Water-Proofing

Research and Development of Parylene Thin-Film Deposition and Application for Water-Proofing Advanced Materials Research Online: 2012-06-14 ISSN: 1662-8985, Vols. 538-541, pp 23-28 doi:10.4028/www.scientific.net/amr.538-541.23 2012 Trans Tech Publications, Switzerland Research and Development

More information

Chapter 16 Aromatic Compounds. Discovery of Benzene

Chapter 16 Aromatic Compounds. Discovery of Benzene Chapter 16 Aromatic Compounds Discovery of Benzene Isolated in 1825 by Michael Faraday who determined C: ratio to be 1:1. Synthesized in 1834 by Eilhard Mitscherlich who determined molecular formula to

More information

Inorganic Material chemistry

Inorganic Material chemistry Inorganic Material chemistry Silicone -Inorganic Polymer Polymer poly + mer many units Basic unit is called repeat unit (monomer) A polymer is a large molecule (macro molecule) composed of repeating structural

More information

Macromers and Monofunctional Silicones

Macromers and Monofunctional Silicones Macromers and Monofunctional Silicones Macromers are relatively high molecular weight species with a single functional polymerizeable group which, although used as monomers, have high enough molecular

More information

Mass Spectrometry. General Principles

Mass Spectrometry. General Principles General Principles Mass Spectrometer: Converts molecules to ions Separates ions (usually positively charged) on the basis of their mass/charge (m/z) ratio Quantifies how many units of each ion are formed

More information

CHAPTER 6 Intermolecular Forces Attractions between Particles

CHAPTER 6 Intermolecular Forces Attractions between Particles CHAPTER 6 Intermolecular Forces Attractions between Particles Scientists are interested in how matter behaves under unusual circumstances. For example, before the space station could be built, fundamental

More information

Organic Chemistry, 7 L. G. Wade, Jr. Chapter , Prentice Hall

Organic Chemistry, 7 L. G. Wade, Jr. Chapter , Prentice Hall Organic Chemistry, 7 th Edition L. G. Wade, Jr. Chapter 17 Reactions of Aromatic Compounds 2010, Prentice Hall Electrophilic Aromatic Substitution Although h benzene s pi electrons are in a stable aromatic

More information

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron.

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron. Protein Dynamics The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron. Below is myoglobin hydrated with 350 water molecules. Only a small

More information

BENZENE & AROMATIC COMPOUNDS

BENZENE & AROMATIC COMPOUNDS BENZENE & AROMATIC COMPOUNDS Dr. Zainab M Almarhoon 2 Learning Objectives By the end of chapter four the students will: Understand the resonance description of structure of benzene Understand the hybridization

More information

Dynamics of a Single Polymer Chain in Gas Phase

Dynamics of a Single Polymer Chain in Gas Phase Advanced Studies in Theoretical Physics Vol. 3, 09, no., - 9 HIKARI Ltd, www.m-hikari.com https://doi.org/0.988/astp.09.845 Dynamics of a Single Polymer Chain in Gas Phase Sayed Hasan Department of Physics

More information

Surface Characterization of Advanced Polymers

Surface Characterization of Advanced Polymers Surface Characterization of Advanced Polymers Edited by Luigia Sabbatini and Pier Giorgio Zambonin VCH Weinheim New York Basel Cambridge Tokyo 1 Spectroscopies for Surface Characterization 1 E. Desimoni

More information

Detection of surfactants-metal ion complexes by electrospray mass spectrometry

Detection of surfactants-metal ion complexes by electrospray mass spectrometry 2011 International Conference on Biotechnology and Environment Management IPCBEE vol.18 (2011) (2011)IACSIT Press, Singapoore Detection of surfactants-metal ion complexes by electrospray mass spectrometry

More information

240 Chem. Aromatic Compounds. Chapter 6

240 Chem. Aromatic Compounds. Chapter 6 240 Chem Aromatic Compounds Chapter 6 1 The expressing aromatic compounds came to mean benzene and derivatives of benzene. Structure of Benzene: Resonance Description C 6 H 6 1.It contains a six-membered

More information

Polymer chemistry Prof. Dibakar Dhara Department of Chemistry Indian Institute of Technology, Kharagpur. Lecture - 4 Step-growth Polymerization

Polymer chemistry Prof. Dibakar Dhara Department of Chemistry Indian Institute of Technology, Kharagpur. Lecture - 4 Step-growth Polymerization Polymer chemistry Prof. Dibakar Dhara Department of Chemistry Indian Institute of Technology, Kharagpur Lecture - 4 Step-growth Polymerization (Refer Slide Time: 00:27) In the last lecture, we were discussing

More information

Structure of the α-helix

Structure of the α-helix Structure of the α-helix Structure of the β Sheet Protein Dynamics Basics of Quenching HDX Hydrogen exchange of amide protons is catalyzed by H 2 O, OH -, and H 3 O +, but it s most dominated by base

More information

Gas Phase Studies of Molecular Clusters Containing Metal Cations, and the Ion Mobility of Styrene Oligomers

Gas Phase Studies of Molecular Clusters Containing Metal Cations, and the Ion Mobility of Styrene Oligomers Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2004 Gas Phase Studies of Molecular Clusters Containing Metal Cations, and the Ion Mobility of Styrene Oligomers

More information

Understanding electron energy loss mechanisms in EUV resists using EELS and first-principles calculations

Understanding electron energy loss mechanisms in EUV resists using EELS and first-principles calculations Understanding electron energy loss mechanisms in EUV resists using EELS and first-principles calculations Robert Bartynski Sylvie Rangan Department of Physics & Astronomy and Laboratory for Surface Modification

More information

ORGANIC - BROWN 8E CH. 22- REACTIONS OF BENZENE AND ITS DERIVATIVES

ORGANIC - BROWN 8E CH. 22- REACTIONS OF BENZENE AND ITS DERIVATIVES !! www.clutchprep.com CONCEPT: ELECTROPHILIC AROMATIC SUBSTITUTION GENERAL MECHANISM Benzene reacts with very few reagents. It DOES NOT undergo typical addition reactions. Why? If we can get benzene to

More information

Carbon and the Molecular Diversity of Life

Carbon and the Molecular Diversity of Life LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 4 Carbon and the Molecular Diversity

More information

Carbon and the Molecular Diversity of Life

Carbon and the Molecular Diversity of Life LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 4 Carbon and the Molecular Diversity

More information

Mass Spectrometry Course

Mass Spectrometry Course Mass Spectrometry Course Árpád Somogyi Mass Spectrometry Laboratory, Department of Chemistry and Biochemistry University of Arizona, Tucson, AZ Eötvös University, Budapest April 11-20, 2012 1 2 UA Chemistry

More information

C2 / Chemistry for Physiology / MC3. What is an atom? What three sub-atomic particles make up an atom? What are the characteristics of these subatomic

C2 / Chemistry for Physiology / MC3. What is an atom? What three sub-atomic particles make up an atom? What are the characteristics of these subatomic C2 / Chemistry for Physiology / MC3 What is an atom? What three sub-atomic particles make up an atom? What are the characteristics of these subatomic paricles? What is the relationship between atoms and

More information

Problem

Problem Problem 1 Metal-containing polymers have been studied for a wide variety of applications. For all of the complexes below, determine the 1-D symmetry class. Indicate the unit cell and asymmetric unit for

More information

4.15 Halogenation of Alkanes RH + X 2 RX + HX

4.15 Halogenation of Alkanes RH + X 2 RX + HX 4.15 alogenation of Alkanes R + X 2 RX + X Energetics R + X 2 RX + X explosive for F 2 exothermic for Cl 2 and Br 2 endothermic for I 2 4.16 Chlorination of Methane Chlorination of Methane carried out

More information

Application of Surface Analysis for Root Cause Failure Analysis

Application of Surface Analysis for Root Cause Failure Analysis Application of Surface Analysis for Root Cause Failure Analysis David A. Cole Evans Analytical Group East Windsor, NJ Specialists in Materials Characterization Outline Introduction X-Ray Photoelectron

More information

Chapter 21: Hydrocarbons Section 21.3 Alkenes and Alkynes

Chapter 21: Hydrocarbons Section 21.3 Alkenes and Alkynes Section 21.1 Introduction to Hydrocarbons Section 1 Objectives: Explain the terms organic compound and organic chemistry. Section 21.2 Alkanes Chapter 21: Hydrocarbons Section 21.3 Alkenes and Alkynes

More information

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or Ethylene Trimerization Catalysts Based on Chromium Complexes with a Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or ortho-thiomethoxy Substituents: Well Defined Catalyst Precursors and

More information

The Chemical Context of Life

The Chemical Context of Life Chapter 2 The Chemical Context of Life Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with

More information

Interpretation of Organic Spectra. Chem 4361/8361

Interpretation of Organic Spectra. Chem 4361/8361 Interpretation of Organic Spectra Chem 4361/8361 Characteristics of Common Spectrometric Methods H-1 C-13 MS IR/RAMAN UV-VIS ORD/CD X- RAY Radiation type RF RF Not relevant IR UV to visible UV to visible

More information