Chapter 16 Aromatic Compounds. Discovery of Benzene

Size: px
Start display at page:

Download "Chapter 16 Aromatic Compounds. Discovery of Benzene"

Transcription

1 Chapter 16 Aromatic Compounds Discovery of Benzene Isolated in 1825 by Michael Faraday who determined C: ratio to be 1:1. Synthesized in 1834 by Eilhard Mitscherlich who determined molecular formula to be C 6 6. Other related compounds with low C: ratios had a pleasant smell, so they were classified as aromatic. Chapter 16: Aromatics Slide

2 Kekulé Structure Proposed in 1866 by Friedrich Kekulé, shortly after multiple bonds were suggested. Failed to explain existence of only one isomer of 1,2- dichlorobenzene. C C C C C C Chapter 16: Aromatics Slide 16-3 Resonance Structure Each sp 2 hybridized C in the ring has an unhybridized p orbital perpendicular to the ring which overlaps around the ring. Chapter 16: Aromatics Slide

3 Unusual Reactions Alkene + KMnO 4 diol (addition) Benzene + KMnO 4 no reaction. Alkene + Br 2 /CCl 4 dibromide (addition) Benzene + Br 2 /CCl 4 no reaction. With FeCl 3 catalyst, Br 2 reacts with benzene to form bromobenzene + Br (substitution!). Double bonds remain. Chapter 16: Aromatics Slide 16-5 Unusual Stability ydrogenation of just one double bond in benzene is endothermic! Chapter 16: Aromatics Slide

4 Annulenes All cyclic conjugated hydrocarbons were proposed to be aromatic. owever, cyclobutadiene is so reactive that it dimerizes before it can be isolated. And cyclooctatetraene adds Br 2 readily. Look at MO s to explain aromaticity. Chapter 16: Aromatics Slide 16-7 MO Rules for Benzene Six overlapping p orbitals must form six molecular orbitals. Three will be bonding, three antibonding. Lowest energy MO will have all bonding interactions, no nodes. As energy of MO increases, the number of nodes increases. Chapter 16: Aromatics Slide

5 MO s for Benzene Chapter 16: Aromatics Slide 16-9 Energy Diagram for Benzene The six electrons fill three bonding pi orbitals. All bonding orbitals are filled ( closed shell ), an extremely stable arrangement. Chapter 16: Aromatics Slide

6 MO s for Cyclobutadiene Chapter 16: Aromatics Slide Energy Diagram for Cyclobutadiene Following und s rule, two electrons are in separate orbitals. This diradical would be very reactive. Chapter 16: Aromatics Slide

7 Polygon Rule The energy diagram for an annulene has the same shape as the cyclic compound with one vertex at the bottom. Chapter 16: Aromatics Slide Aromatic Requirements Structure must be cyclic with conjugated pi bonds. Each atom in the ring must have an unhybridized p orbital. The p orbitals must overlap continuously around the ring. (Usually planar structure.) Compound is more stable than its open-chain counterpart. Chapter 16: Aromatics Slide

8 Anti- and Nonaromatic Antiaromatic compounds are cyclic, conjugated, with overlapping p orbitals around the ring, but the energy of the compound is greater than its open-chain counterpart. Nonaromatic compounds do not have a continuous ring of overlapping p orbitals and may be nonplanar. Chapter 16: Aromatics Slide ückel s Rule If the compound has a continuous ring of overlapping p orbitals and has 4N + 2 electrons, it is aromatic. If the compound has a continuous ring of overlapping p orbitals and has 4N electrons, it is antiaromatic. Chapter 16: Aromatics Slide

9 [N]Annulenes [4]Annulene is antiaromatic (4N e - s) [8]Annulene would be antiaromatic, but it s not planar, so it s nonaromatic. [10]Annulene is aromatic except for the isomers that are not planar. Larger 4N annulenes are not antiaromatic because they are flexible enough to become nonplanar. Chapter 16: Aromatics Slide MO Derivation of ückel s Rule Lowest energy MO has 2 electrons. Each filled shell has 4 electrons. Chapter 16: Aromatics Slide

10 Cyclopentadienyl Ions The cation has an empty p orbital, 4 electrons, so antiaromatic. The anion has a nonbonding pair of electrons in a p orbital, 6 e - s, aromatic. Chapter 16: Aromatics Slide Acidity of Cyclopentadiene pk a of cyclopentadiene is 16, much more acidic than other hydrocarbons. Chapter 16: Aromatics Slide

11 Tropylium Ion The cycloheptatrienyl cation has 6 p electrons and an empty p orbital. Aromatic: more stable than open chain ion. O +, 2 O + Chapter 16: Aromatics Slide Dianion of [8]Annulene Cyclooctatetraene easily forms a -2 ion. Ten electrons, continuous overlapping p orbitals, so it is aromatic. Chapter 16: Aromatics Slide

12 Pyridine eterocyclic aromatic compound. Nonbonding pair of electrons in sp 2 orbital, so weak base, pk b = 8.8. Chapter 16: Aromatics Slide Pyrrole Also aromatic, but lone pair of electrons is delocalized, so much weaker base. Chapter 16: Aromatics Slide

13 Basic or Nonbasic? N N Pyrimidine has two basic nitrogens. N N Imidazole has one basic nitrogen and one nonbasic. N N N N Purine? Chapter 16: Aromatics Slide Other eterocyclics Chapter 16: Aromatics Slide

14 Fused Ring ydrocarbons Naphthalene Anthracene Phenanthrene Chapter 16: Aromatics Slide Reactivity of Polynuclear ydrocarbons As the number of aromatic rings increases, the resonance energy per ring decreases, so larger PA s will add Br 2. Br Br Br Br (mixture of cis and trans isomers) Chapter 16: Aromatics Slide

15 Larger Polynuclear Aromatic ydrocarbons Formed in combustion (tobacco smoke). Many are carcinogenic. Epoxides form, combine with DNA base. pyrene Chapter 16: Aromatics Slide Allotropes of Carbon Amorphous: small particles of graphite; charcoal, soot, coal, carbon black. Diamond: a lattice of tetrahedral C s. Graphite: layers of fused aromatic rings. Chapter 16: Aromatics Slide

16 Diamond One giant molecule. Tetrahedral carbons. Sigma bonds, 1.54 Å. Electrical insulator. Chapter 16: Aromatics Slide Graphite Planar layered structure. Layer of fused benzene rings, bonds: Å. Only van der Waals forces between layers. Conducts electrical current parallel to layers. Chapter 16: Aromatics Slide

17 Some New Allotropes Fullerenes: 5- and 6-membered rings arranged to form a soccer ball structure. Nanotubes: half of a C 60 sphere fused to a cylinder of fused aromatic rings. Chapter 16: Aromatics Slide Fused eterocyclic Compounds Common in nature, synthesized for drugs. Chapter 16: Aromatics Slide

18 Common Names of Benzene Derivatives O C 3 N2 OC 3 phenol toluene aniline anisole C C 2 O C C 3 O C O C O styrene acetophenone benzaldehyde benzoic acid Chapter 16: Aromatics Slide Disubstituted Benzenes The prefixes ortho-, meta-, and para- are commonly used for the 1,2-, 1,3-, and 1,4- positions, respectively. Chapter 16: Aromatics Slide

19 3 or More Substituents Use the smallest possible numbers, but the carbon with a functional group is #1. O 2 N NO 2 O 2 N O NO 2 NO 2 1,3,5-trinitrobenzene NO 2 2,4,6-trinitrophenol Chapter 16: Aromatics Slide Common Names for Disubstituted Benzenes C 3 C 3 O C O C 3 O C 3 3 C C 3 3 C m-xylene mesitylene o-toluic acid p-cresol Chapter 16: Aromatics Slide

20 Phenyl and Benzyl Phenyl indicates the benzene ring attachment. The benzyl group has an additional carbon. Br C 2 Br phenyl bromide benzyl bromide Chapter 16: Aromatics Slide Physical Properties Melting points: More symmetrical than corresponding alkane, pack better into crystals, so higher melting points. Boiling points: Dependent on dipole moment, so ortho > meta > para, for disubstituted benzenes. Density: More dense than nonaromatics, less dense than water. Solubility: Generally insoluble in water. Chapter 16: Aromatics Slide

21 IR and NMR Spectroscopy C=C stretch absorption at 1600 cm -1. sp 2 C- stretch just above 3000 cm NMR at δ7-δ8 for s on aromatic ring. 13 C NMR at δ120-δ150, similar to alkene carbons. Chapter 16: Aromatics Slide Mass Spectrometry Chapter 16: Aromatics Slide

22 UV Spectroscopy Chapter 16: Aromatics Slide End of Chapter 16 omework: 27, 28, 31, 32, 34, 35, 37, 45, 46, 50 Chapter 16: Aromatics Slide

Organic Chemistry, 7 L. G. Wade, Jr. 2010, Prentice Hall

Organic Chemistry, 7 L. G. Wade, Jr. 2010, Prentice Hall Organic Chemistry, 7 th Edition L. G. Wade, Jr. Chapter 16 Aromatic Compounds 2010, Prentice Hall Discovery of Benzene Isolated in 1825 by Michael Faraday who determined C:H ratio to be 1:1. Synthesized

More information

Chapter 16. Aromatic Compounds

Chapter 16. Aromatic Compounds Chapter 16 Aromatic Compounds Discovery of Benzene Isolated in 1825 by Michael Faraday who determined C:H ratio to be 1:1. Synthesized in 1834 by Eilhard Mitscherlich who determined molecular formula to

More information

Benzene and aromaticity

Benzene and aromaticity aromaticity The word "benzene" derives historically from "gum benzoin", sometimes called "benjamin" (i.e., benzoin resin), an aromatic resin known to European pharmacists and perfumers since the 15th century

More information

Aromatic Compounds I

Aromatic Compounds I 2302272 Org Chem II Part I Lecture 1 Aromatic Compounds I Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th Recommended Textbook: Chapter 16 in Organic Chemistry, 8 th Edition, L.

More information

12/27/2010. Chapter 14 Aromatic Compounds

12/27/2010. Chapter 14 Aromatic Compounds Nomenclature of Benzene Derivatives Benzene is the parent name for some monosubstituted benzenes; the substituent name is added as a prefix Chapter 14 Aromatic Compounds For other monosubstituted benzenes,

More information

Benzene a remarkable compound. Chapter 14 Aromatic Compounds. Some proposed structures for C 6 H 6. Dimethyl substituted benzenes are called xylenes

Benzene a remarkable compound. Chapter 14 Aromatic Compounds. Some proposed structures for C 6 H 6. Dimethyl substituted benzenes are called xylenes Benzene a remarkable compound Chapter 14 Aromatic Compounds Discovered by Faraday 1825 Formula C 6 H 6 Highly unsaturated, but remarkably stable Whole new class of benzene derivatives called aromatic compounds

More information

Benzene and Aromaticity

Benzene and Aromaticity Benzene and Aromaticity Why this Chapter? Reactivity of substituted aromatic compounds is tied to their structure Aromatic compounds provide a sensitive probe for studying relationship between structure

More information

BENZENE AND AROMATIC COMPOUNDS

BENZENE AND AROMATIC COMPOUNDS BENZENE AND AROMATIC COMPOUNDS The discovery of benzene: 1825 - Michael Faraday, empirical formula of C 1834 - Eilhard Mitscherlich synthesized benzin from gum benzoin, empirical formula C Aromatic The

More information

DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURES Dr Ali El-Agamey. Organic Chemistry, 7 th Edition L. G. Wade, Jr.

DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURES Dr Ali El-Agamey. Organic Chemistry, 7 th Edition L. G. Wade, Jr. DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURES 11-12 Dr Ali El-Agamey Organic Chemistry, 7 th Edition L. G. Wade, Jr. Amines 2010, Prentice Hall Reactions N,N-Disubstituted amides 2 o amine

More information

12.1 AROMATIC COMPOUNDS

12.1 AROMATIC COMPOUNDS 12 Arenes and Aromaticity estradiol 12.1 AROMATIC COMPOUNDS O O O O C 3 C 3 O O safrole (oil of sassafras) O methyl salicylate (oil of wintergreen) O vanillin (vanilla) C 3 N C 3 C 3 CC 2 ibuprofen C C

More information

Lecture 10. More Aromatics. February 15, Chemistry 328N

Lecture 10. More Aromatics. February 15, Chemistry 328N Lecture 10 More Aromatics February 15, 2018 ückel's Rule for Aromaticity To be Aromatic a compound must : 1. be Cyclic 2. have one P orbital on each atom in the ring 3. be planar or nearly so to give orbital

More information

Chapter 15 Benzene and Aromaticity

Chapter 15 Benzene and Aromaticity Chapter 15 Benzene and Aromaticity Aromatic Compounds Aromatic Originally used to describe fragrant substances Refers to a class of compounds that meets Hückel criteria for aromaticity 2 Aromatic Compounds

More information

Organic Chemistry. Second Edition. Chapter 18 Aromatic Compounds. David Klein. Klein, Organic Chemistry 2e

Organic Chemistry. Second Edition. Chapter 18 Aromatic Compounds. David Klein. Klein, Organic Chemistry 2e Organic Chemistry Second Edition David Klein Chapter 18 Aromatic Compounds Copyright 2015 John Wiley & Sons, Inc. All rights reserved. Klein, Organic Chemistry 2e 18.1 Introduction to Aromatic Compounds

More information

Naming Aromatic Compounds (Benzene as the Parent)

Naming Aromatic Compounds (Benzene as the Parent) aming Aromatic Compounds (Benzene as the Parent) If the the alkyl chain is smaller than the ring use the ring as the parent Monosubstituted benzenes are named the same way as other hydrocarbons using benzene

More information

Aromatic Compounds. A number of these compounds had a distinct odor. Hence these compounds were called aromatic

Aromatic Compounds. A number of these compounds had a distinct odor. Hence these compounds were called aromatic Aromatic Compounds Early in the history of organic chemistry (late 18 th, early 19 th century) chemists discovered a class of compounds which were unusually stable A number of these compounds had a distinct

More information

16.4 Cyclobutadiene. .. H c)

16.4 Cyclobutadiene. .. H c) 16.4 CYCLOBUTADIEE 649 arranged about zero energy, it is necessary for one degenerate pair, 4 nb and 5 nb, to be located at zero energy. MOs at zero energy are termed nonbonding.) If the total number of

More information

Frost Circles a Great Trick

Frost Circles a Great Trick Aromatics Frost Circles a Great Trick Inscribe a polygon of the same number of sides as the ring to be examined such that one of the vertices is at the bottom of the ring The relative energies of the MOs

More information

18.1 Intro to Aromatic Compounds

18.1 Intro to Aromatic Compounds 18.1 Intro to Aromatic Compounds AROMATIC compounds or ARENES include benzene and benzene derivatives. Aromatic compounds are quite common. Many aromatic compounds were originally isolated from fragrant

More information

17.24 To name the compounds use the directions from Answer 17.3.

17.24 To name the compounds use the directions from Answer 17.3. Benzene and Aromatic Compounds 7 7 7.2 If benzene could be described by a single Kekulé structure, only one product would form in Reaction [], but there would be four (not three) dibromobenzenes (A ),

More information

Chapter 09 Benzene and Its Derivatives

Chapter 09 Benzene and Its Derivatives Chapter 09 Benzene and Its Derivatives Benzene First isolated in 1825 from whale oil by Michael Faraday Unsaturated hydrocarbon but did not have the typical reactivity of alkenes or alkynes. CM 240: Fall

More information

BRCC CHM 102 Class Notes Chapter 13 Page 1 of 6

BRCC CHM 102 Class Notes Chapter 13 Page 1 of 6 BRCC CHM 102 ass Notes Chapter 13 Page 1 of 6 Chapter 13 Benzene and Its Derivatives aliphatic hydrocarbons include alkanes, alkenes, and alkynes aromatic hydrocarbons compounds that contain one or more

More information

Benzene. Named benzene by Eilhardt Mitscherlich in < Molecular formula: C 6 H 6. < Representative of the aromatic hydrocarbon family:

Benzene. Named benzene by Eilhardt Mitscherlich in < Molecular formula: C 6 H 6. < Representative of the aromatic hydrocarbon family: Benzene < Discovered in 1825 by Michael Faraday: e called it bicarburet of hydrogen. Named benzene by Eilhardt Mitscherlich in 1833. < Molecular formula: C 6 6 < Representative of the aromatic hydrocarbon

More information

BENZENE & AROMATIC COMPOUNDS

BENZENE & AROMATIC COMPOUNDS BENZENE & AROMATIC COMPOUNDS Dr. Zainab M Almarhoon 2 Learning Objectives By the end of chapter four the students will: Understand the resonance description of structure of benzene Understand the hybridization

More information

Benzene and Aromatic Compounds

Benzene and Aromatic Compounds 1 Background Benzene and Aromatic Compounds Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Benzene has four degrees of unsaturation, making it a highly unsaturated hydrocarbon. Whereas

More information

4 - BENZENE: AROMATICITY, CONJUGATION AND ASSOCIATED REACTIVITY

4 - BENZENE: AROMATICITY, CONJUGATION AND ASSOCIATED REACTIVITY 4 - BENZENE: AROMATICITY, CONJUGATION AND ASSOCIATED REACTIVITY During the early 1800's, a group of compounds of natural origin became collectively known as aromatic compounds. As several of these compounds

More information

ORGANIC - CLUTCH CH AROMATICITY.

ORGANIC - CLUTCH CH AROMATICITY. !! www.clutchprep.com CONCEPT: AROMATICTY INTRODUCTION Aromatic compounds display an unusual stability for their high level of electron density. Their high level of unsaturation should make them extremely

More information

Chapter Tell whether the following compounds are ortho-, meta-, or para-disubstituted: (a) M-chlorotoluene (b) NO 2

Chapter Tell whether the following compounds are ortho-, meta-, or para-disubstituted: (a) M-chlorotoluene (b) NO 2 Chapter 15 15.1 Tell whether the following compounds are ortho-, meta-, or para-disubstituted: (a) Cl C 3 M-chlorotoluene (b) 2 P-bromonitrobenzene (c) S 3 -hydroxybenzenesulfonid acid 15.2 Give IUPAC

More information

Solution problem 22: Non-Benzoid Aromatic Sytems

Solution problem 22: Non-Benzoid Aromatic Sytems Solution problem 22: on-enzoid Aromatic Sytems 22.1 & 22.2 Each double bond and each heteroatom (, ) with lone pairs donates 2 π- electrons as well as a negative charge. oron or a positive charge does

More information

Chapter 18: Aromatic Compounds

Chapter 18: Aromatic Compounds hapter 18: Aromatic ompounds [Sections: 18.1, 18.3-18.5, 18.8] The Structure of Benzene skeletal condensed 1800's sausage 3 2 2 3 3 3 3 Friedrich August Kekule 1829-1896 Kekule's Dream 6 6 Kekule wakes

More information

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry Benzene and Aromatic Compounds Chapter 15 Organic Chemistry, 8 th Edition John McMurry 1 Background Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Four degrees of unsaturation. It

More information

2016 Pearson Education, Inc. Isolated and Conjugated Dienes

2016 Pearson Education, Inc. Isolated and Conjugated Dienes 2016 Pearson Education, Inc. Isolated and Conjugated Dienes 2016 Pearson Education, Inc. Reactions of Isolated Dienes 2016 Pearson Education, Inc. The Mechanism Double Bonds can have Different Reactivities

More information

Chapter 2 Structure and Properties of Organic Molecules. Advanced Bonding: Review

Chapter 2 Structure and Properties of Organic Molecules. Advanced Bonding: Review hapter 2 Structure and Properties of Organic Molecules hemistry 231 Organic hemistry I Fall 2007 Advanced Bonding: Review Atomic Quantum Mechanics cannot explain how molecules like 4 form: Valence Bond

More information

CHEM 263 Notes Sep 27, Equivalent resonance forms gives stability to a compound.

CHEM 263 Notes Sep 27, Equivalent resonance forms gives stability to a compound. CEM 263 otes Sep 27, 2016 Aromatic Compounds Continued Aromaticity Equivalent resonance forms gives stability to a compound. resonance 1,2-dibromobenzene Aromatic compounds are especially stable. For benzene,

More information

CHEM 344 Molecular Modeling

CHEM 344 Molecular Modeling CHEM 344 Molecular Modeling The Use of Computational Chemistry to Support Experimental Organic Chemistry Day 1 all calculation data obtained from Gaussian09 using B3LYP/6-31G(d) unless otherwise noted.

More information

Solutions a) 4-bromo-2-methylphenol b) 2-hydroxy-5-bromotoluene c) 4-bromo-1-hydroxy-2-methylbenzene OMe OH

Solutions a) 4-bromo-2-methylphenol b) 2-hydroxy-5-bromotoluene c) 4-bromo-1-hydroxy-2-methylbenzene OMe OH CAPTER 18 413 R R Solutions 18.1. 3-isopropylbenzaldehyde or meta-isopropylbenzaldehyde 2-bromotoluene or ortho-bromotoluene c) 2,4-dinitrophenol d) 2-ethyl-1,4-diisopropylbenzene f) 2,6-dibromo-4-chloro-3-ethyl-5-isopropylphenol

More information

Chapter 12: Unsaturated Hydrocarbons

Chapter 12: Unsaturated Hydrocarbons Chapter 12: Unsaturated Hydrocarbons UNSATURATED HYDROCARBONS contain carbon-carbon multiple bonds. Alkenes C=C double bonds Alkynes triple bonds Aromatics benzene rings 1 2 NAMING ALKENES Step 1: Name

More information

Fundamentals of Organic Chemistry

Fundamentals of Organic Chemistry Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges Credit hrs.: (2+1) King Saud University College of Science, Chemistry Department CHEM 109 CHAPTER 3. AROMATIC HYDROCARBONS Aromatic

More information

Lecture 24 Organic Chemistry 1

Lecture 24 Organic Chemistry 1 CEM 232 Organic Chemistry I at Chicago Lecture 24 Organic Chemistry 1 Professor Duncan Wardrop April 6, 2010 1 Which shorthand orbital diagram best represents the LUMO of a dienophile in a Diels-Alder

More information

CHEM 263 Notes Oct 1, Beta-carotene (depicted below) is responsible for the orange-red colour in carrots.

CHEM 263 Notes Oct 1, Beta-carotene (depicted below) is responsible for the orange-red colour in carrots. EM 263 otes ct 1, 2013 onjugated Dienes and olour ontinued Beta-carotene (depicted below) is responsible for the orange-red colour in carrots. In the below example, astaxanthin, a blue-green pigment in

More information

KOT 222 Organic Chemistry II

KOT 222 Organic Chemistry II KOT 222 Organic Chemistry II Course Objectives: 1) To introduce the chemistry of alcohols and ethers. 2) To study the chemistry of functional groups. 3) To learn the chemistry of aromatic compounds and

More information

Organic Chemistry. Saturated Hydrocarbons: The Alkanes. ethane H C C H CH 3 CH 3

Organic Chemistry. Saturated Hydrocarbons: The Alkanes. ethane H C C H CH 3 CH 3 rganic hemistry The classification of chemical compounds in to the general areas of organic and inorganic derives from the use of the "mineral, vegetable and animal" designation by the early workers in

More information

Organic Chemistry. February 18, 2014

Organic Chemistry. February 18, 2014 Organic Chemistry February 18, 2014 What does organic mean? Organic Describes products Grown through natural biological process Without synthetic materials In the 18 th century Produced by a living system

More information

CH 15: Benzene and Aromaticity. Topics: Benzene and Benzene Derivatives. Naming. Unusual Stability of Aromatics. Determining Aromaticity

CH 15: Benzene and Aromaticity. Topics: Benzene and Benzene Derivatives. Naming. Unusual Stability of Aromatics. Determining Aromaticity rganic Chemistry otes by Jim Maxka CH 15: Benzene and Aromaticity Topics: Benzene and Benzene Derivatives aming Unusual Stability of Aromatics Determining Aromaticity ther Aromatic Species Aromaticity

More information

Module III: Aromatic Hydrocarbons (6 hrs)

Module III: Aromatic Hydrocarbons (6 hrs) Module III: Aromatic Hydrocarbons (6 hrs) Nomenclature and isomerism in substituted benzene. Structure and stability of benzene: Kekule, resonance and molecular orbital description. Mechanism of aromatic

More information

Chem101 General Chemistry. Lecture 11 Unsaturated Hydrocarbons

Chem101 General Chemistry. Lecture 11 Unsaturated Hydrocarbons hem101 General hemistry Lecture 11 Unsaturated ydrocarbons Unsaturated ydrocarbons ontain one or more double or triple carbon-carbon bond. University of Wisconsin-Eau laire hem101 - Lecture 11 2 Unsaturated

More information

The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine.

The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine. The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine. Chemists have synthesized compounds with structures similar to adrenaline, producing amphetamine.

More information

followed by H 2, Ni 2 B (P-2)

followed by H 2, Ni 2 B (P-2) Chemistry 263 omework 1 Part 2 Spring 2018 Out: 04/04/18 Due: 04/13/18 1 Value: A very generous 9 points 2 All questions are valued at ½ point per question unless otherwise noted. Name: KEY 1. Which of

More information

Class XI Chapter 13 Hydrocarbons Chemistry

Class XI Chapter 13 Hydrocarbons Chemistry Question 13.1: How do you account for the formation of ethane during chlorination of methane? Chlorination of methane proceeds via a free radical chain mechanism. The whole reaction takes place in the

More information

1. Which compound would you expect to have the lowest boiling point? A) NH 2 B) NH 2

1. Which compound would you expect to have the lowest boiling point? A) NH 2 B) NH 2 MULTIPLE CICE QUESTINS Topic: Intermolecular forces 1. Which compound would you expect to have the lowest boiling point? A) N 2 B) N 2 C) N D) E) N Ans: : N 2 D Topic: Molecular geometry, dipole moment

More information

Chapter 5. Aromatic Compounds

Chapter 5. Aromatic Compounds Chapter 5. Aromatic Compounds 5.1 Structure of Benzene: The Kekule Proposal Mid-1800s, benzene was known to have the molecular formula C 6 6. Benzene reacts with 2 in the presence of iron to give substitution

More information

240 Chem. Aromatic Compounds. Chapter 6

240 Chem. Aromatic Compounds. Chapter 6 240 Chem Aromatic Compounds Chapter 6 1 The expressing aromatic compounds came to mean benzene and derivatives of benzene. Structure of Benzene: Resonance Description C 6 H 6 1.It contains a six-membered

More information

Reaction mechanisms offer us insights into how reactions work / how molecules react with one another.

Reaction mechanisms offer us insights into how reactions work / how molecules react with one another. Introduction 1) Lewis Structures 2) Representing Organic Structures 3) Geometry and Hybridization 4) Electronegativities and Dipoles 5) Resonance Structures (a) Drawing Them (b) Rules for Resonance 6)

More information

Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or

Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or nonaromatic? 1 2 Classify cyclononatetrene and it s various ions

More information

Introduction to Aromaticity

Introduction to Aromaticity Introduction to Aromaticity Historical Timeline: 1 Spotlight on Benzene: 2 Early 19 th century chemists derive benzene formula (C 6 H 6 ) and molecular mass (78). Carbon to hydrogen ratio of 1:1 suggests

More information

Aromatics H H H H H H

Aromatics H H H H H H Aromatics Some istory 1825 Michael Faraday isolates a new hydrocarbon from illuminating gas. 1834 Eilhardt Mitscherlich isolates same substance and determines its empirical formula to be C n n. Compound

More information

Chapter 13 Alkenes and Alkynes & Aromatic Compounds

Chapter 13 Alkenes and Alkynes & Aromatic Compounds Chapter 13 Alkenes and Alkynes & Aromatic Compounds Chapter Outline 13.1 Alkenes and Alkynes 13.2 Nomenclature of Alkenes and Alkynes 13.3 Cis Trans Isomers 13.4 Alkenes in Food and Medicine 13.6 Reactions

More information

Lecture 10. More Aromatics. February 18, Chemistry 328N

Lecture 10. More Aromatics. February 18, Chemistry 328N Lecture 10 More Aromatics February 18, 2016 eterocyclic Aromatic Compounds N N O S Pyridine Pyrrole Furan Thiophene ückel and Pyridine ückel and Pyrrole uckel and Furan Recognizing Aromatic Compounds Be

More information

Benzenes & Aromatic Compounds

Benzenes & Aromatic Compounds Benzenes & Aromatic Compounds 1 Structure of Benzene H H C C C H C 6 H 6 H C C C H H A cyclic conjugate molecule Benzene is a colourless odourless liquid, boiling at 80 o C and melting at 5 o C. It is

More information

Chapter 4 Part I. Aromatic Hydrocarbons Nomenclature, Structure, Properties, and an Introduction to Synthesis

Chapter 4 Part I. Aromatic Hydrocarbons Nomenclature, Structure, Properties, and an Introduction to Synthesis Chapter 4 Part I Aromatic Hydrocarbons Nomenclature, Structure, Properties, and an Introduction to Synthesis The discovery of benzene In 1825, Michael Faraday isolated a pure compound of boiling point

More information

Chemistry 204: Benzene and Aromaticity

Chemistry 204: Benzene and Aromaticity Chemistry 204: Benzene and Aromaticity Structure of and Bonding in Benzene benzene, C 6 H 6, was first isolated in 1825 (Michael Faraday), but it was not until more than 100 years later that an adequate

More information

Downloaded from

Downloaded from 1 Class XI Chemistry Ch 13: Hydrocarbons TOP Concepts: 1. Alkanes: General formula: C n H 2n+2 2. Preparation of alkanes: 3. Kolbe s electrolytic method: Alkali metal salts of carboxylic acids undergo

More information

Chemistry 11. Unit 10 Organic Chemistry Part III Unsaturated and aromatic hydrocarbons

Chemistry 11. Unit 10 Organic Chemistry Part III Unsaturated and aromatic hydrocarbons Chemistry 11 Unit 10 Organic Chemistry Part III Unsaturated and aromatic hydrocarbons 2 1. Unsaturated hydrocarbons So far, we have studied the hydrocarbons in which atoms are connected exclusively by

More information

Chapter 15: Benzene & Aromaticity

Chapter 15: Benzene & Aromaticity Chapter 15: Benzene & Aromaticity Learning Objective & Key Concepts 1. Sources and nomenclature of aromatic compounds. 2. Introduction to Huckel 4n+2 rule and aromaticity stability and reactivity, 3. Introduction

More information

Chapter 2 Alkanes and Cycloalkanes: Introduction to Hydrocarbons

Chapter 2 Alkanes and Cycloalkanes: Introduction to Hydrocarbons Chapter 2 Alkanes and Cycloalkanes: Introduction to Hydrocarbons 2.1 Classes of Hydrocarbons Classes of Hydrocarbons Hydrocarbons only contain carbon and hydrogen atoms. Hydrocarbons are either classed

More information

Vision. Cis-trans isomerism is key to vision. How rods work H 3 C CH 3. Protein opsin. 11-cis-retinal. Opsin. Rhodopsin.

Vision. Cis-trans isomerism is key to vision. How rods work H 3 C CH 3. Protein opsin. 11-cis-retinal. Opsin. Rhodopsin. Vision Cis-trans isomerism is key to vision. 3 C 11 12 3 C C 3 3 C O C 3 11-cis-retinal Protein opsin 3 C 11 12 3 C C 3 3 C N Opsin C 3 Rhodopsin Light photons 3 C N Opsin 3 C 11 12 3 C C 3 C 3 ow rods

More information

1 TOP Concepts: Class XI Chemistry Ch 13: Hydrocarbons 1. Alkanes: General formula: C n H 2n+2 2. Preparation of alkanes: 3. Kolbe s electrolytic method: Alkali metal salts of carboxylic acids undergo

More information

Seminar_3. 1. Substituded derivatives of benzene and their nomenclature

Seminar_3. 1. Substituded derivatives of benzene and their nomenclature 1. Substituded derivatives of benzene and their nomenclature 2. Reactions of arenes. Electrophilic aromatic substitutions 3. Activating substituents. Orientation in the aromatic ring Seminar_3 TEST - Aromatic

More information

Conjugated Systems, Orbital Symmetry and UV Spectroscopy

Conjugated Systems, Orbital Symmetry and UV Spectroscopy Conjugated Systems, Orbital Symmetry and UV Spectroscopy Introduction There are several possible arrangements for a molecule which contains two double bonds (diene): Isolated: (two or more single bonds

More information

Unsaturated hydrocarbons. Chapter 13

Unsaturated hydrocarbons. Chapter 13 Unsaturated hydrocarbons Chapter 13 Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple bond is a site for chemical reactions in these molecules.

More information

Chapter 17. Reactions of Aromatic Compounds

Chapter 17. Reactions of Aromatic Compounds Chapter 17 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Although benzene s pi electrons are in a stable aromatic system, they are available to attack a strong electrophile to give

More information

Learning Organic Chemistry

Learning Organic Chemistry Objective 1 Represent organic molecules with chemical formulas, expanded formulas, Lewis structures, skeletal structures. Determine shape (VSEPR), bond polarity, and molecule polarity. Identify functional

More information

Organic Chemistry, 7 L. G. Wade, Jr. Chapter , Prentice Hall

Organic Chemistry, 7 L. G. Wade, Jr. Chapter , Prentice Hall Organic Chemistry, 7 th Edition L. G. Wade, Jr. Chapter 17 Reactions of Aromatic Compounds 2010, Prentice Hall Electrophilic Aromatic Substitution Although h benzene s pi electrons are in a stable aromatic

More information

Aliphatic Hydrocarbons Anthracite alkanes arene alkenes aromatic compounds alkyl group asymmetric carbon Alkynes benzene 1a

Aliphatic Hydrocarbons Anthracite alkanes arene alkenes aromatic compounds alkyl group asymmetric carbon Alkynes benzene 1a Aliphatic Hydrocarbons Anthracite alkanes arene alkenes aromatic compounds alkyl group asymmetric carbon Alkynes benzene 1a Hard coal, which is high in carbon content any straight-chain or branched-chain

More information

Chapter 17 Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution

Chapter 17 Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution Chapter 17 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Electrophile substitutes for a hydrogen on the benzene ring. Chapter 17: Aromatics 2-Reactions Slide 17-2 1 Mechanism Step

More information

4. AROMATIC COMPOUNDS

4. AROMATIC COMPOUNDS BOOKS 1) Organic Chemistry Structure and Function, K. Peter C. Vollhardt, Neil Schore, 6th Edition 2) Organic Chemistry, T. W. Graham Solomons, Craig B. Fryhle 3) Organic Chemistry: A Short Course, H.

More information

Chemistry Chapter 13

Chemistry Chapter 13 Chemistry 2100 Chapter 13 Discovering Aromatics C 6 6 2 C C C C C C 2 3 C C C C C C 3 De war 1867 Ladenburg 1878 C 6 6 Br 2 / Fe (-Br) C 6 5 Br Br 2 / Fe (-Br) C 6 4 Br 2 C 3 C 3 C 2 C 2 C 6 6 1.54 Å 1.33

More information

California State Polytechnic University, Pomona

California State Polytechnic University, Pomona alifornia State Polytechnic University, Pomona 2-1 Dr. Laurie S. Starkey, rganic hemistry M 314, Wade hapter 2: Structure and Physical Properties of rganic Molecules hapter utline 1) rbitals and Bonding

More information

Lecture Notes Chemistry 342 Mukund P. Sibi Lecture 33 Amines

Lecture Notes Chemistry 342 Mukund P. Sibi Lecture 33 Amines Lecture otes Chemistry 342 Mukund P. Sibi Amines Amines are organic compounds derived from ammonia. The nitrogen in amines contains a lone pair of electrons. The presence of this lone pair of electrons

More information

Terms used in UV / Visible Spectroscopy

Terms used in UV / Visible Spectroscopy Terms used in UV / Visible Spectroscopy Chromophore The part of a molecule responsible for imparting color, are called as chromospheres. OR The functional groups containing multiple bonds capable of absorbing

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Farthest apart

More information

2.1A: Another look at the H 2 molecule: bonding and antibonding sigma molecular orbitals

2.1A: Another look at the H 2 molecule: bonding and antibonding sigma molecular orbitals Ashley Robison My Preferences Site Tools Popular pages MindTouch User Guide FAQ Sign Out If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it

More information

DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE

DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE 8 Dr Ali El-Agamey Nomenclature of Benzene Derivatives Nomenclature of Benzene Derivatives To name a benzene ring with one substituent, name

More information

2. Examining the infrared spectrum of a compound allows us to:

2. Examining the infrared spectrum of a compound allows us to: CHEM 204 2010 Ass. 1 Problem 1. The amount of energy in infrared light corresponds to: a. the amount of energy needed to promote one electron from a bonding to an antibonding molecular orbital b. the amount

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Two bonds Two

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition 16. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry, 7 th edition Substitution Reactions of Benzene and Its Derivatives Benzene is aromatic: a cyclic conjugated

More information

Chapter 21: Hydrocarbons Section 21.3 Alkenes and Alkynes

Chapter 21: Hydrocarbons Section 21.3 Alkenes and Alkynes Section 21.1 Introduction to Hydrocarbons Section 1 Objectives: Explain the terms organic compound and organic chemistry. Section 21.2 Alkanes Chapter 21: Hydrocarbons Section 21.3 Alkenes and Alkynes

More information

1. How do you account for the formation of ethane during chlorination of methane?

1. How do you account for the formation of ethane during chlorination of methane? 1. How do you account for the formation of ethane during chlorination of methane? The formation of ethane is due to the side reaction in termination step by the combination of two CH 3 free radicals. 2.

More information

HISTORY OF ORGANIC CHEMISTRY

HISTORY OF ORGANIC CHEMISTRY ISTORY OF ORGANI EMISTRY In the early days of chemistry, scientists classified chemical substances into 2 groups: 1. Inorganic: those that were composed of minerals, such as rocks and nonliving matter.

More information

Classes of Organic Compounds

Classes of Organic Compounds Unit 1 Functional Groups Depicting Structures of rganic ompounds Lewis Structures ondensed structural formulas Line angle drawings 3-dimensional structures Resonance Structures Acid-Base Reactions urved

More information

Amines Reading Study Problems Key Concepts and Skills Lecture Topics: Amines: structure and nomenclature

Amines Reading Study Problems Key Concepts and Skills Lecture Topics: Amines: structure and nomenclature Amines Reading: Wade chapter 19, sections 19-1-19-19 Study Problems: 19-37, 19-39, 19-40, 19-41, 19-44, 19-46, 19-47, 19-48, 19-51, 19-54 Key Concepts and Skills: Explain how the basicity of amines varies

More information

MOLECULER MODELS/ISOMERS ORGANIC STRUCTURES AND NAMING

MOLECULER MODELS/ISOMERS ORGANIC STRUCTURES AND NAMING REVISED 10/14 EMISTRY 1101L MOLEULER MODELS/ISOMERS ORGANI STRUTURES AND NAMING NOTE: This lab does not require safety glasses or lab coats. INTRODUTION Electron Dot Structures: Electron dot structures,

More information

15.7 INTRODUCTION TO AROMATIC COMPOUNDS 716 CHAPTER 15 DIENES, RESONANCE, AND AROMATICITY

15.7 INTRODUCTION TO AROMATIC COMPOUNDS 716 CHAPTER 15 DIENES, RESONANCE, AND AROMATICITY 716 APTER 15 DIENES, RESONANE, AND AROMATIITY PROBLEMS 15.27 In each of the following sets, show by the curved-arrow or fishhook notation how each resonance structure is derived from the other one, and

More information

3) The delocalized π system in benzene is formed by a cyclic overlap of 6 orbitals. A) s B) p C) sp D) sp2 E) sp3

3) The delocalized π system in benzene is formed by a cyclic overlap of 6 orbitals. A) s B) p C) sp D) sp2 E) sp3 Chapter 8 Questions 1) Which of the following statements is incorrect about benzene? A) All of the carbon atoms are sp hybridized. B) It has delocalized electrons. C) The carbon-carbon bond lengths are

More information

EASTERN ARIZONA COLLEGE General Organic Chemistry I

EASTERN ARIZONA COLLEGE General Organic Chemistry I EASTERN ARIZONA COLLEGE General Organic Chemistry I Course Design 2015-2016 Course Information Division Science Course Number CHM 235 (SUN# CHM 2235) Title General Organic Chemistry I Credits 4 Developed

More information

Chem 261 Dec 6, 2017

Chem 261 Dec 6, 2017 209 Chem 261 Dec 6, 2017 REVIEW: Example: K!! + 3 C + 3 C K tert-butoxide (an alkoxide) methanol tert-butanol pka = 16 pka = 19 methoxide stronger base stronger acid (lower pka, more acidic) weaker acid

More information

Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules

Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules 1. Ionic bonds 2. Covalent bonds (also co-ordinate covalent bonds) 3. Metallic bonds 4. Van der Waals forces

More information

Reading: Chapter 4 Practice Problems: in text problems and 19 22, 24, 26, 27, 29, 30, 33 35, 39, 40.

Reading: Chapter 4 Practice Problems: in text problems and 19 22, 24, 26, 27, 29, 30, 33 35, 39, 40. Reading: Chapter Practice Problems: in text problems and 19 22, 24, 26, 27, 29, 30, 33 35, 39, 40. Alkenes: Structure, Nomenclature, Stability, and an Introduction to Reactivity Alkenes are unsaturated

More information

11/30/ Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions

11/30/ Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions Chapter 9 Problems: 9.1-29, 32-34, 36-37, 39-45, 48-56, 58-59, 61-69, 71-72. 9.8 Substituent effects in the electrophilic substitution of an aromatic ring Substituents affect the reactivity of the aromatic

More information

Learning Guide for Chapter 17 - Dienes

Learning Guide for Chapter 17 - Dienes Learning Guide for Chapter 17 - Dienes I. Isolated, conjugated, and cumulated dienes II. Reactions involving allylic cations or radicals III. Diels-Alder Reactions IV. Aromaticity I. Isolated, Conjugated,

More information

Chapter 25 Organic and Biological Chemistry

Chapter 25 Organic and Biological Chemistry Chapter 25 Organic and Biological Chemistry Organic Chemistry The chemistry of carbon compounds. Carbon has the ability to form long chains. Without this property, large biomolecules such as proteins,

More information