NMR SPECTROSCOPY AND STEREOREGULARITY OF POLYMERS

Size: px
Start display at page:

Download "NMR SPECTROSCOPY AND STEREOREGULARITY OF POLYMERS"

Transcription

1 NMR SPECTROSCOPY AND STEREOREGULARITY OF POLYMERS Kei Matsuzaki, Toshiyuki Uryu, and Tetsuo Asakura with 148 Figures and 80 Tables JAPAN SCIENTIFIC SOCIETIES PRESS Tokyo KARGEH Basel-Freiburg-Paris-London-New York-New Delhi- Bangkok Singapore Tokyo Sydney

2 Contents PREFACE V ACKNOWLEDGEMENTS XV ABBREVIATIONS X\i I. NMR SPECTROSCOPY AND STEREOREGULARITY OF VINYL POLYMERS AND POLY(ALKYLENE OXIDE)S Chapter 1 Introduction Configuration of Polymers 'H NMR Spectra of Vinyl Polymers Deuteration of Monomers and Polymers Opening Mode of Vinyl Double Bonds and Ditactic Polymers Model Compounds C NMR Spectra of Vinyl Polymers C Side-Band Spectra Conformation of Vinyl Polymers Rate Processes Observed with NMR Spectroscopy Chapter 2 Polyolefins Polyethylene 25

3 Vlll 2.2 Polypropylene Poly(l-butene) Poly(l-pentene), Poly(l-hexene), Poly(l-heptene), Poly(loctene) andpoly(l-nonene) Poly(3-methyl-l-butene) 38 Chapter 3 Polydienes Polybutadiene Polyisoprene Polychloroprene 51 Chapter 4 Poly(methyl methacrylate) and Related Ester Derivatives Synthesis of Stereoregular Polymethacrylates 'H and 13 C NMR Spectroscdpy of Poly(methyl methacrylate) Stereoregularity of Related Ester Derivatives Polymerization of Optically Active Monomers and the Stereoregularity of Polymers.. ; Two Phase Polymerization of Poly(methyl methacrylate); Polymerization with Grignard Reagent as Catalyst Stereoregularity of Poly(methyl methacrylate) Obtained in Matrix Polymerization Optically Active Derivatives with Helical Structure..., 74 Chapter 5 Poly(methyl acrylate) and Related Ester Derivatives Synthesis of Stereoregular Polyacrylates Stereoregularity of Polyacrylates Determined by 'H NMR Spectroscopy C NMR Spectroscopy of Polyacrylates Double Bond Opening Mode of Acrylates in Polymerization Asymmetric Effects of Optically Active Side Groups in the Polymerization of Optically Active Acrylates 88

4 Contents ix 5.6 Conformation of Poly(methyl acrylate) 89 Chapter 6 Poly(a-chloroacrylate)s Introduction Synthesis of Stereoregular Poly(a-chloroacrylate)s 'H NMR Spectroscopy of Poly(a-chloroacrylate)s Stereocomplex Formation of Poly(a-chloroacrylate)s.. 97 Chapter 7 Poly(vinyl ether)s Introduction Synthesis of Stereoregular Poly(vinyl ether)s 'H NMR Spectroscopy of Poly(vinyl ether)s C NMR Spectroscopy of Poly(vinyl ether)s Stereochemistry in the Cationic Polymerization of Vinyl Ethers Optically Active Copolymers of Poly(vinyl ether)s Chapter 8 Poly(a-methyl vinyl ether)s 113 Chapter 9 Poly(vinyl ketone)s and Poly(isopropenyl ketone)s 'H and 13 C NMR Spectroscopy of Poly(vinyl ketone)s C NMR Spectroscopy of Poly(isopropenyl ketone)s Chapter 10 Polyacrylonitrile Synthesis of Polyacrylonitrile 'H NMR Spectroscopy of Polyacrylonitrile C NMR Spectroscopy of Polyacrylonitrile 128 Chapter 11 Polymethacrylonitrile Synthesis of Polymethacrylonitrile 131

5 X 11.2 'H NMR Spectroscopy and Stereoregularity of Polymethacrylonitrile C NMR Spectroscopy of Polymethacrylonitrile Chapter 12 Polystyrene and Its Derivatives Synthesis of Stereoregular Polystyrene 'H NMR Spectroscopy of Polystyrene C NMR Spectroscopy of Polystyrene Stereoregularity of Polystyrenes Obtained by Anionic Polymerization Stereoregularity of Polystyrenes Obtained with Butyllithium-Water Stereoregularity of Polystyrenes Obtained with Alfin Catalyst Stereoregularity of Polystyrenes Obtained with Cationic Catalysts Stereoregularity of Polystyrerfes Obtained by Radiation-Induced Polymerization Synthesis and Stereoregularity of Poly(methylstyrene)s Synthesis and Stereoregularity of Poly(methoxystyrene)s 152 Chapter 13 Poly(a-methylstyrene) Synthesis of Poly(oe-methylstyrene) ] H NMR Spectroscopy of Poly(a-methylstyrene) C NMR Spectroscopy of Poly(a-methylstyrene) Stereoregularity of Poly(a-methylstyrene) Obtained with Anionic Catalysts Stereoregularity of Poly(oe-methylstyrene) Prepared with Cationic Catalysts. 161 Chapter 14 Poly(vinylpyridine)s Synthesis of Poly(vinylpyridine)s 'H and 13 C NMR Spectroscopy of Poly(vinylpyridine)s. 163

6 Contents xi 14.3 Mechanism of Isotactic Polymerization of Poly(2- vinylpyridine) 168 Chapter 15 Poly(N-vinylcarbazole) Synthesis of Poly(N-vinylcarbazole) 'H and 13 C NMR Spectroscopy of Poly(N-vinylcarbazole) The Structure of Poly(N-vinylcarbazole) Obtained with Electron Acceptors as Catalysts 175 Chapter 16 Poly (vinyl acetate) Synthesis of Poly(vinyl acetate) 'H and 13 C NMR Spectroscopy of Poly(vinyl acetate) Chapter 17 Poly(isopropenyl acetate) Synthesis of Poly(isopropenyl acetate) 'H and 13 C NMR Spectroscopy of Poly(isopropenyl acetate) 182 Chapter 18 Polyethylene oxide) Synthesis of Polyethylene oxide) Conformation of Poly(ethylene oxide) Determined by 'H NMR spectroscopy Opening Mode in the Polymerization of Ethylene Oxide 193 Chapter 19 Poly(propylene oxide) Synthesis of Poly(propylene oxide) NMR Spectroscopy and Stereoregularity of Poly(propylene oxide) 199

7 xii Chapter 20 Poly(propenyl ether)s Introduction 'H and 13 C NMR Spectroscopy of Poly(j3-substituted vinyl ether)s Stereochemistry in the Process of Polymerization Chapter 21 Poly (vinyl alcohol) Synthesis of Poly (vinyl alcohol) 'H and 13 C NMR Spectroscopy of Poly(vinyl alcohol). 212 Chapter 22 Poly (vinyl chloride) Synthesis of Poly(vinyl chloride) 'H and 13 C NMR Spectroscopy of Poly(vinyl chloride). 216 Chapter 23 Factors Affecting Stereoregularity of Vinyl Polymers Radical Polymerization Cationic Polymerization Anionic Polymerization 225 II. REACTIONS CORRELATED TO THE STEREOREGULARITY OF POLYMERS Chapter 24 Thermal Reaction and Hydrolysis of Polymethacrylates and Polyacrylates Thermal Reaction and Anhydride Formation of Polymethacrylates Hydrolysis and Anhydride Formation of Polymethacrylates Hydrolysis and Anhydride Formation of Polyacrylates. 231

8 Contents xiii Chapter 25 Thermal Reaction of Poly(methyl vinyl ketone) and Poly(isopropenyl methyl ketone) Thermal Reaction of Poly (methyl vinyl ketone) Thermal Reaction of Poly(isopropenyl methyl ketone). 235 Chapter 26 Racemization of Polyacrylonitrile 239 III. NMR SPECTROSCOPY OF LIVING POLYMERS AND QUANTUM CHEMICAL ANALYSIS Chapter 27 Living Polystyrene NMR Spectroscopy of Polystyryl Anions and Their Model Compounds NMR Spectroscopy of Polystyryllithium and Its Model Compounds NMR Spectroscopy of Polystyrylpotassium and Its Model Compounds Effect of Counter Cation on the Excess Charge Distribution Effect of the Kind of Solvent on the Excess Charge Distribution Rotation of Ca-Cl Bond of Polystyryllithium and Its Model Compounds Quantum Chemical Treatment of Polystyryl Anions Spin-Lattice Relaxation Times T x of Living Anion Chapter 28 Living Poly(a-methylstyrene) 'H and 13 C NMR Spectroscopy of Living Poly(amethylstyrene) Quantum Chemical Calculation of Poly(a-methylstyryl) Anion Rotation of Ca-C 1 Bond of Poly (a-methylstyryl) Lithium 257

9 xiv Chapter 29 Living Poly(methylstyrene)s Introduction NMR Spectroscopy of Living Poly(o-methylstyrene) and Its Model Compound NMR Spectroscopy of Living Poly(m-methylstyrene) and Its Model Compound NMR Spectroscopy of Living Poly(p-methylstyrene) Chapter 30 Living Poly(o-methoxystyrene) 265 SUBJECT INDEX ABOUT THE AUTHORS 2 7 7

Supported in part by the Ministry of Education, Science, Sports and Culture under Grant-in-Aid for Publication of Scientific Research Result.

Supported in part by the Ministry of Education, Science, Sports and Culture under Grant-in-Aid for Publication of Scientific Research Result. NMR SPECTROSCOPY AND STEREOREGULARITY OF POLYMERS NMR SPECTROSCOPY AND STEREORHULARITY OF POLYMERS Kei Matsuzaki, Toshiyuki Uryu, and Tetsuo Asakura with 148 Figures and 80 Tables JAPAN SCIENTIFIC SOCIETIES

More information

NMR SPECTROSCOPY AND STEREOREGULARITY OF POLYMERS

NMR SPECTROSCOPY AND STEREOREGULARITY OF POLYMERS NMR SPECTROSCOPY AND STEREOREGULARITY OF POLYMERS NMR SPECTROSCOPY AND STEREOREGULARITY OF POLYMERS Kei Matsuzaki, Toshiyuki Uryu, and Tetsuo Asakura r with 148 Figures and 80 Tables JAPAN SCIENTIFIC

More information

The vibrational spectroscopy of polymers

The vibrational spectroscopy of polymers D. I. BOWER Reader in Polymer Spectroscopy Interdisciplinary Research Centre in Polymer Science & Technology Department of Physics, University of Leeds W.F. MADDAMS Senior Visiting Fellow Department of

More information

ORGANIC CHEMISTRY. Fifth Edition. Stanley H. Pine

ORGANIC CHEMISTRY. Fifth Edition. Stanley H. Pine ORGANIC CHEMISTRY Fifth Edition Stanley H. Pine Professor of Chemistry California State University, Los Angeles McGraw-Hill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London

More information

Title Ketone by X-ray Diffraction Method. Citation University (1963), 41(2-4):

Title Ketone by X-ray Diffraction Method. Citation University (1963), 41(2-4): Title Study on Molecular Structure of Pol Ketone by X-ray Diffraction Method Author(s) Koyama, Ryuzo Citation Bulletin of the Institute for Chemi University (1963), 41(2-4): 207-211 Issue Date 1963-10-10

More information

(1) Recall the classification system for substituted alkenes. (2) Look at the alkene indicated. Count the number of bonds to non-hydrogen groups.

(1) Recall the classification system for substituted alkenes. (2) Look at the alkene indicated. Count the number of bonds to non-hydrogen groups. Organic Chemistry - Problem Drill 10: Alkenes, Alkynes, and Dienes No. 1 of 10 1. What is the substitution pattern for alkene indicated below? (A) mono (B) di (C) tri (D) tetra (E) unsubstituted Mono is

More information

PHYSICS OF SOLID POLYMERS

PHYSICS OF SOLID POLYMERS PYSIS OF SOLID POLYMERS Professor Goran Ungar WU E, Department of hemical and Biological Engineering Recommended texts: G. Strobl, The Physics of Polymers, Springer 996 (emphasis on physics) U. Gedde,

More information

NMR Spectroscopy of Polymers

NMR Spectroscopy of Polymers r NMR Spectroscopy of Polymers Edited by ROGER N. IBBETT Courtaulds Research and Technology Coventry BLACKIE ACADEMIC & PROFESSIONAL An Imprint of Chapman & Hall London Glasgow New York Tokyo Melbourne

More information

See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. INDEX Downloaded via 148.251.232.83 on June 15, 2018 at 06:15:49 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. A Absorption spectra of cellulose

More information

N_HW1 N_HW1. 1. What is the purpose of the H 2 O in this sequence?

N_HW1 N_HW1. 1. What is the purpose of the H 2 O in this sequence? N_HW1 N_HW1 Multiple Choice Identify the choice that best completes the statement or answers the question. There is only one correct response for each question. 1. What is the purpose of the H 2 O in this

More information

Anionic Polymerization - Initiation and Propagation

Anionic Polymerization - Initiation and Propagation Anionic Polymerization Initiation and Propagation As in free radical polymerization, there are initiation and propagation steps. NH 2 NaNH 2 Na + + NH 2 + H 2 N CH: Propagation proceeds in the usual manner,

More information

Principles of Polymer Chemistry

Principles of Polymer Chemistry Principles of Polymer Chemistry A. Ravve Consultant in Polymer Chemistry Lincolnwood, Illinois PLENUM PRESS NEW YORK AND LONDON Contents 1. Introduction 1.1. Definitions 1 1.2. Nomenclature of Polymers

More information

CH 320/328 N Summer II 2018

CH 320/328 N Summer II 2018 CH 320/328 N Summer II 2018 HW 1 Multiple Choice Identify the choice that best completes the statement or answers the question. There is only one correct response for each question. (5 pts each) 1. Which

More information

Paul Rempp and Edward W. Merrill. Polymer Synthesis. 2nd, revised Edition. Hüthig & Wepf Verlag Basel Heidelberg New York

Paul Rempp and Edward W. Merrill. Polymer Synthesis. 2nd, revised Edition. Hüthig & Wepf Verlag Basel Heidelberg New York Paul Rempp and Edward W. Merrill Polymer Synthesis 2nd, revised Edition Hüthig & Wepf Verlag Basel Heidelberg New York Table of Contents Part I: Polymerization Reactions Chapter 1: General Considerations

More information

P O L Y M E R S. The Academic Support Daytona State College (Science 106, Page 1 of 25

P O L Y M E R S. The Academic Support Daytona State College (Science 106, Page 1 of 25 P O L Y M E R S The Academic Support Center @ Daytona State College (Science 106, Page 1 of 25 POLYMERS Polymers are large, long-chain molecules. found in nature, including cellulose in plants, starches

More information

CHAPTER 4 Additional. Ziegler-Natta Polymerization. Ziegler-Natta Polymerization. Ziegler-Natta Polymerization

CHAPTER 4 Additional. Ziegler-Natta Polymerization. Ziegler-Natta Polymerization. Ziegler-Natta Polymerization CHAPTER 4 Additional Ziegler-Natta polymerization is a method of vinyl polymerization. It's important because it allows one to make polymers of specific tacticity. Ziegler-Natta is especially useful, because

More information

1.1 Basic Polymer Chemistry. 1.2 Polymer Nomenclature. 1.3 Polymer Synthesis. 1.4 Chain Growth Polymerization. Polymer =

1.1 Basic Polymer Chemistry. 1.2 Polymer Nomenclature. 1.3 Polymer Synthesis. 1.4 Chain Growth Polymerization. Polymer = 1.1 Basic Polymer hemistry Polymers are the largest class of soft materials: over 100 billion pounds of polymers made in US each year lassification systems 1.2 Polymer Nomenclature Polymer = Monomer =

More information

Chem1102 Summer School Sample Tutorial Quiz 1

Chem1102 Summer School Sample Tutorial Quiz 1 hem1102 Summer School Sample Tutorial Quiz 1 1. What is the molecular formula of the following compound? a) 9 18 b) 9 19 c) 10 18 d) 10 19 e) 10 20 2. Which of the following functional groups is incorrectly

More information

TOPIC 7. Polymeric materials

TOPIC 7. Polymeric materials Universidad Carlos III de Madrid www.uc3m.es MATERIALS SCIENCE AND ENGINEERING TOPIC 7. Polymeric materials 1. Introduction Definition General characteristics Historic introduction Polymers: Examples 2.

More information

Category Major Groups Products

Category Major Groups Products Polyester Filament Yarn 1562.48 1803.873 1874.268 1877.529 1811.283 2178.749 2179 2200.91 1127.08 Nylon Filament Yarn (NFY) 30.306 33.429 30.388 21.943 24.324 32.449 37.251 40.906 19.373 Nylon Industrial

More information

1. What is the major organic product obtained from the following sequence of reactions?

1. What is the major organic product obtained from the following sequence of reactions? CH320 N N_HW1 Multiple Choice Identify the choice that best completes the statement or answers the question. There is only one correct response for each question. Carefully record your answers on the Scantron

More information

Name Date Class. aryl halides substitution reaction

Name Date Class. aryl halides substitution reaction 23.1 INTRODUCTION TO FUNCTIONAL GROUPS Section Review Objectives Explain how organic compounds are classified Identify the IUPAC rules for naming halocarbons Describe how halocarbons can be prepared Vocabulary

More information

Index. Cationic polymerization alkene monomer, 286

Index. Cationic polymerization alkene monomer, 286 Index A Acrylonitrile-butadiene-styrene (ABS) plastics, 44, 179 Active material, 76 Additive lubricant, 85, 287 odorant, 85 pigment, 85 plasticizer, 85 Anionic co, 236, 237, 259, 296, 297 Anionic carbonyl

More information

Lecture No. (1) Introduction of Polymers

Lecture No. (1) Introduction of Polymers Lecture No. (1) Introduction of Polymers Polymer Structure Polymers are found in nature as proteins, cellulose, silk or synthesized like polyethylene, polystyrene and nylon. Some natural polymers can also

More information

Crosslinking and Scission

Crosslinking and Scission Radiation Effects on Polymeric Systems Crosslinking and Scission Both crosslinking and scission occur on irradiation of polymers; however, their relative importance varies from polymer to polymer Predominant

More information

Alkenes (Olefins) Chapters 7 & 8 Organic Chemistry, 8 th Edition John McMurry

Alkenes (Olefins) Chapters 7 & 8 Organic Chemistry, 8 th Edition John McMurry Alkenes (Olefins) Chapters 7 & 8 Organic Chemistry, 8 th Edition John McMurry 1 Structure and Bonding 2 Structure and Bonding Rotation around the C=C bond is restricted 90 rotation The p orbitals are orthogonal

More information

Ahmet Gürses. Introduction to Polymer Clay Nanocomposites

Ahmet Gürses. Introduction to Polymer Clay Nanocomposites Ahmet Gürses Introduction to Polymer Clay Nanocomposites Introduction to Polymer Clay Nanocomposites Introduction to Polymer Clay Nanocomposites Ahmet Gürses Published by Pan Stanford Publishing Pte.

More information

CHAPTER 24 Organic Chemistry

CHAPTER 24 Organic Chemistry CHAPTER 24 rganic Chemistry 1. The general formula for alkenes is A. C n H 2n+2 B. C 2n H 2n C. C n H n+2 D. C n H 2n E. C n H 2n 2 2. The general formula of an alkane is A. C n H 2n B. C n H 2n+2 C. C

More information

Combustion and thermal degradation of polymers

Combustion and thermal degradation of polymers Polymers and biomaterials - laboratory Combustion and thermal degradation of polymers Theoretical background dr Hanna Wilczura-Wachnik University of Warsaw Faculty of Chemistry Chemical Technology Division

More information

UNIVERSITY OF NATAL DURBAN EXAMINATIONS : NOVEMBER 2001 ORGANIC CHEMISTRY FOR CHEMICAL ENGINEERS DSC 2OE2. Time : 2 Hours Total Marks : 100

UNIVERSITY OF NATAL DURBAN EXAMINATIONS : NOVEMBER 2001 ORGANIC CHEMISTRY FOR CHEMICAL ENGINEERS DSC 2OE2. Time : 2 Hours Total Marks : 100 UNIVERSITY F NATAL DURBAN EXAMINATINS : NVEMBER 2001 RGANIC CHEMISTRY FR CHEMICAL ENGINEERS DSC 2E2 Time : 2 Hours Total Marks : 100 INTERNAL EXAMINERS : Professor H C Brookes Dr N Koorbanally EXTERNAL

More information

AN INTEGRATED SYSTEM USING TEMPERATURE BASED SAMPLING FOR POLYMER CHARACTERIZATION

AN INTEGRATED SYSTEM USING TEMPERATURE BASED SAMPLING FOR POLYMER CHARACTERIZATION AN INTEGRATED SYSTEM USING TEMPERATURE BASED SAMPLING FOR POLYMER CHARACTERIZATION Paper # 164-8P Pittsburgh Conference 24 T. Wampler, C. Zawodny, L. Mancini CDS Analytical, Inc 465 Limestone Road, Oxford,

More information

CATIONIC POLYMERIZATION OF a, 1-DISUBSTITUTED OLEFINS

CATIONIC POLYMERIZATION OF a, 1-DISUBSTITUTED OLEFINS CATIONIC POLYMERIZATION OF a, 1-DISUBSTITUTED OLEFINS A. MIzo'rE, T. HIGASHIMURA, AND S. OKAMURA Kyoto University, Kyoto, Japan INTRODUCTION It is well known that a,/3-disubstituted olefins cannot usually

More information

Prediction of high weight polymers glass transition temperature using RBF neural networks

Prediction of high weight polymers glass transition temperature using RBF neural networks Journal of Molecular Structure: THEOCHEM 716 (2005) 193 198 www.elsevier.com/locate/theochem Prediction of high weight polymers glass transition temperature using RBF neural networks Antreas Afantitis,

More information

Lecture 4 Chapter 13 - Polymers. Functional Groups Condensation Rxns Free Radical Rxns

Lecture 4 Chapter 13 - Polymers. Functional Groups Condensation Rxns Free Radical Rxns Lecture 4 Chapter 13 - Polymers Functional Groups Condensation Rxns Free Radical Rxns Chemistry the whole year on one page Last semester Basic atomic theory Stoichiometry, balancing reactions Thermodynamics

More information

Induced Circular Dichroism of Stereoregular Vinyl Polymers

Induced Circular Dichroism of Stereoregular Vinyl Polymers Induced Circular Dichroism of Stereoregular Vinyl Polymers Lung-Chi Chen, Yung-Cheng Mao, Shih-Chieh Lin, Ming-Chia Li, Rong-Ming Ho*, Jing-Cherng Tsai* Supplementary Information Figure S1. 13 C NMR (125

More information

A-LEVEL A-LEVEL CHEMISTRY CHEMISTRY NOTES

A-LEVEL A-LEVEL CHEMISTRY CHEMISTRY NOTES A-LEVEL A-LEVEL CHEMISTRY CHEMISTRY NOTES snaprevise.co.uk I have designed and compiled these beautiful notes to provide a detailed but concise summary of this module. I have spent a lot of time perfecting

More information

Introduction to Macromolecular Chemistry

Introduction to Macromolecular Chemistry Introduction to Macromolecular Chemistry aka polymer chemistry Mondays, 8.15-9.45 am except for the following dates: 01.+29.05, 05.+12.06., 03.07. Dr. Christian Merten, Ruhr-Uni Bochum, 2017 www.ruhr-uni-bochum.de/chirality

More information

Polymeric Materials. Sunan Tiptipakorn, D.Eng.

Polymeric Materials. Sunan Tiptipakorn, D.Eng. Polymeric Materials Sunan Tiptipakorn, D.Eng. Department of Chemistry, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaen Saen Campus, Nakorn Phathom, 73140 Thailand. Introduction Material

More information

HYDROCARBON CHEMISTRY

HYDROCARBON CHEMISTRY HYDROCARBON CHEMISTRY George A. Olah Loker Hydrocarbon Research Institute and Department of Chemistry University of Southern California Los Angeles, California Ärpäd Molnär Department of Organic Chemistry

More information

SCH4U Synthesis and Polymers. Synthesis Reactions and Addition and Condensation Polymers

SCH4U Synthesis and Polymers. Synthesis Reactions and Addition and Condensation Polymers SCH4U Synthesis and Polymers Synthesis Reactions and Addition and Condensation Polymers ADDITION POLYMERS ADDITION POLYMERS A + A + A + A A A A A monomers polymer + + + ethylene (ethene) polyethylene

More information

Materials of Engineering ENGR 151 POLYMER STRUCTURES

Materials of Engineering ENGR 151 POLYMER STRUCTURES Materials of Engineering ENGR 151 POLYMER STRUCTURES LEARNING OBJECTIVES Understand different molecular and crystal structures of polymers What are the general structural and chemical characteristics of

More information

THE CHEMISTRY OF RADICAL POLYMERIZATION

THE CHEMISTRY OF RADICAL POLYMERIZATION THE CHEMISTRY OF RADICAL POLYMERIZATION THE CHEMISTRY OF RADICAL POLYMERIZATION GRAEME MOAD CSIRO Molecular and Health Technologies Bayview Ave, Clayton, Victoria 3168, AUSTRALIA and DAVID H. SOLOMON

More information

CH 2 = CH - CH =CH 2

CH 2 = CH - CH =CH 2 MULTIPLE CHOICE QUESTIONS 1. Styrene is almost a unique monomer, in that it can be polymerized by practically all methods of chain polymerization. A. Free radical B. Anionic C. Cationic D. Co-ordination

More information

Chapter 19 Substitutions at the Carbonyl Group

Chapter 19 Substitutions at the Carbonyl Group Chapter 19 Substitutions at the Carbonyl Group In Chapter 18 Additions to the Carbonyl Groups In Chapter 19 Substitutions at the Carbonyl Group O O - - O - O R Y R C+ Y R Y Nu -Ȳ R N u + Y=goodleavinggroup

More information

Detailed Course Content

Detailed Course Content Detailed Course Content Chapter 1: Carbon Compounds and Chemical Bonds The Structural Theory of Organic Chemistry 4 Chemical Bonds: The Octet Rule 6 Lewis Structures 8 Formal Charge 11 Resonance 14 Quantum

More information

Chapter 7. dehydration

Chapter 7. dehydration hapter 7 7.1 ne problem with elimination reactions is that mixtures of products are often formed. For example, treatment of 2-bromo-2-methylbutane with K in ethanol yields a mixture of two alkene products.

More information

(a) Name the alcohol and catalyst which would be used to make X. (2)

(a) Name the alcohol and catalyst which would be used to make X. (2) 1 The chemical X is an ester with formula CH 3 COOC(CH 3 ) 3 which occurs in raspberries and pears. It can be prepared in the laboratory by refluxing ethanoic acid with an alcohol in the presence of a

More information

CHAPTER OUTLINE. I. Elemental Carbon II. Crude Oil : the Basic Resource III. Hydrocarbons IV. Separating Hydrocarbons by Fractional Distillation

CHAPTER OUTLINE. I. Elemental Carbon II. Crude Oil : the Basic Resource III. Hydrocarbons IV. Separating Hydrocarbons by Fractional Distillation Carbon Chapter 12 CHAPTER UTLINE 9.2 I. Elemental Carbon II. Crude il : the Basic Resource III. Hydrocarbons IV. Separating Hydrocarbons by Fractional Distillation V. Processing Hydrocarbons VI. Typical

More information

Appendix A: The Names of Polymers and Polymeric Materials

Appendix A: The Names of Polymers and Polymeric Materials Appendix A: The Names of Polymers and Polymeric Materials Every newcomer to the study of polymers is inevitably troubled by the profusion of names for individual polymer materials. Some of the difficulties

More information

Fisika Polimer Ariadne L Juwono. Sem /2007

Fisika Polimer Ariadne L Juwono. Sem /2007 Chapter 4. Ionic and coordination (addition) polymerization 4.1. Similarities and contrast on ionic polymerization 4.2. Cationic polymerization 4.3. Anionic polymerization 4.4. Coordination polymerization

More information

ORGANIC CHEMISTRY. Wiley STUDY GUIDE AND SOLUTIONS MANUAL TO ACCOMPANY ROBERT G. JOHNSON JON ANTILLA ELEVENTH EDITION. University of South Florida

ORGANIC CHEMISTRY. Wiley STUDY GUIDE AND SOLUTIONS MANUAL TO ACCOMPANY ROBERT G. JOHNSON JON ANTILLA ELEVENTH EDITION. University of South Florida STUDY GUIDE AND SOLUTIONS MANUAL TO ACCOMPANY ORGANIC CHEMISTRY ELEVENTH EDITION T. W. GRAHAM SOLOMONS University of South Florida CRAIG B. FRYHLE Pacific Lutheran University SCOTT A. SNYDER Columbia University

More information

Chapter 13 - Polymers Introduction

Chapter 13 - Polymers Introduction Chapter 13 - Polymers Introduction I. Nomenclature A. Polymer/Macromolecule polymer - nonmetallic material consisting of large molecules composed of many repeating units - from Greek: poly (many) and meros

More information

Experiment 5. Synthetic Polymers.

Experiment 5. Synthetic Polymers. Experiment 5. Synthetic Polymers. References: Brown & Foote, Chapters 24 INTRODUCTION: A polymer (Greek: polys + meros = many parts) is a giant or macromolecule made up of repeating structural units. The

More information

CHEM 241 ALKYNES CHAP 9 ASSIGN

CHEM 241 ALKYNES CHAP 9 ASSIGN HEM 241 ALKYNES HAP 9 ASSIGN 1. What is the IUPA name of the following compound A. 5-propyl-3-heptyne B. 5-isopropyl-3-heptyne. 5-ethyl-3-octyne D. 4-ethyl-5-octyne 2. What is the correct IUPA name for

More information

POLYMERS: CHEMISTRY AND PHYSICS OF MODERN MATERIALS

POLYMERS: CHEMISTRY AND PHYSICS OF MODERN MATERIALS POLYMERS: CHEMISTRY AND PHYSICS OF MODERN MATERIALS THIRD EDITION J.M.G. COWIE Heriot-Watt University Scotland,UK VALERIA ARRIGHI Heriot-Watt University Scotland,UK Contents Preface The Authors xv xvii

More information

Note: Brief explanation should be no more than 2 sentences.

Note: Brief explanation should be no more than 2 sentences. Her \Hmher UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, April 26, 2017 DURATION: 2 and /2 hrs MSE245 - HiS - Second Year - MSE Organic Material Chemistry & Processing

More information

I pledge my honor that I have neither given nor received aid on this examination

I pledge my honor that I have neither given nor received aid on this examination Chemistry 220b, Section 1 Exam 1 (100 pts) Tuesday, February 3, 2015 Chapters 13, 15, 16 Name Write and sign the VU onor Pledge: I pledge my honor that I have neither given nor received aid on this examination

More information

video 14.4 isomers isomers Isomers have the molecular formula but are rearranged in a structure with different properties. Example: Both C 4 H 10

video 14.4 isomers isomers Isomers have the molecular formula but are rearranged in a structure with different properties. Example: Both C 4 H 10 video 14.4 isomers isomers Isomers have the molecular formula but are rearranged in a structure with different properties. Example: Both C 4 H 10 Butane Methylpropane 1 match the isomers drawing an isomer

More information

Isomerism and Carbonyl Compounds

Isomerism and Carbonyl Compounds Isomerism and Carbonyl Compounds 18 Section B Answer all questions in the spaces provided. 7 Esters have many important commercial uses such as solvents and artificial flavourings in foods. Esters can

More information

POLYMERS: MACROMOLECULES

POLYMERS: MACROMOLECULES C21 11/08/2013 16:8:37 Page 311 CHAPTER 21 POLYMERS: MACROMOLECULES SOLUTIONS TO REVIEW QUESTIONS 1. An addition polymer is one that is produced by the successive addition of repeating monomer molecules.

More information

UNIT 12 - TOPIC 3 ORGANIC REACTIONS

UNIT 12 - TOPIC 3 ORGANIC REACTIONS UNIT 12 - TOPIC 3 ORGANIC REACTIONS Name: ESSENTIALS: Know, Understand, and Be Able To Types of organic reactions include: addition substitution combustion polymerization esterfication fermentation saponification

More information

JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II. 5 Credit Hours. Prepared by: Richard A. Pierce

JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II. 5 Credit Hours. Prepared by: Richard A. Pierce JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II 5 Credit Hours Prepared by: Richard A. Pierce Revised Date: January 2008 by Ryan H. Groeneman Arts & Science Education Dr. Mindy Selsor, Dean

More information

A. Review of Acidity and pk a Common way to examine acidity is to use the Bronsted-Lowry acid-base equation:

A. Review of Acidity and pk a Common way to examine acidity is to use the Bronsted-Lowry acid-base equation: 1 Chapter 22: Reactions of Enols and Enolates I. Alpha Substitution verview: A. Review of Acidity and pk a Common way to examine acidity is to use the Bronsted-Lowry acid-base equation: Recall that the

More information

Chapter 12 Alkenes and Alkynes

Chapter 12 Alkenes and Alkynes BR M 102 lass Notes hapter 12 Page 1 of 8 hapter 12 Alkenes and Alkynes * alkenes = double bonds * alkynes triple bonds * aromatics or arenes alternating double and single bonds such as in benzene * saturated

More information

CHE 325 SPECTROSCOPY (A) CHAP 13A ASSIGN CH 2 CH CH 2 CH CHCH 3

CHE 325 SPECTROSCOPY (A) CHAP 13A ASSIGN CH 2 CH CH 2 CH CHCH 3 CE 325 SPECTRSCPY (A) CAP 13A ASSIGN 1. Which compound would have a UV absorption band at longest wavelength? A. I B. II C. III D. IV E. V C CC 3 CC C 2 C CC 3 I II III C 2 C C 2 C CC 3 IV V 2. Select

More information

MATERIALS SCIENCE POLYMERS

MATERIALS SCIENCE POLYMERS POLYMERS 1) Types of Polymer (a) Plastic Possibly the largest number of different polymeric materials come under the plastic classification. Polyethylene, polypropylene, polyvinyl chloride, polystyrene,

More information

This reactivity makes alkenes an important class of organic compounds because they can be used to synthesize a wide variety of other compounds.

This reactivity makes alkenes an important class of organic compounds because they can be used to synthesize a wide variety of other compounds. This reactivity makes alkenes an important class of organic compounds because they can be used to synthesize a wide variety of other compounds. Mechanism for the addition of a hydrogen halide What happens

More information

CHEMISTRY 263 HOME WORK

CHEMISTRY 263 HOME WORK Lecture Topics: CHEMISTRY 263 HOME WORK Module7: Hydrogenation of Alkenes Hydrogenation - syn and anti- addition - hydrogenation of alkynes - synthesis of cis-alkenes -synthesis of trans-alkenes Text sections:

More information

Departmental Final Examination. Organic Chemistry I Caffein

Departmental Final Examination. Organic Chemistry I Caffein Departmental Final Examination rganic Chemistry I 2423 Caffein Name CEMISTRY 2423 FINAL EXAM FALL, 2005 DIRECTINS: A periodic table is attached at the end of this exam. Please answer all questions as completely

More information

UNIT 4 REVISION CHECKLIST CHEM 4 AS Chemistry

UNIT 4 REVISION CHECKLIST CHEM 4 AS Chemistry UNIT 4 REVISION CHECKLIST CHEM 4 AS Chemistry Topic 4.1 Kinetics a) Define the terms: rate of a reaction, rate constant, order of reaction and overall order of reaction b) Deduce the orders of reaction

More information

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera andout-10 ourse 201N 1 st Semester 2006-2007 Inorganic hemistry Instructor: Jitendra K. Bera ontents 3. rganometallic hemistry omogeneous atalysis lefin ydrogenation; ydroformylation; Monsanto Acetic acid

More information

Chapter 20: Carboxylic Acids

Chapter 20: Carboxylic Acids 1 Chapter 20: Carboxylic Acids I. Introduction: Carboxylic acid structure: Classification of carboxylic acids: A carboxylic acid donates protons by the heterocyclic cleavage of the O-H bond, generating

More information

Keynotes in Organic Chemistry

Keynotes in Organic Chemistry Keynotes in Organic Chemistry Second Edition ANDREW F. PARSONS Department of Chemistry, University of York, UK Wiley Contents Preface xi 1 Structure and bonding 1 1.1 Ionic versus covalent bonds 1 1.2

More information

ORGANIC - CLUTCH CH ALDEHYDES AND KETONES: NUCLEOPHILIC ADDITION

ORGANIC - CLUTCH CH ALDEHYDES AND KETONES: NUCLEOPHILIC ADDITION !! www.clutchprep.com CONCEPT: ALDEHYDE NOMENCLATURE Replace the suffix of the alkane -e with the suffix On the parent chain, the carbonyl is always terminal, and receive a location As substituents, they

More information

MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont

MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont McGRAW-HILL, INC. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico Milan Montreal New Delhi

More information

Introduction to Macromolecular Chemistry

Introduction to Macromolecular Chemistry Introduction to Macromolecular Chemistry aka polymer chemistry Mondays, 8.15-9.45 am except for the following dates: 01.+29.05, 05.+12.06., 03.07. Dr. Christian Merten, Ruhr-Uni Bochum, 2017 www.ruhr-uni-bochum.de/chirality

More information

ALDEHYDES AND KETONES

ALDEHYDES AND KETONES ALDEHYDES AND KETONES IN WEEK 1, A STUDENT SHOULD BE ABLE TO: 1. Give the IUPAC name given the structure, and draw the structure given the name, of aldehydes and ketones. Also, draw the structure given

More information

Spring Term 2012 Dr. Williams (309 Zurn, ex 2386)

Spring Term 2012 Dr. Williams (309 Zurn, ex 2386) Chemistry 242 Organic Chemistry II Spring Term 2012 Dr. Williams (309 Zurn, ex 2386) Web Page: http://math.mercyhurst.edu/~jwilliams/ jwilliams@mercyhurst.edu (or just visit Department web site and look

More information

POLYMERIZATION REACTIONS STEP-GROWTH POLYMERIZATION

POLYMERIZATION REACTIONS STEP-GROWTH POLYMERIZATION POLYMEIZATION EATIONS Understand the differences between step-growth and chain-growth polymerization reactions. Predict the products of polycondensation and polyaddition reactions. Explain how reactant

More information

(07) 2 (c) 2 (c) (i) Calculate the ph of this buffer solution at 25 oc (3 marks) (Extra space)

(07) 2 (c) 2 (c) (i) Calculate the ph of this buffer solution at 25 oc (3 marks) (Extra space) 7 The value of Ka for methanoic acid is 1.78 10 4 mol dm 3 at 25 oc. A buffer solution is prepared containing 2.35 10 2 mol of methanoic acid and Question 1: N/A 1.84 10 2 mol of sodium methanoate in 1.00

More information

Book I, Otto Vogl: Papers and Patents,

Book I, Otto Vogl: Papers and Patents, University of Massachusetts Amherst From the SelectedWorks of Otto Vogl December, 2008 Book I, Otto Vogl: Papers and Patents, 1948-1970 Jane C. Vogl Available at: https://works.bepress.com/otto_vogl/83/

More information

1.1 Is the following molecule aromatic or not aromatic? Give reasons for your answer.

1.1 Is the following molecule aromatic or not aromatic? Give reasons for your answer. Page 1 QUESTION ONE 1.1 Is the following molecule aromatic or not aromatic? Give reasons for your answer. 1.2 List four criteria which compounds must meet in order to be considered aromatic. Page 2 QUESTION

More information

Organic Chemistry 1 CHM 2210 Exam 4 (December 10, 2001)

Organic Chemistry 1 CHM 2210 Exam 4 (December 10, 2001) Exam 4 (December 10, 2001) Name (print): Signature: Student ID Number: There are 12 multiple choice problems (4 points each) on this exam. Record the answers to the multiple choice questions on THIS PAGE.

More information

STRUCTURE OF MACROMOLECULES

STRUCTURE OF MACROMOLECULES STUTUE F MMLEULES Introduction Life is polymeric in its essence: the most important component of living cell (proteins, carbohydrates and nucleic acids) are all polymers. Nature uses polymers both for

More information

Spectroscopy of Polymers

Spectroscopy of Polymers Spectroscopy of Polymers Jack L. Koenig Case Western Reserve University WOMACS Professional Reference Book American Chemical Society, Washington, DC 1992 Contents Preface m xiii Theory of Polymer Characterization

More information

Subject Index. See for options on how to legitimately share published articles.

Subject Index. See   for options on how to legitimately share published articles. INDEX 281 Subject Index Downloaded via 148.251.232.83 on November 18, 2018 at 22:56:57 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. A Acetone,

More information

Q.8. Isomers are the compounds that must have same

Q.8. Isomers are the compounds that must have same Choose the single correct answer for each of the following questions: (1 Mark each). Q. 1. ow many lone pairs are present in C 3 --C 3 i) 3 ii) 2 iii) 1 iv) 4 Q.2. When any hydrocarbon is added to water,

More information

POLYMER CHEMISTRY. An Introduction. Malcolm P. Stevens University of Hartford SECOND EDITION

POLYMER CHEMISTRY. An Introduction. Malcolm P. Stevens University of Hartford SECOND EDITION POLYMER CHEMISTRY An Introduction SECOND EDITION Malcolm P. Stevens University of Hartford New York Oxford OXFORD UNIVERSITY PRESS 1990 Contents PART I POLYMER STRUCTURE AND PROPERTIES 1. Basic principles,

More information

1. Which of the following compounds is the weakest base?

1. Which of the following compounds is the weakest base? I. Multiple-choice Questions Fall 2018 1. Which of the following compounds is the weakest base? a. C3C2 b. C3C2 c. N3 d. C3 e. N2 2. Which of the following functional groups is indicated by a strong and

More information

Montgomery County Community College CHE 261 Organic Chemistry I

Montgomery County Community College CHE 261 Organic Chemistry I Montgomery County Community College CHE 261 Organic Chemistry I 4-3-3 COURSE DESCRIPTION: This course covers the nomenclature, structure, properties and reactions of many important classes of organic compounds.

More information

Organolithium Compounds *

Organolithium Compounds * OpenStax-CNX module: m32444 1 Organolithium Compounds * Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 One of the major uses of lithium

More information

United States Patent (19) Fahrbach et al.

United States Patent (19) Fahrbach et al. United States Patent (19) Fahrbach et al. 4) (7) (73) 22) 21 ) (30) 2 t 8) GRAFT COPOLYMERS BASED ON METHYL METHACRYLATE POLYMERS Inventors: Gerhard Fahrbach, Schwetzingen; Erhard Seiler, Ludwigshafen;

More information

SOURCE-BASED NOMENCLATURE FOR NON-LINEAR MACROMOLECULES AND MACROMOLECULAR ASSEMBLIES

SOURCE-BASED NOMENCLATURE FOR NON-LINEAR MACROMOLECULES AND MACROMOLECULAR ASSEMBLIES Pure &Appl. Chem., Vol. 69, No. 12, pp. 2511-2521, 1997. Printed in Great Britain. Q 1997 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY MACROMOLECULAR DIVISION COMMISSION ON MACROMOLECULAR NOMENCLATURE*

More information

CHAPTER IV HOFMANN REARRANGEMENT IN CROSSLINKED POLYMERIC MATRICES

CHAPTER IV HOFMANN REARRANGEMENT IN CROSSLINKED POLYMERIC MATRICES CHAPTER IV HOFMANN REARRANGEMENT IN CROSSLINKED POLYMERIC MATRICES The Hofmann degradation reaction has been used as a synthetic route for the preparation of amines 180-187 Tanaka and Senju reported the

More information

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area 1 CHEMISTRY 263 HOME WORK Lecture Topics: Module7. Hydrogenation of Alkenes The Function of the Catalyst - Syn and anti- addition Hydrogenation of Alkynes - Syn- addition of hydrogen: Synthesis of cis-alkenes

More information

Title Heterogeneous Mixture of Metals and Initiator for Vinl Polymerization Author(s) Furukawa, Junji; Fueno, Takayuki Citation Bulletin of the Institute for Chemi University (1959), 37(4): 260-266 Issue

More information

Chemistry 2321 OLD TEST QUESTIONS

Chemistry 2321 OLD TEST QUESTIONS hemistry 2321 Test No. 3 Professor M. Pomerantz LD TEST QUESTINS Select the best name for the compounds shown. 1. l 2 3 2 2-chloro-4-ethyl-5-heptyne 6-chloro-4-ethyl-2-heptyne 4-(2-chloropropyl)-2-hexyne

More information

POLYMER CHEMISTRY Lecture/Lession Plan -2

POLYMER CHEMISTRY Lecture/Lession Plan -2 Chapter 6 POLYMER CHEMISTRY Lecture/Lession Plan -2 POLYMER CHEMISTRY 6.0.1 Classification on the basis of tactility On the basis of orientation of functional group or side groups throughout the long backbone

More information

Unit 4 review for finals

Unit 4 review for finals Unit 4 review for finals These are the topics you should know and be able to answer questions about: 1. Types of compounds a. What are the four types of bonding? Describe each type of bonding. i. Ionic

More information

Chapter 5. Ionic Polymerization. Anionic.

Chapter 5. Ionic Polymerization. Anionic. Chapter 5. Ionic Polymerization. Anionic. Anionic Polymerization Dr. Houston S. Brown Lecturer of Chemistry UH-Downtown brownhs@uhd.edu What you should know: What is anionic polymerization? What is MWD,

More information