Spatial Analysis II. Spatial data analysis Spatial analysis and inference

Size: px
Start display at page:

Download "Spatial Analysis II. Spatial data analysis Spatial analysis and inference"

Transcription

1 Spatial Analysis II Spatial data analysis Spatial analysis and inference

2 Roadmap Spatial Analysis I Outline: What is spatial analysis? Spatial Joins Step 1: Analysis of attributes Step 2: Preparing for analyses: working with distance Step 3: Spatial patterns analysis Step 4: Kernel density analysis Summary

3 Roadmap Spatial Analysis II Outline: What is spatial analysis? Transformations Introduction to spatial interpolation Classification of spatial interpolation methods Interpolation methods Areal interpolation Kriging Summary

4 Spatial analysis A method of analysis is spatial if the results depend on the locations of the objects being analyzed move the objects and the results change results are not invariant under relocation Spatial analysis requires both the attributes and locations of objects Spatial analysis is the crux of GIS Attribute linkages Spatial data Attribute data P,L,A,P x NOIR

5 Spatial analysis Much of what we do in spatial analysis is about transformations transforming the data from one form of presentation (e.g., points, lines, areas) into another form of presentation (e.g., density [such as a density of crimes per CT], surfaces [such as creating a TIN or a DEM from mass points], buffers, lines [such as creating contour lines from common a points, and a TIN important a DEM]). precursor (Also, normalizing to much vars. of in MCE.) Transforming spatial data from one form (point, line or area) into another form (area, line or point) is a spatial analysis. Transformations are used for simple cartographic purposes (e.g., overlays), to aid in inductive reasoning, and for more complex Why and purposes how are (e.g., some hot spot of the analyses), ways in as which part of we deductive reasoning. transform spatial data?

6 Transformations Given a set of points Create a contour map ArcMap s Hot Spot Analysis Filled contours Or a 3-D surface Also look at Spatial Analyst: Kernel or Point Density

7 Transformations One of the most important means of transforming data is through spatial interpolation. Can you describe / define interpolation? What does interpolation provide for us (as geospatial scientists)? That is, why do we interpolate (field) data?

8 Uses of spatial interpolation To create isolines (or other graphics) for visualization To calculate some property of the surface at a location ( ) where measurements weren t taken To change the unit of comparison when using different data structures (e.g., census tracts to planning districts) Both physical and social applications

9 Field representations lattice random points regular grid What are the ways we can represent field data in a GIS? areas TIN (Voronoi) contours Hexagons

10 Basic forms of interpolation Point to points (e.g., random points to a regular lattice) Points to lines (e.g., random points to contour lines) Lines to points (e.g., digitized contours to a regular grid) Areas to areas (e.g., census tracts to planning districts) Points Transformations Areas Lines

11 Point to Continuous

12 Point to Continuous Elevation Rainfall

13 Point to Continuous

14 Roadmap Outline: What is spatial analysis? Transformations Introduction to spatial interpolation Classification of spatial interpolation methods Interpolation methods Areal interpolation Kriging Summary

15 Considerations Given the wide variety of spatial interpolation methods, you need to consider: Which method best fits the data you have available. Which method best fits the process associated with the data. Which method will produce the result you need. Know your data

16 Global versus Local Exact versus Approximate Stochastic versus Deterministic Abrupt versus Smooth Could you describe what each of these dichotomies might encompass? Global Aspatial Local Windows A classification of interpolation methods

17 Exact interpolators honour the input data points (which doesn't mean that the surface is an exact replicate of the true surface from which the points were collected, just that the surface falls exactly on the points) Approximate interpolators allow for uncertainty in the input data points, which allows for smoothing Exact versus Approximate

18 Stochastic versus Deterministic Stochastic methods incorporate the concept of randomness (similar to a linear regression model a surface of best fit ) Deterministic methods do not use probability theory (they exclude randomness).

19 Abrupt interpolators allow for barriers (e.g., faults, fronts) Smooth interpolators produce a smooth surface Abrupt versus Smooth

20 What happens to trends? What about minima / maxima? In previous lectures we ve talked about a few of the problematic issues that might arise, although at the time spatial interpolation wasn t specifically mentioned. Rule uncertainty How are the parameters selected? How does the data distribution affect the results? Issues to consider

21 Roadmap Outline: What is spatial analysis? Transformations Introduction to spatial interpolation Classification of spatial interpolation methods Interpolation methods Areal interpolation Kriging Summary

22 Know your data? 20 30? Process? 13 What is the expected value?

23 Exact methods of point-based interpolation Note: The point patterns are identical. Proximal: local, exact, abrupt, deterministic best for nominal data (aka Thiessen polygons) Interpolation methods Thiessen polygons are the dual of a Delaunay triangulation

24 B-Splines: french curves piecewise polynomials, local, exact, can be smooth, not min/max bound Splines

25 Manual interpolation: knowledge-based, local, abrupt, tend to be exact, subjective Often associated with geological mapping Manual methods

26 Approximate methods of point-based interpolation Trend surface analysis: similar to regression, global, smooth, deterministic The simplest surface: z = a + bx + cy Interpolation methods

27 The graph illustrates a quadratic or second-order surface: z = a + bx + cy + dx 2 + exy + fy 2 Trend surface analysis

28

29 Fourier Series: assumes that the surface can be approximated by overlaying a series of sine and cosine waves global, smooth, deterministic Fourier methods The first four partial sums of the Fourier series for a square wave

30 Moving Average / Distance-Weighted Average: can be exact or, more typically, approximate, local to global, smooth or abrupt the most widely used spatial interpolation method in Geography an almost unlimited number of modifications or variations are available, including: variations on the distance function imposing constraints on the point selection process (e.g., by direction, limiting the number of points, limiting the distance). Distance-weighted methods

31 Moving averages are widely used in time series analyses The smoother curves (dark blue on left, red on right) represent the moving average of the original tie series. Note that the smoothed curve can never be higher nor lower than any of the data points. Moving averages

32 point i known value z i location x i weight w i distance d i unknown value location x (z to be interpolated) z (x) = i w = 1 w z i i β i d i i w i Weights decline with distance, β is usually given a value of 2 The estimate is a weighted average Distance-weighted formula Spatial Moving Averages (SMA)

33 IDW: Changing the exponent from 2 to 4 Effects of changing parameters w = i 24 1 d i

34 Triangulated Irregular Networks (TINs) Not really a form of interpolation, per se, although using TINs one can create contours or regions. Exact, local, abrupt, deterministic. TINs

35 Although the process of 'stringing' contours between the vertices of the TIN triangles (or between two grid points) may seem unproblematic, there are some interesting issues (issues which should be addressed in any contouring exercise, but typically are never explicitly addressed). Basically: what assumption should be made with respect to how the surface should be modeled between the known points? Contour placement

36 The default for most programs, although this is likely more realistic. Contour placement

37 Roadmap Outline: What is spatial analysis? Transformations Introduction to spatial interpolation Classification of spatial interpolation methods Interpolation methods Areal interpolation Kriging Summary

38 What of areal interpolation? If the areas can be represented by a single point, and the data can be considered to be a field, you can use a point-based interpolation method (e.g., pop density of CTs). Areal interpolation is actually a complex process. Polygon overlays, and using the proportional areas as weights, is a typical approach (but one that is not reversible nor volume preserving total pop after total pop before). Pycnophylactic interpolation is a reversible, volume preserving method (see lecture notes for a link to a video that describes this method in detail).

39 The problem with (nonreversible) polygon overlays: The fundamental assumption is that the field has a homogeneous distribution throughout the zones. Each area is split into 2 equal parts, assuming equal pop in each part. Polygon overlays Note that the totals assigned to the two polygons in the bottom row do not equal the values within each polygon in the top row.

40 Pycnophylactic interpolation

41 ArcGIS s Areal Interpolation Method

42 Areal interpolation

43 Roadmap Outline: What is spatial analysis? Transformations Introduction to spatial interpolation Classification of spatial interpolation methods Interpolation methods Areal interpolation Kriging Summary

44 Geostatistical methods: Kriging Kriging stochastic, exact, smooth or abrupt, global or local Natural data are difficult to model using smooth functions because naturally-occurring random fluctuations and measurement error combine to cause irregularities in sampled data values. Kriging was developed to model those stochastic concepts. It is based on the concept of a regionalized variable that has three components:

45 STRUCTURAL This may be represented by the mean or a constant trend. SPATIALLY CORRELATED Data often exhibit positive spatial correlations. data RANDOM NOISE Measurement errors, other errors, random fluctuations. Topography is a reflection of many processes operating at different scales; with Kriging we hope to develop models of some of those processes. Components of a Regionalized Variable

46 This is what we are attempting to model. The structural component (e.g., a linear trend) The spatially correlated component The random noise component (non-fitted) Components of a Regionalized Variable

47 Kriging is implemented using a semi-variogram There are many different varieties of kriging (e.g, ordinary, universal, simple, indicator), and selecting the appropriate one requires careful consideration of the data. ArcGIS's help file--look up the term kriging provides a lot of information on the various types of kriging (and co-kriging) that are commonly used in spatial analysis. ArcGIS s tutorial for the Geostatistical Analyst is also very informative (in particular consider the Geostatistical Wizard) Kriging

48 The semivariogram is based on modeling the (squared) differences in the z-values as a function of the distances between the known points. h Kriging

49 Kriging The first step in ordinary kriging is to construct a semivariogram from the points being interpolated. A semivariogram consists of two parts: an experimental semivariogram (the data) a model semivariogram (the math). The experimental semivariogram is found by calculating the variance (g) of each point in the set with respect to each of the other points and plotting the (semi)variances versus distance (h) between the points.

50 Semivariogram Variance between points is represented over space. The above shows how variance between point values tends to increase as distance between points increases. The values of the points could be rainfall, elevation, demographic continuous data, ozone levels, percentage of gold in a sample

51 N= number of pairs f1 = Head f2 = Tail

52 Semivariogram The semivariogram is used to explore a data set visually and to estimate at what distance the spatial autocorrelation becomes insignificant (i.e., the range).

53 Semivariogram Nugget represents subgrid scale variation that cannot be estimated by reasons of the sampling grid spacing or measurement error. Range is a measure of the spatial autocorrelation between data points, represented in terms of the lag distance. The lag represents the distance at which the spatial autocorrelation is at its global value.

54 Semivariogram Sill is the value of the semivariance as the lag tends towards infinity in non-standardized data it is equal to the total variance of the dataset. Lag refers to distances (e.g., 1250m) that typically have bands associated with them (e.g., +/- 250m). Distance may be a direct measure or a transformation of distance (e.g., log(1000 m)).

55 This is an example of a semivariogram produced using ArcGIS's Geostatistical Analyst. Kriging

56 Kriging One of the very useful outputs from a kriging analysis is the uncertainty surface that can be generated--we can answer the question: "How good are the predictions?" Using some of the data that we used in lab 2 (where you created a TIN), I created an ordinary kriged map and a map showing the standard error of the predictions (and a TIN for comparison).

57 TIN Ordinary kriged prediction map Kriging Prediction standard error map showing data points

58 IDW versus kriging

59 Summary Interpolation is a very important process in GIS, and in particular in spatial analysis. ArcGIS's help files provide a lot of useful information. It is important to know, first, about your data (how was it collected, the spatial distribution of the collection points, the process responsible for creating the 'field' you are mapping) and, second, about the spatial interpolation method (its assumptions, faults and fine points). Know your data

60

Spatial analysis. 0 move the objects and the results change

Spatial analysis. 0 move the objects and the results change 0 Outline: Roadmap 0 What is spatial analysis? 0 Transformations 0 Introduction to spatial interpolation 0 Classification of spatial interpolation methods 0 Interpolation methods 0 Areal interpolation

More information

Lecture 5 Geostatistics

Lecture 5 Geostatistics Lecture 5 Geostatistics Lecture Outline Spatial Estimation Spatial Interpolation Spatial Prediction Sampling Spatial Interpolation Methods Spatial Prediction Methods Interpolating Raster Surfaces with

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 15. SPATIAL INTERPOLATION 15.1 Elements of Spatial Interpolation 15.1.1 Control Points 15.1.2 Type of Spatial Interpolation 15.2 Global Methods 15.2.1 Trend Surface Models Box 15.1 A Worked Example

More information

ENGRG Introduction to GIS

ENGRG Introduction to GIS ENGRG 59910 Introduction to GIS Michael Piasecki October 13, 2017 Lecture 06: Spatial Analysis Outline Today Concepts What is spatial interpolation Why is necessary Sample of interpolation (size and pattern)

More information

GIST 4302/5302: Spatial Analysis and Modeling

GIST 4302/5302: Spatial Analysis and Modeling GIST 4302/5302: Spatial Analysis and Modeling Review Guofeng Cao www.gis.ttu.edu/starlab Department of Geosciences Texas Tech University guofeng.cao@ttu.edu Spring 2016 Course Outlines Spatial Point Pattern

More information

Improving Spatial Data Interoperability

Improving Spatial Data Interoperability Improving Spatial Data Interoperability A Framework for Geostatistical Support-To To-Support Interpolation Michael F. Goodchild, Phaedon C. Kyriakidis, Philipp Schneider, Matt Rice, Qingfeng Guan, Jordan

More information

Spatial analysis. Spatial descriptive analysis. Spatial inferential analysis:

Spatial analysis. Spatial descriptive analysis. Spatial inferential analysis: Spatial analysis Spatial descriptive analysis Point pattern analysis (minimum bounding box, mean center, weighted mean center, standard distance, nearest neighbor analysis) Spatial clustering analysis

More information

Lecture 8. Spatial Estimation

Lecture 8. Spatial Estimation Lecture 8 Spatial Estimation Lecture Outline Spatial Estimation Spatial Interpolation Spatial Prediction Sampling Spatial Interpolation Methods Spatial Prediction Methods Interpolating Raster Surfaces

More information

11. Kriging. ACE 492 SA - Spatial Analysis Fall 2003

11. Kriging. ACE 492 SA - Spatial Analysis Fall 2003 11. Kriging ACE 492 SA - Spatial Analysis Fall 2003 c 2003 by Luc Anselin, All Rights Reserved 1 Objectives The goal of this lab is to further familiarize yourself with ESRI s Geostatistical Analyst, extending

More information

Spatial Analysis I. Spatial data analysis Spatial analysis and inference

Spatial Analysis I. Spatial data analysis Spatial analysis and inference Spatial Analysis I Spatial data analysis Spatial analysis and inference Roadmap Outline: What is spatial analysis? Spatial Joins Step 1: Analysis of attributes Step 2: Preparing for analyses: working with

More information

Report on Kriging in Interpolation

Report on Kriging in Interpolation Tabor Reedy ENVS421 3/12/15 Report on Kriging in Interpolation In this project I explored use of the geostatistical analyst extension and toolbar in the process of creating an interpolated surface through

More information

Spatial Data Analysis in Archaeology Anthropology 589b. Kriging Artifact Density Surfaces in ArcGIS

Spatial Data Analysis in Archaeology Anthropology 589b. Kriging Artifact Density Surfaces in ArcGIS Spatial Data Analysis in Archaeology Anthropology 589b Fraser D. Neiman University of Virginia 2.19.07 Spring 2007 Kriging Artifact Density Surfaces in ArcGIS 1. The ingredients. -A data file -- in.dbf

More information

Umeå University Sara Sjöstedt-de Luna Time series analysis and spatial statistics

Umeå University Sara Sjöstedt-de Luna Time series analysis and spatial statistics Umeå University 01-05-5 Sara Sjöstedt-de Luna Time series analysis and spatial statistics Laboration in ArcGIS Geostatistical Analyst These exercises are aiming at helping you understand ArcGIS Geostatistical

More information

COMPARISON OF DIGITAL ELEVATION MODELLING METHODS FOR URBAN ENVIRONMENT

COMPARISON OF DIGITAL ELEVATION MODELLING METHODS FOR URBAN ENVIRONMENT COMPARISON OF DIGITAL ELEVATION MODELLING METHODS FOR URBAN ENVIRONMENT Cahyono Susetyo Department of Urban and Regional Planning, Institut Teknologi Sepuluh Nopember, Indonesia Gedung PWK, Kampus ITS,

More information

Spatial Analyst. By Sumita Rai

Spatial Analyst. By Sumita Rai ArcGIS Extentions Spatial Analyst By Sumita Rai Overview What does GIS do? How does GIS work data models Extension to GIS Spatial Analyst Spatial Analyst Tasks & Tools Surface Analysis Surface Creation

More information

Geog183: Cartographic Design and Geovisualization Spring Quarter 2018 Lecture 11: Dasymetric and isarithmic mapping

Geog183: Cartographic Design and Geovisualization Spring Quarter 2018 Lecture 11: Dasymetric and isarithmic mapping Geog183: Cartographic Design and Geovisualization Spring Quarter 2018 Lecture 11: Dasymetric and isarithmic mapping Discrete vs. continuous revisited Choropleth suited to discrete areal, but suffers from

More information

Concepts and Applications of Kriging. Eric Krause

Concepts and Applications of Kriging. Eric Krause Concepts and Applications of Kriging Eric Krause Sessions of note Tuesday ArcGIS Geostatistical Analyst - An Introduction 8:30-9:45 Room 14 A Concepts and Applications of Kriging 10:15-11:30 Room 15 A

More information

Concepts and Applications of Kriging. Eric Krause Konstantin Krivoruchko

Concepts and Applications of Kriging. Eric Krause Konstantin Krivoruchko Concepts and Applications of Kriging Eric Krause Konstantin Krivoruchko Outline Introduction to interpolation Exploratory spatial data analysis (ESDA) Using the Geostatistical Wizard Validating interpolation

More information

Concepts and Applications of Kriging

Concepts and Applications of Kriging 2013 Esri International User Conference July 8 12, 2013 San Diego, California Technical Workshop Concepts and Applications of Kriging Eric Krause Konstantin Krivoruchko Outline Intro to interpolation Exploratory

More information

Comparison of rainfall distribution method

Comparison of rainfall distribution method Team 6 Comparison of rainfall distribution method In this section different methods of rainfall distribution are compared. METEO-France is the French meteorological agency, a public administrative institution

More information

Interpolating Raster Surfaces

Interpolating Raster Surfaces Interpolating Raster Surfaces You can use interpolation to model the surface of a feature or a phenomenon all you need are sample points, an interpolation method, and an understanding of the feature or

More information

2.6 Two-dimensional continuous interpolation 3: Kriging - introduction to geostatistics. References - geostatistics. References geostatistics (cntd.

2.6 Two-dimensional continuous interpolation 3: Kriging - introduction to geostatistics. References - geostatistics. References geostatistics (cntd. .6 Two-dimensional continuous interpolation 3: Kriging - introduction to geostatistics Spline interpolation was originally developed or image processing. In GIS, it is mainly used in visualization o spatial

More information

Make it Spatial. Josh Tanner. Theresa Burcsu. Tools, techniques, and tips for incorporating GIS into your research

Make it Spatial. Josh Tanner. Theresa Burcsu. Tools, techniques, and tips for incorporating GIS into your research Make it Spatial Tools, techniques, and tips for incorporating GIS into your research Theresa Burcsu Josh Tanner Oregon GIS Framework Coordinator GIS Analyst & Web Administrator Geospatial Enterprise Office

More information

Geostatistics: Kriging

Geostatistics: Kriging Geostatistics: Kriging 8.10.2015 Konetekniikka 1, Otakaari 4, 150 10-12 Rangsima Sunila, D.Sc. Background What is Geostatitics Concepts Variogram: experimental, theoretical Anisotropy, Isotropy Lag, Sill,

More information

Michael Harrigan Office hours: Fridays 2:00-4:00pm Holden Hall

Michael Harrigan Office hours: Fridays 2:00-4:00pm Holden Hall Announcement New Teaching Assistant Michael Harrigan Office hours: Fridays 2:00-4:00pm Holden Hall 209 Email: michael.harrigan@ttu.edu Guofeng Cao, Texas Tech GIST4302/5302, Lecture 2: Review of Map Projection

More information

ArcGIS for Geostatistical Analyst: An Introduction. Steve Lynch and Eric Krause Redlands, CA.

ArcGIS for Geostatistical Analyst: An Introduction. Steve Lynch and Eric Krause Redlands, CA. ArcGIS for Geostatistical Analyst: An Introduction Steve Lynch and Eric Krause Redlands, CA. Outline - What is geostatistics? - What is Geostatistical Analyst? - Spatial autocorrelation - Geostatistical

More information

Kriging Luc Anselin, All Rights Reserved

Kriging Luc Anselin, All Rights Reserved Kriging Luc Anselin Spatial Analysis Laboratory Dept. Agricultural and Consumer Economics University of Illinois, Urbana-Champaign http://sal.agecon.uiuc.edu Outline Principles Kriging Models Spatial Interpolation

More information

Software. People. Data. Network. What is GIS? Procedures. Hardware. Chapter 1

Software. People. Data. Network. What is GIS? Procedures. Hardware. Chapter 1 People Software Data Network Procedures Hardware What is GIS? Chapter 1 Why use GIS? Mapping Measuring Monitoring Modeling Managing Five Ms of Applied GIS Chapter 2 Geography matters Quantitative analyses

More information

Concepts and Applications of Kriging

Concepts and Applications of Kriging Esri International User Conference San Diego, California Technical Workshops July 24, 2012 Concepts and Applications of Kriging Konstantin Krivoruchko Eric Krause Outline Intro to interpolation Exploratory

More information

Geog 210C Spring 2011 Lab 6. Geostatistics in ArcMap

Geog 210C Spring 2011 Lab 6. Geostatistics in ArcMap Geog 210C Spring 2011 Lab 6. Geostatistics in ArcMap Overview In this lab you will think critically about the functionality of spatial interpolation, improve your kriging skills, and learn how to use several

More information

11/8/2018. Spatial Interpolation & Geostatistics. Kriging Step 1

11/8/2018. Spatial Interpolation & Geostatistics. Kriging Step 1 (Z i Z j ) 2 / 2 (Z i Zj) 2 / 2 Semivariance y 11/8/2018 Spatial Interpolation & Geostatistics Kriging Step 1 Describe spatial variation with Semivariogram Lag Distance between pairs of points Lag Mean

More information

Luc Anselin Spatial Analysis Laboratory Dept. Agricultural and Consumer Economics University of Illinois, Urbana-Champaign

Luc Anselin Spatial Analysis Laboratory Dept. Agricultural and Consumer Economics University of Illinois, Urbana-Champaign GIS and Spatial Analysis Luc Anselin Spatial Analysis Laboratory Dept. Agricultural and Consumer Economics University of Illinois, Urbana-Champaign http://sal.agecon.uiuc.edu Outline GIS and Spatial Analysis

More information

ENGRG Introduction to GIS

ENGRG Introduction to GIS ENGRG 59910 Introduction to GIS Michael Piasecki March 17, 2014 Lecture 08: Terrain Analysis Outline: Terrain Analysis Earth Surface Representation Contour TIN Mass Points Digital Elevation Models Slope

More information

The Nature of Geographic Data

The Nature of Geographic Data 4 The Nature of Geographic Data OVERVIEW Elaborates on the spatial is special theme Focuses on how phenomena vary across space and the general nature of geographic variation Describes the main principles

More information

Geog 469 GIS Workshop. Data Analysis

Geog 469 GIS Workshop. Data Analysis Geog 469 GIS Workshop Data Analysis Outline 1. What kinds of need-to-know questions can be addressed using GIS data analysis? 2. What is a typology of GIS operations? 3. What kinds of operations are useful

More information

ENGRG Introduction to GIS

ENGRG Introduction to GIS ENGRG 59910 Introduction to GIS Michael Piasecki November 17, 2017 Lecture 11: Terrain Analysis Outline: Terrain Analysis Earth Surface Representation Contour TIN Mass Points Digital Elevation Models Slope

More information

Class 9. Query, Measurement & Transformation; Spatial Buffers; Descriptive Summary, Design & Inference

Class 9. Query, Measurement & Transformation; Spatial Buffers; Descriptive Summary, Design & Inference Class 9 Query, Measurement & Transformation; Spatial Buffers; Descriptive Summary, Design & Inference Spatial Analysis Turns raw data into useful information by adding greater informative content and value

More information

Creating Faulted Geologic Surfaces with ArcGIS

Creating Faulted Geologic Surfaces with ArcGIS What You Will Need ArcGIS 10.2 for Desktop (Basic, Standard, or Advanced license level) ArcGIS Geostatistical Analyst extension ArcGIS Spatial Analyst extension Sample dataset downloaded from esri.com/arcuser

More information

Spatial Interpolation & Geostatistics

Spatial Interpolation & Geostatistics (Z i Z j ) 2 / 2 Spatial Interpolation & Geostatistics Lag Lag Mean Distance between pairs of points 1 y Kriging Step 1 Describe spatial variation with Semivariogram (Z i Z j ) 2 / 2 Point cloud Map 3

More information

Gridding of precipitation and air temperature observations in Belgium. Michel Journée Royal Meteorological Institute of Belgium (RMI)

Gridding of precipitation and air temperature observations in Belgium. Michel Journée Royal Meteorological Institute of Belgium (RMI) Gridding of precipitation and air temperature observations in Belgium Michel Journée Royal Meteorological Institute of Belgium (RMI) Gridding of meteorological data A variety of hydrologic, ecological,

More information

Index. Geostatistics for Environmental Scientists, 2nd Edition R. Webster and M. A. Oliver 2007 John Wiley & Sons, Ltd. ISBN:

Index. Geostatistics for Environmental Scientists, 2nd Edition R. Webster and M. A. Oliver 2007 John Wiley & Sons, Ltd. ISBN: Index Akaike information criterion (AIC) 105, 290 analysis of variance 35, 44, 127 132 angular transformation 22 anisotropy 59, 99 affine or geometric 59, 100 101 anisotropy ratio 101 exploring and displaying

More information

GEOGRAPHY 350/550 Final Exam Fall 2005 NAME:

GEOGRAPHY 350/550 Final Exam Fall 2005 NAME: 1) A GIS data model using an array of cells to store spatial data is termed: a) Topology b) Vector c) Object d) Raster 2) Metadata a) Usually includes map projection, scale, data types and origin, resolution

More information

I don t have much to say here: data are often sampled this way but we more typically model them in continuous space, or on a graph

I don t have much to say here: data are often sampled this way but we more typically model them in continuous space, or on a graph Spatial analysis Huge topic! Key references Diggle (point patterns); Cressie (everything); Diggle and Ribeiro (geostatistics); Dormann et al (GLMMs for species presence/abundance); Haining; (Pinheiro and

More information

Gravity and Magnetic Anomalies Compared to Moho Depth throughout the State of Texas

Gravity and Magnetic Anomalies Compared to Moho Depth throughout the State of Texas Gravity and Magnetic Anomalies Compared to Moho Depth throughout the State of Texas Taylor Borgfeldt Introduction My Master s thesis is to improve and create additional crustal seismic velocity models

More information

Lecture 4. Spatial Statistics

Lecture 4. Spatial Statistics Lecture 4 Spatial Statistics Lecture 4 Outline Statistics in GIS Spatial Metrics Cell Statistics Neighborhood Functions Neighborhood and Zonal Statistics Mapping Density (Density surfaces) Hot Spot Analysis

More information

Types of Spatial Data

Types of Spatial Data Spatial Data Types of Spatial Data Point pattern Point referenced geostatistical Block referenced Raster / lattice / grid Vector / polygon Point Pattern Data Interested in the location of points, not their

More information

Introduction. Semivariogram Cloud

Introduction. Semivariogram Cloud Introduction Data: set of n attribute measurements {z(s i ), i = 1,, n}, available at n sample locations {s i, i = 1,, n} Objectives: Slide 1 quantify spatial auto-correlation, or attribute dissimilarity

More information

GIST 4302/5302: Spatial Analysis and Modeling

GIST 4302/5302: Spatial Analysis and Modeling GIST 4302/5302: Spatial Analysis and Modeling Lecture 2: Review of Map Projections and Intro to Spatial Analysis Guofeng Cao http://thestarlab.github.io Department of Geosciences Texas Tech University

More information

ArcGIS Pro: Analysis and Geoprocessing. Nicholas M. Giner Esri Christopher Gabris Blue Raster

ArcGIS Pro: Analysis and Geoprocessing. Nicholas M. Giner Esri Christopher Gabris Blue Raster ArcGIS Pro: Analysis and Geoprocessing Nicholas M. Giner Esri Christopher Gabris Blue Raster Agenda What is Analysis and Geoprocessing? Analysis in ArcGIS Pro - 2D (Spatial xy) - 3D (Elevation - z) - 4D

More information

Introduction To Raster Based GIS Dr. Zhang GISC 1421 Fall 2016, 10/19

Introduction To Raster Based GIS Dr. Zhang GISC 1421 Fall 2016, 10/19 Introduction To Raster Based GIS Dr. Zhang GISC 1421 Fall 2016, 10/19 Model of the course Using and making maps Navigating GIS maps Map design Working with spatial data Geoprocessing Spatial data infrastructure

More information

Spatial Analysis and Modeling (GIST 4302/5302) Guofeng Cao Department of Geosciences Texas Tech University

Spatial Analysis and Modeling (GIST 4302/5302) Guofeng Cao Department of Geosciences Texas Tech University Spatial Analysis and Modeling (GIST 4302/5302) Guofeng Cao Department of Geosciences Texas Tech University TTU Graduate Certificate Geographic Information Science and Technology (GIST) 3 Core Courses and

More information

CREATION OF DEM BY KRIGING METHOD AND EVALUATION OF THE RESULTS

CREATION OF DEM BY KRIGING METHOD AND EVALUATION OF THE RESULTS CREATION OF DEM BY KRIGING METHOD AND EVALUATION OF THE RESULTS JANA SVOBODOVÁ, PAVEL TUČEK* Jana Svobodová, Pavel Tuček: Creation of DEM by kriging method and evaluation of the results. Geomorphologia

More information

Integration of Topographic and Bathymetric Digital Elevation Model using ArcGIS. Interpolation Methods: A Case Study of the Klamath River Estuary

Integration of Topographic and Bathymetric Digital Elevation Model using ArcGIS. Interpolation Methods: A Case Study of the Klamath River Estuary Integration of Topographic and Bathymetric Digital Elevation Model using ArcGIS Interpolation Methods: A Case Study of the Klamath River Estuary by Rachel R. Rodriguez A Thesis Presented to the FACULTY

More information

Introduction to GIS - 2

Introduction to GIS - 2 Introduction to GIS - 2 Outline Using GIS Representation of spatial objects in GIS Prof. D. Nagesh Kumar Department of Civil Engineering Indian Institute of Science Bangalore 560 012, India http://www.civil.iisc.ernet.in/~nagesh

More information

7 Geostatistics. Figure 7.1 Focus of geostatistics

7 Geostatistics. Figure 7.1 Focus of geostatistics 7 Geostatistics 7.1 Introduction Geostatistics is the part of statistics that is concerned with geo-referenced data, i.e. data that are linked to spatial coordinates. To describe the spatial variation

More information

Investigation of Monthly Pan Evaporation in Turkey with Geostatistical Technique

Investigation of Monthly Pan Evaporation in Turkey with Geostatistical Technique Investigation of Monthly Pan Evaporation in Turkey with Geostatistical Technique Hatice Çitakoğlu 1, Murat Çobaner 1, Tefaruk Haktanir 1, 1 Department of Civil Engineering, Erciyes University, Kayseri,

More information

GIST 4302/5302: Spatial Analysis and Modeling Lecture 2: Review of Map Projections and Intro to Spatial Analysis

GIST 4302/5302: Spatial Analysis and Modeling Lecture 2: Review of Map Projections and Intro to Spatial Analysis GIST 4302/5302: Spatial Analysis and Modeling Lecture 2: Review of Map Projections and Intro to Spatial Analysis Guofeng Cao http://www.spatial.ttu.edu Department of Geosciences Texas Tech University guofeng.cao@ttu.edu

More information

Propagation of Errors in Spatial Analysis

Propagation of Errors in Spatial Analysis Stephen F. Austin State University SFA ScholarWorks Faculty Presentations Spatial Science 2001 Propagation of Errors in Spatial Analysis Peter P. Siska I-Kuai Hung Arthur Temple College of Forestry and

More information

POPULAR CARTOGRAPHIC AREAL INTERPOLATION METHODS VIEWED FROM A GEOSTATISTICAL PERSPECTIVE

POPULAR CARTOGRAPHIC AREAL INTERPOLATION METHODS VIEWED FROM A GEOSTATISTICAL PERSPECTIVE CO-282 POPULAR CARTOGRAPHIC AREAL INTERPOLATION METHODS VIEWED FROM A GEOSTATISTICAL PERSPECTIVE KYRIAKIDIS P. University of California Santa Barbara, MYTILENE, GREECE ABSTRACT Cartographic areal interpolation

More information

Types of spatial data. The Nature of Geographic Data. Types of spatial data. Spatial Autocorrelation. Continuous spatial data: geostatistics

Types of spatial data. The Nature of Geographic Data. Types of spatial data. Spatial Autocorrelation. Continuous spatial data: geostatistics The Nature of Geographic Data Types of spatial data Continuous spatial data: geostatistics Samples may be taken at intervals, but the spatial process is continuous e.g. soil quality Discrete data Irregular:

More information

Nature of Spatial Data. Outline. Spatial Is Special

Nature of Spatial Data. Outline. Spatial Is Special Nature of Spatial Data Outline Spatial is special Bad news: the pitfalls of spatial data Good news: the potentials of spatial data Spatial Is Special Are spatial data special? Why spatial data require

More information

Outline. Introduction to SpaceStat and ESTDA. ESTDA & SpaceStat. Learning Objectives. Space-Time Intelligence System. Space-Time Intelligence System

Outline. Introduction to SpaceStat and ESTDA. ESTDA & SpaceStat. Learning Objectives. Space-Time Intelligence System. Space-Time Intelligence System Outline I Data Preparation Introduction to SpaceStat and ESTDA II Introduction to ESTDA and SpaceStat III Introduction to time-dynamic regression ESTDA ESTDA & SpaceStat Learning Objectives Activities

More information

An Introduction to Pattern Statistics

An Introduction to Pattern Statistics An Introduction to Pattern Statistics Nearest Neighbors The CSR hypothesis Clark/Evans and modification Cuzick and Edwards and controls All events k function Weighted k function Comparative k functions

More information

Geometric Algorithms in GIS

Geometric Algorithms in GIS Geometric Algorithms in GIS GIS Software Dr. M. Gavrilova GIS System What is a GIS system? A system containing spatially referenced data that can be analyzed and converted to new information for a specific

More information

Working with Digital Elevation Models and Digital Terrain Models in ArcMap 9

Working with Digital Elevation Models and Digital Terrain Models in ArcMap 9 Working with Digital Elevation Models and Digital Terrain Models in ArcMap 9 1 TABLE OF CONTENTS INTRODUCTION...3 WORKING WITH DIGITAL TERRAIN MODEL (DTM) DATA FROM NRVIS, CITY OF KITCHENER, AND CITY OF

More information

KAAF- GE_Notes GIS APPLICATIONS LECTURE 3

KAAF- GE_Notes GIS APPLICATIONS LECTURE 3 GIS APPLICATIONS LECTURE 3 SPATIAL AUTOCORRELATION. First law of geography: everything is related to everything else, but near things are more related than distant things Waldo Tobler Check who is sitting

More information

Introduction to Geographic

Introduction to Geographic Eighth Edition Introduction to Geographic Information Systems Kang-tsung Chang University of Idaho Mc Graw Hill Education Preface xiv CHAPTER 1 Introduction 1 1.1 GIS 2 1.1.1 Components of a GIS 3 1.1.2

More information

Optimizing Sampling Schemes for Mapping and Dredging Polluted Sediment Layers

Optimizing Sampling Schemes for Mapping and Dredging Polluted Sediment Layers This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. Optimizing Sampling Schemes for Mapping and Dredging Polluted

More information

Spatial Data Mining. Regression and Classification Techniques

Spatial Data Mining. Regression and Classification Techniques Spatial Data Mining Regression and Classification Techniques 1 Spatial Regression and Classisfication Discrete class labels (left) vs. continues quantities (right) measured at locations (2D for geographic

More information

Spatial Analysis with ArcGIS Pro STUDENT EDITION

Spatial Analysis with ArcGIS Pro STUDENT EDITION Spatial Analysis with ArcGIS Pro STUDENT EDITION Copyright 2018 Esri All rights reserved. Course version 2.0. Version release date November 2018. Printed in the United States of America. The information

More information

Working with Digital Elevation Models and Spot Heights in ArcMap

Working with Digital Elevation Models and Spot Heights in ArcMap Working with Digital Elevation Models and Spot Heights in ArcMap 10.3.1 1 TABLE OF CONTENTS INTRODUCTION... 3 WORKING WITH SPOT HEIGHTS FROM NRVIS, CITY OF KITCHENER, AND CITY OF TORONTO...4 WORKING WITH

More information

A robust statistically based approach to estimating the probability of contamination occurring between sampling locations

A robust statistically based approach to estimating the probability of contamination occurring between sampling locations A robust statistically based approach to estimating the probability of contamination occurring between sampling locations Peter Beck Principal Environmental Scientist Image placeholder Image placeholder

More information

8.9 Geographical Information Systems Advantages of GIS

8.9 Geographical Information Systems Advantages of GIS 8.9 Geographical Information Systems A Geographic Information System (GIS) is a computer-based system that is used in input, storage, analysis manipulation, retrieval, and output, of spatial data. These

More information

Modeling of Anticipated Subsidence due to Gas Extraction Using Kriging on Sparse Data Sets

Modeling of Anticipated Subsidence due to Gas Extraction Using Kriging on Sparse Data Sets Modeling of Anticipated Subsidence due to Gas Extraction Using Kriging on Sparse Data Sets Matthew TAIT and Andrew HUNTER, Canada Key words: Kriging, Trend Surfaces, Sparse networks, Subsidence monitoring

More information

Interpolation Techniques

Interpolation Techniques Interpolation Techniques Using QGIS Tutorial ID: IGET_SA_002 This tutorial has been developed by BVIEER as part of the IGET web portal intended to provide easy access to geospatial education. This tutorial

More information

A Geostatistical Approach to Linking Geographically-Aggregated Data From Different Sources

A Geostatistical Approach to Linking Geographically-Aggregated Data From Different Sources A Geostatistical Approach to Linking Geographically-Aggregated Data From Different Sources Carol A. Gotway Crawford National Center for Environmental Health Centers for Disease Control and Prevention,

More information

Introduction to GIS I

Introduction to GIS I Introduction to GIS Introduction How to answer geographical questions such as follows: What is the population of a particular city? What are the characteristics of the soils in a particular land parcel?

More information

Tutorial 8 Raster Data Analysis

Tutorial 8 Raster Data Analysis Objectives Tutorial 8 Raster Data Analysis This tutorial is designed to introduce you to a basic set of raster-based analyses including: 1. Displaying Digital Elevation Model (DEM) 2. Slope calculations

More information

Introduction to Geographic Information Systems (GIS): Environmental Science Focus

Introduction to Geographic Information Systems (GIS): Environmental Science Focus Introduction to Geographic Information Systems (GIS): Environmental Science Focus September 9, 2013 We will begin at 9:10 AM. Login info: Username:!cnrguest Password: gocal_bears Instructor: Domain: CAMPUS

More information

A Comparative Analysis of Extracted Heights from Topographic Maps and measured Reduced Levels in Kumasi, Ghana.

A Comparative Analysis of Extracted Heights from Topographic Maps and measured Reduced Levels in Kumasi, Ghana. A Comparative Analysis of Extracted Heights from Topographic Maps and measured Reduced Levels in Kumasi, Ghana. J. Ayer 1*, A.B. Agyemang 1, F. Yeboah 2, E. M. Osei Jnr. 1, S. Abebrese 1, I. Suleman 1

More information

Chapter 6. Fundamentals of GIS-Based Data Analysis for Decision Support. Table 6.1. Spatial Data Transformations by Geospatial Data Types

Chapter 6. Fundamentals of GIS-Based Data Analysis for Decision Support. Table 6.1. Spatial Data Transformations by Geospatial Data Types Chapter 6 Fundamentals of GIS-Based Data Analysis for Decision Support FROM: Points Lines Polygons Fields Table 6.1. Spatial Data Transformations by Geospatial Data Types TO: Points Lines Polygons Fields

More information

Extent of Radiological Contamination in Soil at Four Sites near the Fukushima Daiichi Power Plant, Japan (ArcGIS)

Extent of Radiological Contamination in Soil at Four Sites near the Fukushima Daiichi Power Plant, Japan (ArcGIS) Extent of Radiological Contamination in Soil at Four Sites near the Fukushima Daiichi Power Plant, Japan (ArcGIS) Contact: Ted Parks, AMEC Foster Wheeler, theodore.parks@amecfw.com, Alex Mikszewski, AMEC

More information

Spatial Analysis 1. Introduction

Spatial Analysis 1. Introduction Spatial Analysis 1 Introduction Geo-referenced Data (not any data) x, y coordinates (e.g., lat., long.) ------------------------------------------------------ - Table of Data: Obs. # x y Variables -------------------------------------

More information

Another Look at Non-Euclidean Variography

Another Look at Non-Euclidean Variography Another Look at Non-Euclidean Variography G. Dubois European Commission DG Joint Research Centre Institute for Environment and Sustainability, Ispra, Italy. Email: gregoire.dubois@jrc.it ABSTRACT: Tobler

More information

Outline. Geographic Information Analysis & Spatial Data. Spatial Analysis is a Key Term. Lecture #1

Outline. Geographic Information Analysis & Spatial Data. Spatial Analysis is a Key Term. Lecture #1 Geographic Information Analysis & Spatial Data Lecture #1 Outline Introduction Spatial Data Types: Objects vs. Fields Scale of Attribute Measures GIS and Spatial Analysis Spatial Analysis is a Key Term

More information

Overview key concepts and terms (based on the textbook Chang 2006 and the practical manual)

Overview key concepts and terms (based on the textbook Chang 2006 and the practical manual) Introduction Geo-information Science (GRS-10306) Overview key concepts and terms (based on the textbook 2006 and the practical manual) Introduction Chapter 1 Geographic information system (GIS) Geographically

More information

An Information Model for Maps: Towards Cartographic Production from GIS Databases

An Information Model for Maps: Towards Cartographic Production from GIS Databases An Information Model for s: Towards Cartographic Production from GIS Databases Aileen Buckley, Ph.D. and Charlie Frye Senior Cartographic Researchers, ESRI Barbara Buttenfield, Ph.D. Professor, University

More information

Overview of Statistical Analysis of Spatial Data

Overview of Statistical Analysis of Spatial Data Overview of Statistical Analysis of Spatial Data Geog 2C Introduction to Spatial Data Analysis Phaedon C. Kyriakidis www.geog.ucsb.edu/ phaedon Department of Geography University of California Santa Barbara

More information

Popular Mechanics, 1954

Popular Mechanics, 1954 Introduction to GIS Popular Mechanics, 1954 1986 $2,599 1 MB of RAM 2017, $750, 128 GB memory, 2 GB of RAM Computing power has increased exponentially over the past 30 years, Allowing the existence of

More information

Determining a Useful Interpolation Method for Surficial Sediments in the Gulf of Maine Ian Cochran

Determining a Useful Interpolation Method for Surficial Sediments in the Gulf of Maine Ian Cochran Determining a Useful Interpolation Method for Surficial Sediments in the Gulf of Maine Ian Cochran ABSTRACT This study was conducted to determine if an interpolation of surficial sediments in the Gulf

More information

Handling Raster Data for Hydrologic Applications

Handling Raster Data for Hydrologic Applications Handling Raster Data for Hydrologic Applications Prepared by Venkatesh Merwade Lyles School of Civil Engineering, Purdue University vmerwade@purdue.edu January 2018 Objective The objective of this exercise

More information

Uncertainty modeling of glacier surface mapping from GPS: An example from Pedersenbreen, Arctic

Uncertainty modeling of glacier surface mapping from GPS: An example from Pedersenbreen, Arctic Uncertainty modeling of glacier surface mapping from GPS: An example from Pedersenbreen, Arctic Xi Zhao, Songtao Ai 1 Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan 430079,

More information

Basic Geostatistics: Pattern Description

Basic Geostatistics: Pattern Description Basic Geostatistics: Pattern Description A SpaceStat Software Tutorial Copyright 2013, BioMedware, Inc. (www.biomedware.com). All rights reserved. SpaceStat and BioMedware are trademarks of BioMedware,

More information

ArcGIS Geostatistical Analyst: Powerful Exploration and Data Interpolation Solutions

ArcGIS Geostatistical Analyst: Powerful Exploration and Data Interpolation Solutions TM ArcGIS Geostatistical Analyst: Powerful Exploration and Data Interpolation Solutions An ESRI White Paper March 2001 ESRI 380 New York St., Redlands, CA 92373-8100, USA TEL 909-793-2853 FAX 909-793-5953

More information

Intro to GIS In Review

Intro to GIS In Review Intro to GIS In Review GIS Analysis Winter 2016 GIS A quarter in review Geographic data types Acquiring GIS data Projections / Coordinate systems Working with attribute tables Data classification Map design

More information

GIS Test Drive What a Geographic Information System Is and What it Can Do. Alison Davis-Holland

GIS Test Drive What a Geographic Information System Is and What it Can Do. Alison Davis-Holland GIS Test Drive What a Geographic Information System Is and What it Can Do Alison Davis-Holland adavisholland@gmail.com WHO AM I? Geospatial Analyst M.S. in Geographic and Cartographic Sciences Use GIS

More information

ADVANCE GIS ANALYSIS ON ZONAL URBAN PLAN PROJECT

ADVANCE GIS ANALYSIS ON ZONAL URBAN PLAN PROJECT Journal of Young Scientist, Volume II, 2014 ISSN 2344-1283; ISSN CD-ROM 2344-1291; ISSN Online 2344-1305; ISSN-L 2344 1283 ADVANCE GIS ANALYSIS ON ZONAL URBAN PLAN PROJECT Andrei-Șerban TOMPEA 1 Scientific

More information

Texas A&M University. Zachary Department of Civil Engineering. Instructor: Dr. Francisco Olivera. CVEN 658 Civil Engineering Applications of GIS

Texas A&M University. Zachary Department of Civil Engineering. Instructor: Dr. Francisco Olivera. CVEN 658 Civil Engineering Applications of GIS 1 Texas A&M University Zachary Department of Civil Engineering Instructor: Dr. Francisco Olivera CVEN 658 Civil Engineering Applications of GIS The Use of ArcGIS Geostatistical Analyst Exploratory Spatial

More information

UNDERSTANDING ENGINEERING MATHEMATICS

UNDERSTANDING ENGINEERING MATHEMATICS UNDERSTANDING ENGINEERING MATHEMATICS JOHN BIRD WORKED SOLUTIONS TO EXERCISES 1 INTRODUCTION In Understanding Engineering Mathematic there are over 750 further problems arranged regularly throughout the

More information

An Introduction to Geographical Information Systems. Training Manual. Emily Schmidt, Helina Tilahun, Mekamu Kedir, and Hailu Shiferaw

An Introduction to Geographical Information Systems. Training Manual. Emily Schmidt, Helina Tilahun, Mekamu Kedir, and Hailu Shiferaw Ethiopian Strategy Support Program II (ESSP II) An Introduction to Geographical Information Systems Training Manual Emily Schmidt, Helina Tilahun, Mekamu Kedir, and Hailu Shiferaw Ethiopia Strategy Support

More information