Information-driven learning, distributed fusion, and planning

Size: px
Start display at page:

Download "Information-driven learning, distributed fusion, and planning"

Transcription

1 ARO ARO MURI MURI on on Value-centered Theory Theory for for Adaptive Learning, Inference, Tracking, and and Exploitation -driven learning, distributed fusion, and planning Co-PI Alfred Hero University Michigan

2 Our main thrust this year Quantify and optimize VoI by: dimensionality reduction, nearest neighbor aggregation, and human-in-the-loop. Progress 1: -driven learning: Learning structure in high dimension: Kronecker PCA For spatio-temporal sources Kronecker PCA captures information much more efficiently than standard (low-rank) PCA Progress 2: Distributed information fusion: Distributed inference: local 2 nd order nbd marginalization Performs as well as global fusion w/o message passing Progress 3: Human-in-the-loop planning and processing Cooperative human-machine 20 questions framework Human adds early information gain for target detection

3 Progress 1: driven learning Last year: KGlasso MSE scaling laws Unachievable region 20 uncorrelated sequences KGlasso has best scaling law in n,p Task: Estimate spatio-temporal covariance Time index i Tsiligkaridis, Hero, Zhou, 2012

4 Progress 1: -driven learning This year: Kronecker PCA (See poster) Deficiency: Single KP may not be adequate fit to covariance A Solution: Use a sum KPs to approximate covariance -> K-PCA Standard PCA Kronecker PCA r r Property (Pistsianis and Van Loan 1992): K-PCA is complete expansion Our K-PCA algorithm: Spectral solution to convex minimization problem Theorem [1]: For pq x pq covariance C the MSE Kronecker PCA approximation C r to C is bounded C C r F 2 [1] Tsiligkaridis & H TSP 2013 mmm rrrr R r R R C F 2 + C r p 2 + q 2 n

5 Progress 1: -driven learning Kronecker PCA (See poster) Kronecker spectrum Eigenspectrum [1] Tsiligkaridis & H TSP 2013

6 Objective: predict states measured by SN Model: Gauss-Markov random field: Progress 2: Distributed information fusion in sensor networks Theorem [1]: For pq x pq sample cov C the MSE Kronecker PCA rank r is bounded 2 C C r F mmm rrrr R r R R C F 2 + C r p 2 + q 2 n Standard: Iterative ML by message passing Proposed: Non-iterative by 2-NN relaxation Meng,Wei,Wiesel,H, AISTATS 2013(NP Award)

7 Progress 3: Human-in-the-loop processing Cooperative localization (See poster) Optimal queries are equalizing bisection rules Human advantage: can account for context Human limitation: limited visual accuity Human MSE gain ratio Tsiligkaridis, Sadler & Hero, ICASSP 2013

8 Summary year 2 activities This year s research directly impacts -driven learning Kronecker PCA provides much better fit to spatio-temporal data than standard PCA. VoI for prediction/detection/classification is improved. Distributed information fusion Second-order neighborhood information has nearly as high value as global information about SN. exploitation Inclusion human-in-the-loop provides up to 15% MSE gain in early iterations. Value human-provided information characterized by resolution acuity parameter kappa.

9 Ongoing and future focus areas and collaborations Working towards a unified VoI theory sensing spatiotemporal processes: VoI-driven mission planning with target-dependent payfs (UM/MIT) (Poster today - Mu, Newstadt, How, H) theoretic bounds and algorithms for learning/fusion/planning that account for side-information (human inputs, low rank, sparse, Kronecker structure) geometric theory VoI (UM/ASU) Applications to anomaly detection in video, SNs and radar (UM/OSU/AFRL). Experimental validation studies: Stware defined radar testbed (UM/OSU/ASU/MIT). Refined human models and experiments (UM/UCSD)

10 Publications in year 2 T. Tsiligkaridis, A.O. Hero, S. Zhou, "Convergence properties Kronecker graphical lasso algorithms," IEEE Trans on SP, 2013 T. Tsiligkaridis N and A.O. Hero, ``Covariance Estimation in High Dimensions via Kronecker Product Expansions,'' IEEE Trans on SP, D. Wei and A.O. Hero, "Multistage adaptive estimation sparse Signals," IEEE Journal Selected Topics in Signal Processing, Dennis Wei and Alfred O. Hero, III, "Adaptive spectrum sensing and estimation," ICASSP 2013, Vancouver. Z. Meng, D. Wei, A. Wiesel, A.O. Hero, "Distributed Learning Gaussian Graphical Models via Marginal Likelihoods, AISTAT. Theodoros Tsiligkaridis and Alfred O. Hero III, "Low Separation Rank Covariance Estimation using Kronecker Product Expansions," IEEE ISIT 2013, Istanbul. Theodoros Tsiligkaridis, Brian M. Sadler and Alfred O. Hero III, "A collaborative 20 questions model for target search with humanmachine interaction," ICASSP 2013, Vancouver.

Thrust Area 2: Fundamental physical data acquisition and analysis. Alfred Hero Depts of EECS, BME, Statistics University of Michigan

Thrust Area 2: Fundamental physical data acquisition and analysis. Alfred Hero Depts of EECS, BME, Statistics University of Michigan Thrust Area 2: Fundamental physical data acquisition and analysis Alfred Hero Depts of EECS, BME, Statistics University of Michigan Thrust II personnel Alfred Hero (UM EECS/BME/STATS): Event correlation

More information

High Dimensional Separable Representations for Statistical Estimation and Controlled Sensing

High Dimensional Separable Representations for Statistical Estimation and Controlled Sensing High Dimensional Separable Representations for Statistical Estimation and Controlled Sensing by Theodoros Tsiligkaridis A dissertation submitted in partial fulfillment of the requirements for the degree

More information

Research Overview. Kristjan Greenewald. February 2, University of Michigan - Ann Arbor

Research Overview. Kristjan Greenewald. February 2, University of Michigan - Ann Arbor Research Overview Kristjan Greenewald University of Michigan - Ann Arbor February 2, 2016 2/17 Background and Motivation Want efficient statistical modeling of high-dimensional spatio-temporal data with

More information

VoI for Learning and Inference! in Sensor Networks!

VoI for Learning and Inference! in Sensor Networks! ARO MURI on Value-centered Information Theory for Adaptive Learning, Inference, Tracking, and Exploitation VoI for Learning and Inference in Sensor Networks Gene Whipps 1,2, Emre Ertin 2, Randy Moses 2

More information

Mathematical foundations of VoI for sensing and data collection

Mathematical foundations of VoI for sensing and data collection Value-centered Information Theory for Adaptive Learning, Inference, Tracking, and Exploitation Mathematical foundations of VoI for sensing and data collection Al Hero and Doug Cochran Objective: fundamental

More information

CORRELATION MINING IN LARGE NETWORKS WITH LIMITED SAMPLES

CORRELATION MINING IN LARGE NETWORKS WITH LIMITED SAMPLES 1 65 CORRELATION MINING IN LARGE NETWORKS WITH LIMITED SAMPLES Alfred Hero University of Michigan Aug 20, 2014 2 65 1 Motivation 2 Correlation mining 3 Graphical models of correlation 4 Correlation mining

More information

A COLLABORATIVE 20 QUESTIONS MODEL FOR TARGET SEARCH WITH HUMAN-MACHINE INTERACTION

A COLLABORATIVE 20 QUESTIONS MODEL FOR TARGET SEARCH WITH HUMAN-MACHINE INTERACTION A COLLABORATIVE 20 QUESTIONS MODEL FOR TARGET SEARCH WITH HUMAN-MACHINE INTERACTION Theodoros Tsiligkaridis, Brian M Sadler and Alfred O Hero III, University of Michigan, EECS Dept and Dept Statistics,

More information

A Bayesian Perspective on Residential Demand Response Using Smart Meter Data

A Bayesian Perspective on Residential Demand Response Using Smart Meter Data A Bayesian Perspective on Residential Demand Response Using Smart Meter Data Datong-Paul Zhou, Maximilian Balandat, and Claire Tomlin University of California, Berkeley [datong.zhou, balandat, tomlin]@eecs.berkeley.edu

More information

Marginal Likelihoods for Distributed Parameter Estimation of Gaussian Graphical Models

Marginal Likelihoods for Distributed Parameter Estimation of Gaussian Graphical Models IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 20, OCTOBER 15, 2014 5425 Marginal Likelihoods for Distributed Parameter Estimation of Gaussian Graphical Models Zhaoshi Meng, StudentMember,IEEE,DennisWei,Member,IEEE,AmiWiesel,Member,IEEE,and

More information

Sparse Gaussian Markov Random Field Mixtures for Anomaly Detection

Sparse Gaussian Markov Random Field Mixtures for Anomaly Detection Sparse Gaussian Markov Random Field Mixtures for Anomaly Detection Tsuyoshi Idé ( Ide-san ), Ankush Khandelwal*, Jayant Kalagnanam IBM Research, T. J. Watson Research Center (*Currently with University

More information

Distributed learning, prediction and detection in probabilistic graphs

Distributed learning, prediction and detection in probabilistic graphs Distributed learning, prediction and detection in probabilistic graphs by Zhaoshi Meng A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Electrical

More information

Covariance Estimation in High Dimensions via Kronecker Product Expansions

Covariance Estimation in High Dimensions via Kronecker Product Expansions Covariance Estimation in High Dimensions via Kronecker Product Expansions Theodoros Tsiligkaridis *, Student Member, IEEE, Alfred O. Hero III, Fellow, IEEE 1 arxiv:132.2686v1 [stat.me] 23 Dec 213 Abstract

More information

High Dimensional Covariance Estimation for Spatio-Temporal Processes

High Dimensional Covariance Estimation for Spatio-Temporal Processes High Dimensional Covariance Estimation for Spatio-Temporal Processes by Kristjan Greenewald A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Electrical

More information

Linear Methods for Regression. Lijun Zhang

Linear Methods for Regression. Lijun Zhang Linear Methods for Regression Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Linear Regression Models and Least Squares Subset Selection Shrinkage Methods Methods Using Derived

More information

Graphical Models for Collaborative Filtering

Graphical Models for Collaborative Filtering Graphical Models for Collaborative Filtering Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Sequence modeling HMM, Kalman Filter, etc.: Similarity: the same graphical model topology,

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 2016 Robert Nowak Probabilistic Graphical Models 1 Introduction We have focused mainly on linear models for signals, in particular the subspace model x = Uθ, where U is a n k matrix and θ R k is a vector

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 295-P, Spring 213 Prof. Erik Sudderth Lecture 11: Inference & Learning Overview, Gaussian Graphical Models Some figures courtesy Michael Jordan s draft

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

Deep Learning Srihari. Deep Belief Nets. Sargur N. Srihari

Deep Learning Srihari. Deep Belief Nets. Sargur N. Srihari Deep Belief Nets Sargur N. Srihari srihari@cedar.buffalo.edu Topics 1. Boltzmann machines 2. Restricted Boltzmann machines 3. Deep Belief Networks 4. Deep Boltzmann machines 5. Boltzmann machines for continuous

More information

Abnormal Activity Detection and Tracking Namrata Vaswani Dept. of Electrical and Computer Engineering Iowa State University

Abnormal Activity Detection and Tracking Namrata Vaswani Dept. of Electrical and Computer Engineering Iowa State University Abnormal Activity Detection and Tracking Namrata Vaswani Dept. of Electrical and Computer Engineering Iowa State University Abnormal Activity Detection and Tracking 1 The Problem Goal: To track activities

More information

Thrust #3 Active Information Exploitation for Resource Management. Value of Information Sharing In Networked Systems. Doug Cochran

Thrust #3 Active Information Exploitation for Resource Management. Value of Information Sharing In Networked Systems. Doug Cochran ARO MURI on Value-centered Theory for Adaptive Learning, Inference, Tracking, and Exploitation Thrust #3 Active Exploitation for Resource Management Value Sharing In Networked Systems Doug Cochran Synopsis

More information

Machine Learning Techniques for Computer Vision

Machine Learning Techniques for Computer Vision Machine Learning Techniques for Computer Vision Part 2: Unsupervised Learning Microsoft Research Cambridge x 3 1 0.5 0.2 0 0.5 0.3 0 0.5 1 ECCV 2004, Prague x 2 x 1 Overview of Part 2 Mixture models EM

More information

Proximity-Based Anomaly Detection using Sparse Structure Learning

Proximity-Based Anomaly Detection using Sparse Structure Learning Proximity-Based Anomaly Detection using Sparse Structure Learning Tsuyoshi Idé (IBM Tokyo Research Lab) Aurelie C. Lozano, Naoki Abe, and Yan Liu (IBM T. J. Watson Research Center) 2009/04/ SDM 2009 /

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

Recent Advances in Bayesian Inference Techniques

Recent Advances in Bayesian Inference Techniques Recent Advances in Bayesian Inference Techniques Christopher M. Bishop Microsoft Research, Cambridge, U.K. research.microsoft.com/~cmbishop SIAM Conference on Data Mining, April 2004 Abstract Bayesian

More information

Decomposable Principal Component Analysis

Decomposable Principal Component Analysis Decomposable Principal Component Analysis 1 Ami Wiesel and Alfred O. Hero III Department of Electrical Engineering and Computer Science University of Michigan, Ann Arbor, MI 48109, USA E-mails: {amiw,hero}@umich.edu

More information

Detection of Anomalous Crowd Behavior Using Spatio-Temporal Multiresolution Model and Kronecker Sum Decompositions

Detection of Anomalous Crowd Behavior Using Spatio-Temporal Multiresolution Model and Kronecker Sum Decompositions 1 Detection of Anomalous Crowd Behavior Using Spatio-Temporal Multiresolution Model and Kronecker Sum Decompositions Kristjan Greenewald, Student Member, IEEE, and Alfred O. Hero III, Fellow, IEEE arxiv:1401.3291v2

More information

Learning Multiple Tasks with a Sparse Matrix-Normal Penalty

Learning Multiple Tasks with a Sparse Matrix-Normal Penalty Learning Multiple Tasks with a Sparse Matrix-Normal Penalty Yi Zhang and Jeff Schneider NIPS 2010 Presented by Esther Salazar Duke University March 25, 2011 E. Salazar (Reading group) March 25, 2011 1

More information

Learning correlations in large scale data

Learning correlations in large scale data 1 49 Learning correlations in large scale data Alfred Hero University of Michigan Aug 10, 2015 2 49 Acknowledgments Students and collaborators on correlation learning Kevin Moon (UM ECE Student) Brandon

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 13: Learning in Gaussian Graphical Models, Non-Gaussian Inference, Monte Carlo Methods Some figures

More information

Gaussian Multiresolution Models: Exploiting Sparse Markov and Covariance Structure

Gaussian Multiresolution Models: Exploiting Sparse Markov and Covariance Structure Gaussian Multiresolution Models: Exploiting Sparse Markov and Covariance Structure The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Learning MN Parameters with Alternative Objective Functions. Sargur Srihari

Learning MN Parameters with Alternative Objective Functions. Sargur Srihari Learning MN Parameters with Alternative Objective Functions Sargur srihari@cedar.buffalo.edu 1 Topics Max Likelihood & Contrastive Objectives Contrastive Objective Learning Methods Pseudo-likelihood Gradient

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2014 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Mathematical Methods for Data Analysis

Mathematical Methods for Data Analysis Mathematical Methods for Data Analysis Massimiliano Pontil Istituto Italiano di Tecnologia and Department of Computer Science University College London Massimiliano Pontil Mathematical Methods for Data

More information

Multivariate Normal Models

Multivariate Normal Models Case Study 3: fmri Prediction Graphical LASSO Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Emily Fox February 26 th, 2013 Emily Fox 2013 1 Multivariate Normal Models

More information

On Convergence of Kronecker Graphical Lasso Algorithms

On Convergence of Kronecker Graphical Lasso Algorithms IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 7, APRIL 1, 2013 1743 On Convergence of Kronecker Graphical Lasso Algorithms Theodoros Tsiligkaridis, Student Member, IEEE, Alfred O. Hero III, Fellow,

More information

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang.

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang. Machine Learning CUNY Graduate Center, Spring 2013 Lectures 11-12: Unsupervised Learning 1 (Clustering: k-means, EM, mixture models) Professor Liang Huang huang@cs.qc.cuny.edu http://acl.cs.qc.edu/~lhuang/teaching/machine-learning

More information

APOCS: A RAPIDLY CONVERGENT SOURCE LOCALIZATION ALGORITHM FOR SENSOR NETWORKS. Doron Blatt and Alfred O. Hero, III

APOCS: A RAPIDLY CONVERGENT SOURCE LOCALIZATION ALGORITHM FOR SENSOR NETWORKS. Doron Blatt and Alfred O. Hero, III APOCS: A RAPIDLY CONVERGENT SOURCE LOCALIZATION ALGORITHM FOR SENSOR NETWORKS Doron Blatt and Alfred O. Hero, III Department of Electrical Engineering and Computer Science, University of Michigan, Ann

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Undirected Graphical Models Mark Schmidt University of British Columbia Winter 2016 Admin Assignment 3: 2 late days to hand it in today, Thursday is final day. Assignment 4:

More information

Robust Principal Component Analysis

Robust Principal Component Analysis ELE 538B: Mathematics of High-Dimensional Data Robust Principal Component Analysis Yuxin Chen Princeton University, Fall 2018 Disentangling sparse and low-rank matrices Suppose we are given a matrix M

More information

Active and Semi-supervised Kernel Classification

Active and Semi-supervised Kernel Classification Active and Semi-supervised Kernel Classification Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London Work done in collaboration with Xiaojin Zhu (CMU), John Lafferty (CMU),

More information

Predicting Neighbor Goodness in Collaborative Filtering

Predicting Neighbor Goodness in Collaborative Filtering Predicting Neighbor Goodness in Collaborative Filtering Alejandro Bellogín and Pablo Castells {alejandro.bellogin, pablo.castells}@uam.es Universidad Autónoma de Madrid Escuela Politécnica Superior Introduction:

More information

Gaussian Graphical Models and Graphical Lasso

Gaussian Graphical Models and Graphical Lasso ELE 538B: Sparsity, Structure and Inference Gaussian Graphical Models and Graphical Lasso Yuxin Chen Princeton University, Spring 2017 Multivariate Gaussians Consider a random vector x N (0, Σ) with pdf

More information

Machine learning for pervasive systems Classification in high-dimensional spaces

Machine learning for pervasive systems Classification in high-dimensional spaces Machine learning for pervasive systems Classification in high-dimensional spaces Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi Version

More information

Bayesian Networks Inference with Probabilistic Graphical Models

Bayesian Networks Inference with Probabilistic Graphical Models 4190.408 2016-Spring Bayesian Networks Inference with Probabilistic Graphical Models Byoung-Tak Zhang intelligence Lab Seoul National University 4190.408 Artificial (2016-Spring) 1 Machine Learning? Learning

More information

Multivariate Normal Models

Multivariate Normal Models Case Study 3: fmri Prediction Coping with Large Covariances: Latent Factor Models, Graphical Models, Graphical LASSO Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox February

More information

CO-OPERATION among multiple cognitive radio (CR)

CO-OPERATION among multiple cognitive radio (CR) 586 IEEE SIGNAL PROCESSING LETTERS, VOL 21, NO 5, MAY 2014 Sparse Bayesian Hierarchical Prior Modeling Based Cooperative Spectrum Sensing in Wideb Cognitive Radio Networks Feng Li Zongben Xu Abstract This

More information

Clustering K-means. Machine Learning CSE546. Sham Kakade University of Washington. November 15, Review: PCA Start: unsupervised learning

Clustering K-means. Machine Learning CSE546. Sham Kakade University of Washington. November 15, Review: PCA Start: unsupervised learning Clustering K-means Machine Learning CSE546 Sham Kakade University of Washington November 15, 2016 1 Announcements: Project Milestones due date passed. HW3 due on Monday It ll be collaborative HW2 grades

More information

Face Recognition. Face Recognition. Subspace-Based Face Recognition Algorithms. Application of Face Recognition

Face Recognition. Face Recognition. Subspace-Based Face Recognition Algorithms. Application of Face Recognition ace Recognition Identify person based on the appearance of face CSED441:Introduction to Computer Vision (2017) Lecture10: Subspace Methods and ace Recognition Bohyung Han CSE, POSTECH bhhan@postech.ac.kr

More information

Linear Regression. Aarti Singh. Machine Learning / Sept 27, 2010

Linear Regression. Aarti Singh. Machine Learning / Sept 27, 2010 Linear Regression Aarti Singh Machine Learning 10-701/15-781 Sept 27, 2010 Discrete to Continuous Labels Classification Sports Science News Anemic cell Healthy cell Regression X = Document Y = Topic X

More information

Tailored Bregman Ball Trees for Effective Nearest Neighbors

Tailored Bregman Ball Trees for Effective Nearest Neighbors Tailored Bregman Ball Trees for Effective Nearest Neighbors Frank Nielsen 1 Paolo Piro 2 Michel Barlaud 2 1 Ecole Polytechnique, LIX, Palaiseau, France 2 CNRS / University of Nice-Sophia Antipolis, Sophia

More information

Sketching for Large-Scale Learning of Mixture Models

Sketching for Large-Scale Learning of Mixture Models Sketching for Large-Scale Learning of Mixture Models Nicolas Keriven Université Rennes 1, Inria Rennes Bretagne-atlantique Adv. Rémi Gribonval Outline Introduction Practical Approach Results Theoretical

More information

Spectral and Spatial Methods for the Classification of Urban Remote Sensing Data

Spectral and Spatial Methods for the Classification of Urban Remote Sensing Data Spectral and Spatial Methods for the Classification of Urban Remote Sensing Data Mathieu Fauvel gipsa-lab/dis, Grenoble Institute of Technology - INPG - FRANCE Department of Electrical and Computer Engineering,

More information

8. The approach for complexity analysis of multivariate time series

8. The approach for complexity analysis of multivariate time series 8. The approach for complexity analysis of multivariate time series Kazimieras Pukenas Lithuanian Sports University, Kaunas, Lithuania E-mail: kazimieras.pukenas@lsu.lt (Received 15 June 2015; received

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Mark Schmidt University of British Columbia Winter 2018 Last Time: Learning and Inference in DAGs We discussed learning in DAG models, log p(x W ) = n d log p(x i j x i pa(j),

More information

Novel spectrum sensing schemes for Cognitive Radio Networks

Novel spectrum sensing schemes for Cognitive Radio Networks Novel spectrum sensing schemes for Cognitive Radio Networks Cantabria University Santander, May, 2015 Supélec, SCEE Rennes, France 1 The Advanced Signal Processing Group http://gtas.unican.es The Advanced

More information

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Overview Introduction Linear Methods for Dimensionality Reduction Nonlinear Methods and Manifold

More information

CSC 576: Variants of Sparse Learning

CSC 576: Variants of Sparse Learning CSC 576: Variants of Sparse Learning Ji Liu Department of Computer Science, University of Rochester October 27, 205 Introduction Our previous note basically suggests using l norm to enforce sparsity in

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 11-1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed

More information

A Convex Approach for Designing Good Linear Embeddings. Chinmay Hegde

A Convex Approach for Designing Good Linear Embeddings. Chinmay Hegde A Convex Approach for Designing Good Linear Embeddings Chinmay Hegde Redundancy in Images Image Acquisition Sensor Information content

More information

Example: multivariate Gaussian Distribution

Example: multivariate Gaussian Distribution School of omputer Science Probabilistic Graphical Models Representation of undirected GM (continued) Eric Xing Lecture 3, September 16, 2009 Reading: KF-chap4 Eric Xing @ MU, 2005-2009 1 Example: multivariate

More information

Independent Component Analysis and Unsupervised Learning. Jen-Tzung Chien

Independent Component Analysis and Unsupervised Learning. Jen-Tzung Chien Independent Component Analysis and Unsupervised Learning Jen-Tzung Chien TABLE OF CONTENTS 1. Independent Component Analysis 2. Case Study I: Speech Recognition Independent voices Nonparametric likelihood

More information

Sparse and Robust Optimization and Applications

Sparse and Robust Optimization and Applications Sparse and and Statistical Learning Workshop Les Houches, 2013 Robust Laurent El Ghaoui with Mert Pilanci, Anh Pham EECS Dept., UC Berkeley January 7, 2013 1 / 36 Outline Sparse Sparse Sparse Probability

More information

Neural Networks and Machine Learning research at the Laboratory of Computer and Information Science, Helsinki University of Technology

Neural Networks and Machine Learning research at the Laboratory of Computer and Information Science, Helsinki University of Technology Neural Networks and Machine Learning research at the Laboratory of Computer and Information Science, Helsinki University of Technology Erkki Oja Department of Computer Science Aalto University, Finland

More information

p L yi z n m x N n xi

p L yi z n m x N n xi y i z n x n N x i Overview Directed and undirected graphs Conditional independence Exact inference Latent variables and EM Variational inference Books statistical perspective Graphical Models, S. Lauritzen

More information

Lecture 21: Spectral Learning for Graphical Models

Lecture 21: Spectral Learning for Graphical Models 10-708: Probabilistic Graphical Models 10-708, Spring 2016 Lecture 21: Spectral Learning for Graphical Models Lecturer: Eric P. Xing Scribes: Maruan Al-Shedivat, Wei-Cheng Chang, Frederick Liu 1 Motivation

More information

Machine Learning 4771

Machine Learning 4771 Machine Learning 4771 Instructor: ony Jebara Kalman Filtering Linear Dynamical Systems and Kalman Filtering Structure from Motion Linear Dynamical Systems Audio: x=pitch y=acoustic waveform Vision: x=object

More information

2234 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 8, AUGUST Nonparametric Hypothesis Tests for Statistical Dependency

2234 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 8, AUGUST Nonparametric Hypothesis Tests for Statistical Dependency 2234 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 8, AUGUST 2004 Nonparametric Hypothesis Tests for Statistical Dependency Alexander T. Ihler, Student Member, IEEE, John W. Fisher, Member, IEEE,

More information

Embedded Trees: Estimation of Gaussian Processes on Graphs with Cycles

Embedded Trees: Estimation of Gaussian Processes on Graphs with Cycles SUBMIED O IEEE RANSACIONS ON SIGNAL PROCESSING 1 Embedded rees: Estimation of Gaussian Processes on Graphs with Cycles Erik B. Sudderth *, Martin J. Wainwright, and Alan S. Willsky EDICS: 2-HIER (HIERARCHICAL

More information

Sparse Sensing for Statistical Inference

Sparse Sensing for Statistical Inference Sparse Sensing for Statistical Inference Model-driven and data-driven paradigms Geert Leus, Sundeep Chepuri, and Georg Kail ITA 2016, 04 Feb 2016 1/17 Power networks, grid analytics Health informatics

More information

Approximate Inference Part 1 of 2

Approximate Inference Part 1 of 2 Approximate Inference Part 1 of 2 Tom Minka Microsoft Research, Cambridge, UK Machine Learning Summer School 2009 http://mlg.eng.cam.ac.uk/mlss09/ Bayesian paradigm Consistent use of probability theory

More information

Markov Modeling of Time-Series Data. via Spectral Analysis

Markov Modeling of Time-Series Data. via Spectral Analysis 1st International Conference on InfoSymbiotics / DDDAS Session-2: Process Monitoring Nurali Virani Markov Modeling of Time-Series Data Department of Mechanical Engineering The Pennsylvania State University

More information

Hidden Markov Models,99,100! Markov, here I come!

Hidden Markov Models,99,100! Markov, here I come! Hidden Markov Models,99,100! Markov, here I come! 16.410/413 Principles of Autonomy and Decision-Making Pedro Santana (psantana@mit.edu) October 7 th, 2015. Based on material by Brian Williams and Emilio

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2016 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

ECE521 lecture 4: 19 January Optimization, MLE, regularization

ECE521 lecture 4: 19 January Optimization, MLE, regularization ECE521 lecture 4: 19 January 2017 Optimization, MLE, regularization First four lectures Lectures 1 and 2: Intro to ML Probability review Types of loss functions and algorithms Lecture 3: KNN Convexity

More information

WE consider principal component analysis (PCA)

WE consider principal component analysis (PCA) IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 11, NOVEMBER 2009 4369 Decomposable Principal Component Analysis Ami Wiesel, Member, IEEE, and Alfred O. Hero, Fellow, IEEE Abstract In this paper,

More information

Approximate Inference Part 1 of 2

Approximate Inference Part 1 of 2 Approximate Inference Part 1 of 2 Tom Minka Microsoft Research, Cambridge, UK Machine Learning Summer School 2009 http://mlg.eng.cam.ac.uk/mlss09/ 1 Bayesian paradigm Consistent use of probability theory

More information

Missing Data and Dynamical Systems

Missing Data and Dynamical Systems U NIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN CS598PS Machine Learning for Signal Processing Missing Data and Dynamical Systems 12 October 2017 Today s lecture Dealing with missing data Tracking and linear

More information

Covariance Estimation for High Dimensional Data Vectors

Covariance Estimation for High Dimensional Data Vectors Covariance Estimation for High Dimensional Data Vectors Charles A. Bouman Purdue University School of Electrical and Computer Engineering Co-authored with: Guangzhi Cao and Leonardo R Bachega Covariance

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab 1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed in the

More information

CS 6375 Machine Learning

CS 6375 Machine Learning CS 6375 Machine Learning Nicholas Ruozzi University of Texas at Dallas Slides adapted from David Sontag and Vibhav Gogate Course Info. Instructor: Nicholas Ruozzi Office: ECSS 3.409 Office hours: Tues.

More information

Overview of Statistical Tools. Statistical Inference. Bayesian Framework. Modeling. Very simple case. Things are usually more complicated

Overview of Statistical Tools. Statistical Inference. Bayesian Framework. Modeling. Very simple case. Things are usually more complicated Fall 3 Computer Vision Overview of Statistical Tools Statistical Inference Haibin Ling Observation inference Decision Prior knowledge http://www.dabi.temple.edu/~hbling/teaching/3f_5543/index.html Bayesian

More information

Final Exam, Machine Learning, Spring 2009

Final Exam, Machine Learning, Spring 2009 Name: Andrew ID: Final Exam, 10701 Machine Learning, Spring 2009 - The exam is open-book, open-notes, no electronics other than calculators. - The maximum possible score on this exam is 100. You have 3

More information

SUBSPACE CLUSTERING WITH DENSE REPRESENTATIONS. Eva L. Dyer, Christoph Studer, Richard G. Baraniuk

SUBSPACE CLUSTERING WITH DENSE REPRESENTATIONS. Eva L. Dyer, Christoph Studer, Richard G. Baraniuk SUBSPACE CLUSTERING WITH DENSE REPRESENTATIONS Eva L. Dyer, Christoph Studer, Richard G. Baraniuk Rice University; e-mail: {e.dyer, studer, richb@rice.edu} ABSTRACT Unions of subspaces have recently been

More information

Markov chain Monte Carlo methods for visual tracking

Markov chain Monte Carlo methods for visual tracking Markov chain Monte Carlo methods for visual tracking Ray Luo rluo@cory.eecs.berkeley.edu Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA 94720

More information

CSC 412 (Lecture 4): Undirected Graphical Models

CSC 412 (Lecture 4): Undirected Graphical Models CSC 412 (Lecture 4): Undirected Graphical Models Raquel Urtasun University of Toronto Feb 2, 2016 R Urtasun (UofT) CSC 412 Feb 2, 2016 1 / 37 Today Undirected Graphical Models: Semantics of the graph:

More information

A Gaussian Tree Approximation for Integer Least-Squares

A Gaussian Tree Approximation for Integer Least-Squares A Gaussian Tree Approximation for Integer Least-Squares Jacob Goldberger School of Engineering Bar-Ilan University goldbej@eng.biu.ac.il Amir Leshem School of Engineering Bar-Ilan University leshema@eng.biu.ac.il

More information

Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior

Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior Chalmers Machine Learning Summer School Approximate message passing and biomedicine Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior Tom Heskes joint work with Marcel van Gerven

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 9 Sequential Data So far

More information

Probabilistic Models of Past Climate Change

Probabilistic Models of Past Climate Change Probabilistic Models of Past Climate Change Julien Emile-Geay USC College, Department of Earth Sciences SIAM International Conference on Data Mining Anaheim, California April 27, 2012 Probabilistic Models

More information

Dynamic Approaches: The Hidden Markov Model

Dynamic Approaches: The Hidden Markov Model Dynamic Approaches: The Hidden Markov Model Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Machine Learning: Neural Networks and Advanced Models (AA2) Inference as Message

More information

Covariance Sketching via Quadratic Sampling

Covariance Sketching via Quadratic Sampling Covariance Sketching via Quadratic Sampling Yuejie Chi Department of ECE and BMI The Ohio State University Tsinghua University June 2015 Page 1 Acknowledgement Thanks to my academic collaborators on some

More information

Coprime Coarray Interpolation for DOA Estimation via Nuclear Norm Minimization

Coprime Coarray Interpolation for DOA Estimation via Nuclear Norm Minimization Coprime Coarray Interpolation for DOA Estimation via Nuclear Norm Minimization Chun-Lin Liu 1 P. P. Vaidyanathan 2 Piya Pal 3 1,2 Dept. of Electrical Engineering, MC 136-93 California Institute of Technology,

More information

Performance Limits on the Classification of Kronecker-structured Models

Performance Limits on the Classification of Kronecker-structured Models Performance Limits on the Classification of Kronecker-structured Models Ishan Jindal and Matthew Nokleby Electrical and Computer Engineering Wayne State University Motivation: Subspace models (Union of)

More information

Introduction p. 1 Fundamental Problems p. 2 Core of Fundamental Theory and General Mathematical Ideas p. 3 Classical Statistical Decision p.

Introduction p. 1 Fundamental Problems p. 2 Core of Fundamental Theory and General Mathematical Ideas p. 3 Classical Statistical Decision p. Preface p. xiii Acknowledgment p. xix Introduction p. 1 Fundamental Problems p. 2 Core of Fundamental Theory and General Mathematical Ideas p. 3 Classical Statistical Decision p. 4 Bayes Decision p. 5

More information

Lecture: Face Recognition

Lecture: Face Recognition Lecture: Face Recognition Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 12-1 What we will learn today Introduction to face recognition The Eigenfaces Algorithm Linear

More information

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Yoshua Bengio Pascal Vincent Jean-François Paiement University of Montreal April 2, Snowbird Learning 2003 Learning Modal Structures

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Trevor Cohn 24. Hidden Markov Models & message passing Looking back Representation of joint distributions Conditional/marginal independence

More information

Exact Inference I. Mark Peot. In this lecture we will look at issues associated with exact inference. = =

Exact Inference I. Mark Peot. In this lecture we will look at issues associated with exact inference. = = Exact Inference I Mark Peot In this lecture we will look at issues associated with exact inference 10 Queries The objective of probabilistic inference is to compute a joint distribution of a set of query

More information