Robust Principal Component Analysis

Size: px
Start display at page:

Download "Robust Principal Component Analysis"

Transcription

1 ELE 538B: Mathematics of High-Dimensional Data Robust Principal Component Analysis Yuxin Chen Princeton University, Fall 2018

2 Disentangling sparse and low-rank matrices Suppose we are given a matrix M = L }{{} low-rank + }{{} S R n n sparse Question: can we hope to recover both L and S from M? Robust PCA 12-2

3 Principal component analysis (PCA) N samples X = [x 1, x 2,..., x N ] R n N that are centered PCA: seeks r directions that explain most variance of data minimize L:rank(L)=r X L F best rank-r approximation of X Robust PCA 12-3

4 Sensitivity to corruptions / outliers What if some samples are corrupted (e.g. due to sensor errors / attacks)? Classical PCA fails even with a few outliers Robust PCA 12-4

5 Video surveillance Separation of background (low-rank) and foreground (sparse) Candès, Li, Ma, Wright 11 Robust PCA 12-5

6 Graph clustering / community recovery n nodes, 2 (or more) clusters A friendship graph G: for any pair (i, j), { 1, if (i, j) G M i,j = 0, else Edge density within clusters > edge density across clusters Goal: recover cluster structure Robust PCA 12-6

7 Graph clustering / community recovery M = }{{} L low-rank + M L }{{} sparse An equivalent goal: recover the ground truth matrix { 1, if i and j are in the same community L i,j = 0, else Clustering robust PCA Robust PCA 12-7

8 Gaussian graphical models Fact 12.1 Consider a Gaussian vector x N (0, Σ). For any u and v, x u x v x V\{u,v} iff Θ u,v = 0, where Θ = Σ 1 is the inverse covariance matrix conditional independence sparsity Robust PCA 12-8

9 Gaussian graphical models } {{ } Θ The inverse covariance matrix Θ is often sparse Robust PCA 12-9

10 Graphical models with latent factors What if one only observes a subset of variables? [ xo x h ] (observed variables) (hidden variables) x o = [x 1,, x 6], x h = [x 7, x 8] The covariance and precision matrices can be partitioned as observed part {}}{ Σ = Σ o Σ o,h [ ] 1 Θo Θ Σ o,h = o,h Θ o,h Θ Σ h h Robust PCA 12-10

11 Graphical models with latent factors What if one only observes a subset of variables? [ xo x h ] (observed variables) (hidden variables) x o = [x 1,, x 6], x h = [x 7, x 8] Σ 1 o }{{} observed = Θ }{{} o sparse h Θ h,o }{{} low-rank if # latent vars is small Θ o,h Θ 1 sparse + low-rank decomposition Robust PCA 12-10

12 When is decomposition possible? Identifiability issue: a matrix might be simultaneously low-rank and sparse! }{{} sparse and low-rank vs }{{} sparse but not low-rank Nonzero entries of sparse component need to be spread out This lecture: assume locations of the nonzero entries are random Robust PCA 12-11

13 When is decomposition possible? Identifiability issue: a matrix might be simultaneously low-rank and sparse! }{{} low-rank and dense vs }{{} low-rank but sparse The low-rank component needs to be incoherent Robust PCA 12-11

14 Low-rank component: coherence Definition 12.2 X Coherence parameter µ 1 of M = UΣV is the smallest quantity s.t. max i U e i 2 2 µ 1r 2n 6 4 h P U (e i ) and h e i max V e i 2 2 µ 1r i n i U Robust PCA 12-12

15 Low-rank component: joint coherence Definition 12.3 (Joint coherence) Joint coherence parameter µ 2 of M = UΣV is the smallest quantity s.t. UV µ2 r n 2 This prevents UV from being too peaky µ 1 µ 2 µ 2 1r, since (UV ) ij = e i UV e j e i U 2 V e j 2 µ1r n UV 2 UV e j 2 F n = V e j 2 2 n = µ1r n 2 (suppose V e j 2 2 = µ1r n ) Robust PCA 12-13

16 Convex relaxation minimize L,S rank(l) + λ S 0 s.t. M = L + S (12.1) minimize L,S L + λ S 1 s.t. M = L + S (12.2) : nuclear norm; 1 : entry-wise l 1 norm λ > 0: regularization parameter that balances two terms Robust PCA 12-14

17 Theoretical guarantee Theorem 12.4 (Candès, Li, Ma, Wright 11) rank(l) n max{µ 1,µ 2 } log 2 n ; Nonzero entries of S are randomly located, and S 0 ρ s n 2 for some constant ρ s > 0 (e.g. ρ s = 0.2). Then (12.2) with λ = 1/ n is exact with high prob. rank(l) can be quite high (up to n/polylog(n)) Parameter free: λ = 1/ n Ability to correct gross error: S 0 n 2 Sparse component S can have arbitrary magnitudes / signs! Robust PCA 12-15

18 Geometry Fig. credit: Candès 14 Robust PCA 12-16

19 Empirical success rate s rank(l)/n n = 400 Fig. credit: Candès, Li, Ma, Wright 11 Robust PCA 12-17

20 Dense error correction Theorem 12.5 (Ganesh, Wright, Li, Candès, Ma 10, Chen, Jalali, Sanghavi, Caramanis 13) rank(l) n max{µ 1,µ 2 } log 2 n ; Nonzero entries of S are randomly located, have random sign, and S 0 = ρ s n 2. Then (12.2) with λ 1 ρs ρ sn 1 ρ s }{{} non-corruption rate succeeds with high prob., provided that max{µ 1, µ 2 }r polylog(n) n When additive corruptions have random signs, (12.2) works even when a dominant fraction of the entries are corrupted Robust PCA 12-18

21 Is joint coherence needed? Matrix completion: does not need µ 2 Robust PCA: so far we need µ 2 Question: is µ 2 needed? can we recover L with rank up to n µ 1 polylog(n) (rather than n max{µ 1,µ 2 }polylog(n) )? Answer: no (example: planted clique) Robust PCA 12-19

22 Planted clique problem Setup: a graph G of n nodes generated as follows 1. connect each pair of nodes independently with prob pick n 0 nodes and make them a clique (fully connected) Goal: find the hidden clique from G Information theoretically, one can recover the clique if n 0 > 2 log 2 n Robust PCA 12-20

23 Conjecture on computational barrier Conjecture: constant ɛ > 0, if n 0 n 0.5 ɛ, then no tractable algorithm can find the clique from G with prob. 1 o(1) often used as a hardness assumption Lemma 12.6 If there is an algorithm that allows recovery of any L from M with rank(l), then the above conjecture is violated n µ 1 polylog(n) Robust PCA 12-21

24 Proof of Lemma 12.6 Suppose L is the true adjacency matrix, L i,j = { 1, if i, j are both in the clique 0, else Let A be the adjacency matrix of G, and generate M s.t. M i,j = Therefore, one can write M = L + { Ai,j, with prob. 2/3 0, else M L }{{} each entry is nonzero w.p. 1/3 Robust PCA 12-22

25 Proof of Lemma 12.6 Note that µ 1 = n n 0 and µ 2 = n2 n 2 0 If there is an algorithm that can recover any L of rank from M, then rank(l) = 1 n µ 1 polylog(n) n µ 1 polylog(n) n 0 polylog(n) But this contradicts the conjecture (which claims computational infeasibility to recover L unless n 0 n 0.5 o(1) ) Robust PCA 12-23

26 Matrix completion with corruptions What if we have missing data + corruptions? Observed entries M ij = L ij + S ij, (i, j) Ω for some observation set Ω, where S = (S ij ) is sparse A natural extension of RPCA minimize L,S L + λ S 1 s.t. P Ω (M) = P Ω (L + S) Theorems easily extend to this setting Robust PCA 12-24

27 Efficient algorithm In the presence of noise, one needs to solve minimize L,S L + λ S 1 + µ 2 M L S 2 F which can be solved efficiently Algorithm 12.1 Iterative soft-thresholding for t = 0, 1, : L t+1 ( = T 1/µ M S t) S t+1 ( = ψ λ/µ M L t+1) where T : singular-value thresholding operator; ψ: soft thresholding operator Robust PCA 12-25

28 Reference [1] Lecture notes, Advanced topics in signal processing (ECE 8201), Y. Chi, [2] Robust principal component analysis?, E. Candes, X. Li, Y. Ma, and J. Wright, Journal of ACM, [3] Rank-sparsity incoherence for matrix decomposition, V. Chandrasekaran, S. Sanghavi, P. Parrilo, and A. Willsky, SIAM Journal on Optimization, [4] Latent variable graphical model selection via convex optimization, V. Chandrasekaran, P. Parrilo, and A. Willsky, Annals of Statistics, [5] Incoherence-optimal matrix completion, Y. Chen, IEEE Transactions on Information Theory, [6] Dense error correction for low-rank matrices via principal component pursuit, A. Ganesh, J. Wright, X. Li, E. Candes, Y. Ma, ISIT, Robust PCA 12-26

29 Reference [7] Low-rank matrix recovery from errors and erasures, Y. Chen, A. Jalali, S. Sanghavi, C. Caramanis, IEEE Transactions on Information Theory, Robust PCA 12-27

Analysis of Robust PCA via Local Incoherence

Analysis of Robust PCA via Local Incoherence Analysis of Robust PCA via Local Incoherence Huishuai Zhang Department of EECS Syracuse University Syracuse, NY 3244 hzhan23@syr.edu Yi Zhou Department of EECS Syracuse University Syracuse, NY 3244 yzhou35@syr.edu

More information

Dense Error Correction for Low-Rank Matrices via Principal Component Pursuit

Dense Error Correction for Low-Rank Matrices via Principal Component Pursuit Dense Error Correction for Low-Rank Matrices via Principal Component Pursuit Arvind Ganesh, John Wright, Xiaodong Li, Emmanuel J. Candès, and Yi Ma, Microsoft Research Asia, Beijing, P.R.C Dept. of Electrical

More information

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis Lecture 7: Matrix completion Yuejie Chi The Ohio State University Page 1 Reference Guaranteed Minimum-Rank Solutions of Linear

More information

CSC 576: Variants of Sparse Learning

CSC 576: Variants of Sparse Learning CSC 576: Variants of Sparse Learning Ji Liu Department of Computer Science, University of Rochester October 27, 205 Introduction Our previous note basically suggests using l norm to enforce sparsity in

More information

Non-convex Robust PCA: Provable Bounds

Non-convex Robust PCA: Provable Bounds Non-convex Robust PCA: Provable Bounds Anima Anandkumar U.C. Irvine Joint work with Praneeth Netrapalli, U.N. Niranjan, Prateek Jain and Sujay Sanghavi. Learning with Big Data High Dimensional Regime Missing

More information

Conditions for Robust Principal Component Analysis

Conditions for Robust Principal Component Analysis Rose-Hulman Undergraduate Mathematics Journal Volume 12 Issue 2 Article 9 Conditions for Robust Principal Component Analysis Michael Hornstein Stanford University, mdhornstein@gmail.com Follow this and

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Low-rank matrix recovery via convex relaxations Yuejie Chi Department of Electrical and Computer Engineering Spring

More information

Low-Rank Matrix Recovery

Low-Rank Matrix Recovery ELE 538B: Mathematics of High-Dimensional Data Low-Rank Matrix Recovery Yuxin Chen Princeton University, Fall 2018 Outline Motivation Problem setup Nuclear norm minimization RIP and low-rank matrix recovery

More information

Solving Corrupted Quadratic Equations, Provably

Solving Corrupted Quadratic Equations, Provably Solving Corrupted Quadratic Equations, Provably Yuejie Chi London Workshop on Sparse Signal Processing September 206 Acknowledgement Joint work with Yuanxin Li (OSU), Huishuai Zhuang (Syracuse) and Yingbin

More information

Compressed Sensing and Sparse Recovery

Compressed Sensing and Sparse Recovery ELE 538B: Sparsity, Structure and Inference Compressed Sensing and Sparse Recovery Yuxin Chen Princeton University, Spring 217 Outline Restricted isometry property (RIP) A RIPless theory Compressed sensing

More information

Recursive Sparse Recovery in Large but Structured Noise - Part 2

Recursive Sparse Recovery in Large but Structured Noise - Part 2 Recursive Sparse Recovery in Large but Structured Noise - Part 2 Chenlu Qiu and Namrata Vaswani ECE dept, Iowa State University, Ames IA, Email: {chenlu,namrata}@iastate.edu Abstract We study the problem

More information

Exact Recoverability of Robust PCA via Outlier Pursuit with Tight Recovery Bounds

Exact Recoverability of Robust PCA via Outlier Pursuit with Tight Recovery Bounds Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence Exact Recoverability of Robust PCA via Outlier Pursuit with Tight Recovery Bounds Hongyang Zhang, Zhouchen Lin, Chao Zhang, Edward

More information

Recovery of Low-Rank Plus Compressed Sparse Matrices with Application to Unveiling Traffic Anomalies

Recovery of Low-Rank Plus Compressed Sparse Matrices with Application to Unveiling Traffic Anomalies July 12, 212 Recovery of Low-Rank Plus Compressed Sparse Matrices with Application to Unveiling Traffic Anomalies Morteza Mardani Dept. of ECE, University of Minnesota, Minneapolis, MN 55455 Acknowledgments:

More information

Robust PCA. CS5240 Theoretical Foundations in Multimedia. Leow Wee Kheng

Robust PCA. CS5240 Theoretical Foundations in Multimedia. Leow Wee Kheng Robust PCA CS5240 Theoretical Foundations in Multimedia Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (NUS) Robust PCA 1 / 52 Previously...

More information

Robust PCA via Outlier Pursuit

Robust PCA via Outlier Pursuit 1 Robust PCA via Outlier Pursuit Huan Xu, Constantine Caramanis, Member, and Sujay Sanghavi, Member Abstract Singular Value Decomposition (and Principal Component Analysis) is one of the most widely used

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Low-rank matrix recovery via nonconvex optimization Yuejie Chi Department of Electrical and Computer Engineering Spring

More information

Linear dimensionality reduction for data analysis

Linear dimensionality reduction for data analysis Linear dimensionality reduction for data analysis Nicolas Gillis Joint work with Robert Luce, François Glineur, Stephen Vavasis, Robert Plemmons, Gabriella Casalino The setup Dimensionality reduction for

More information

Matrix Completion for Structured Observations

Matrix Completion for Structured Observations Matrix Completion for Structured Observations Denali Molitor Department of Mathematics University of California, Los ngeles Los ngeles, C 90095, US Email: dmolitor@math.ucla.edu Deanna Needell Department

More information

Statistical and Computational Phase Transitions in Planted Models

Statistical and Computational Phase Transitions in Planted Models Statistical and Computational Phase Transitions in Planted Models Jiaming Xu Joint work with Yudong Chen (UC Berkeley) Acknowledgement: Prof. Bruce Hajek November 4, 203 Cluster/Community structure in

More information

arxiv: v1 [stat.ml] 1 Mar 2015

arxiv: v1 [stat.ml] 1 Mar 2015 Matrix Completion with Noisy Entries and Outliers Raymond K. W. Wong 1 and Thomas C. M. Lee 2 arxiv:1503.00214v1 [stat.ml] 1 Mar 2015 1 Department of Statistics, Iowa State University 2 Department of Statistics,

More information

Robust Asymmetric Nonnegative Matrix Factorization

Robust Asymmetric Nonnegative Matrix Factorization Robust Asymmetric Nonnegative Matrix Factorization Hyenkyun Woo Korea Institue for Advanced Study Math @UCLA Feb. 11. 2015 Joint work with Haesun Park Georgia Institute of Technology, H. Woo (KIAS) RANMF

More information

An ADMM Algorithm for Clustering Partially Observed Networks

An ADMM Algorithm for Clustering Partially Observed Networks An ADMM Algorithm for Clustering Partially Observed Networks Necdet Serhat Aybat Industrial Engineering Penn State University 2015 SIAM International Conference on Data Mining Vancouver, Canada Problem

More information

GoDec: Randomized Low-rank & Sparse Matrix Decomposition in Noisy Case

GoDec: Randomized Low-rank & Sparse Matrix Decomposition in Noisy Case ianyi Zhou IANYI.ZHOU@SUDEN.US.EDU.AU Dacheng ao DACHENG.AO@US.EDU.AU Centre for Quantum Computation & Intelligent Systems, FEI, University of echnology, Sydney, NSW 2007, Australia Abstract Low-rank and

More information

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28 Sparsity Models Tong Zhang Rutgers University T. Zhang (Rutgers) Sparsity Models 1 / 28 Topics Standard sparse regression model algorithms: convex relaxation and greedy algorithm sparse recovery analysis:

More information

Tractable Upper Bounds on the Restricted Isometry Constant

Tractable Upper Bounds on the Restricted Isometry Constant Tractable Upper Bounds on the Restricted Isometry Constant Alex d Aspremont, Francis Bach, Laurent El Ghaoui Princeton University, École Normale Supérieure, U.C. Berkeley. Support from NSF, DHS and Google.

More information

Combining Sparsity with Physically-Meaningful Constraints in Sparse Parameter Estimation

Combining Sparsity with Physically-Meaningful Constraints in Sparse Parameter Estimation UIUC CSL Mar. 24 Combining Sparsity with Physically-Meaningful Constraints in Sparse Parameter Estimation Yuejie Chi Department of ECE and BMI Ohio State University Joint work with Yuxin Chen (Stanford).

More information

Fast Algorithms for Robust PCA via Gradient Descent

Fast Algorithms for Robust PCA via Gradient Descent Fast Algorithms for Robust PCA via Gradient Descent Xinyang Yi Dohyung Park Yudong Chen Constantine Caramanis The University of Texas at Austin Cornell University yixy,dhpark,constantine}@utexas.edu yudong.chen@cornell.edu

More information

Robust Component Analysis via HQ Minimization

Robust Component Analysis via HQ Minimization Robust Component Analysis via HQ Minimization Ran He, Wei-shi Zheng and Liang Wang 0-08-6 Outline Overview Half-quadratic minimization principal component analysis Robust principal component analysis Robust

More information

Space-time signal processing for distributed pattern detection in sensor networks

Space-time signal processing for distributed pattern detection in sensor networks JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 6, NO. 1, JANUARY 013 1 Space-time signal processing for distributed pattern detection in sensor networks *Randy Paffenroth, Philip du Toit, Ryan Nong,

More information

Correlated-PCA: Principal Components Analysis when Data and Noise are Correlated

Correlated-PCA: Principal Components Analysis when Data and Noise are Correlated Correlated-PCA: Principal Components Analysis when Data and Noise are Correlated Namrata Vaswani and Han Guo Iowa State University, Ames, IA, USA Email: {namrata,hanguo}@iastate.edu Abstract Given a matrix

More information

EE227 Project Report Robust Principal Component Analysis. Maximilian Balandat Walid Krichene Chi Pang Lam Ka Kit Lam

EE227 Project Report Robust Principal Component Analysis. Maximilian Balandat Walid Krichene Chi Pang Lam Ka Kit Lam EE227 Project Report Robust Principal Component Analysis Maximilian Balandat Walid Krichene Chi Pang Lam Ka Kit Lam May 10, 2012 May 10, 2012 1 Introduction Over the past decade there has been an explosion

More information

ELE 538B: Mathematics of High-Dimensional Data. Spectral methods. Yuxin Chen Princeton University, Fall 2018

ELE 538B: Mathematics of High-Dimensional Data. Spectral methods. Yuxin Chen Princeton University, Fall 2018 ELE 538B: Mathematics of High-Dimensional Data Spectral methods Yuxin Chen Princeton University, Fall 2018 Outline A motivating application: graph clustering Distance and angles between two subspaces Eigen-space

More information

Robust PCA via Outlier Pursuit

Robust PCA via Outlier Pursuit Robust PCA via Outlier Pursuit Huan Xu Electrical and Computer Engineering University of Texas at Austin huan.xu@mail.utexas.edu Constantine Caramanis Electrical and Computer Engineering University of

More information

Structured matrix factorizations. Example: Eigenfaces

Structured matrix factorizations. Example: Eigenfaces Structured matrix factorizations Example: Eigenfaces An extremely large variety of interesting and important problems in machine learning can be formulated as: Given a matrix, find a matrix and a matrix

More information

MATRIX RECOVERY FROM QUANTIZED AND CORRUPTED MEASUREMENTS

MATRIX RECOVERY FROM QUANTIZED AND CORRUPTED MEASUREMENTS MATRIX RECOVERY FROM QUANTIZED AND CORRUPTED MEASUREMENTS Andrew S. Lan 1, Christoph Studer 2, and Richard G. Baraniuk 1 1 Rice University; e-mail: {sl29, richb}@rice.edu 2 Cornell University; e-mail:

More information

Robust Principal Component Pursuit via Alternating Minimization Scheme on Matrix Manifolds

Robust Principal Component Pursuit via Alternating Minimization Scheme on Matrix Manifolds Robust Principal Component Pursuit via Alternating Minimization Scheme on Matrix Manifolds Tao Wu Institute for Mathematics and Scientific Computing Karl-Franzens-University of Graz joint work with Prof.

More information

Recovering any low-rank matrix, provably

Recovering any low-rank matrix, provably Recovering any low-rank matrix, provably Rachel Ward University of Texas at Austin October, 2014 Joint work with Yudong Chen (U.C. Berkeley), Srinadh Bhojanapalli and Sujay Sanghavi (U.T. Austin) Matrix

More information

Donald Goldfarb IEOR Department Columbia University UCLA Mathematics Department Distinguished Lecture Series May 17 19, 2016

Donald Goldfarb IEOR Department Columbia University UCLA Mathematics Department Distinguished Lecture Series May 17 19, 2016 Optimization for Tensor Models Donald Goldfarb IEOR Department Columbia University UCLA Mathematics Department Distinguished Lecture Series May 17 19, 2016 1 Tensors Matrix Tensor: higher-order matrix

More information

Sparse representation classification and positive L1 minimization

Sparse representation classification and positive L1 minimization Sparse representation classification and positive L1 minimization Cencheng Shen Joint Work with Li Chen, Carey E. Priebe Applied Mathematics and Statistics Johns Hopkins University, August 5, 2014 Cencheng

More information

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis Lecture 3: Sparse signal recovery: A RIPless analysis of l 1 minimization Yuejie Chi The Ohio State University Page 1 Outline

More information

Gaussian Graphical Models and Graphical Lasso

Gaussian Graphical Models and Graphical Lasso ELE 538B: Sparsity, Structure and Inference Gaussian Graphical Models and Graphical Lasso Yuxin Chen Princeton University, Spring 2017 Multivariate Gaussians Consider a random vector x N (0, Σ) with pdf

More information

EE 381V: Large Scale Learning Spring Lecture 16 March 7

EE 381V: Large Scale Learning Spring Lecture 16 March 7 EE 381V: Large Scale Learning Spring 2013 Lecture 16 March 7 Lecturer: Caramanis & Sanghavi Scribe: Tianyang Bai 16.1 Topics Covered In this lecture, we introduced one method of matrix completion via SVD-based

More information

Divide-and-Conquer Matrix Factorization

Divide-and-Conquer Matrix Factorization Divide-and-Conquer Matrix Factorization Lester Mackey Collaborators: Ameet Talwalkar Michael I. Jordan Stanford University UCLA UC Berkeley December 14, 2015 Mackey (Stanford) Divide-and-Conquer Matrix

More information

Technical Report 110. Project: Streaming PCA with Many Missing Entries. Research Supervisor: Constantine Caramanis WNCG

Technical Report 110. Project: Streaming PCA with Many Missing Entries. Research Supervisor: Constantine Caramanis WNCG Technical Report Project: Streaming PCA with Many Missing Entries Research Supervisor: Constantine Caramanis WNCG December 25 Data-Supported Transportation Operations & Planning Center D-STOP) A Tier USDOT

More information

Information Recovery from Pairwise Measurements

Information Recovery from Pairwise Measurements Information Recovery from Pairwise Measurements A Shannon-Theoretic Approach Yuxin Chen, Changho Suh, Andrea Goldsmith Stanford University KAIST Page 1 Recovering data from correlation measurements A large

More information

Provable Alternating Minimization Methods for Non-convex Optimization

Provable Alternating Minimization Methods for Non-convex Optimization Provable Alternating Minimization Methods for Non-convex Optimization Prateek Jain Microsoft Research, India Joint work with Praneeth Netrapalli, Sujay Sanghavi, Alekh Agarwal, Animashree Anandkumar, Rashish

More information

Robust Principal Component Analysis Based on Low-Rank and Block-Sparse Matrix Decomposition

Robust Principal Component Analysis Based on Low-Rank and Block-Sparse Matrix Decomposition Robust Principal Component Analysis Based on Low-Rank and Block-Sparse Matrix Decomposition Gongguo Tang and Arye Nehorai Department of Electrical and Systems Engineering Washington University in St Louis

More information

Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora

Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora Scribe: Today we continue the

More information

Latent Variable Graphical Model Selection Via Convex Optimization

Latent Variable Graphical Model Selection Via Convex Optimization Latent Variable Graphical Model Selection Via Convex Optimization The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

Lecture Notes 10: Matrix Factorization

Lecture Notes 10: Matrix Factorization Optimization-based data analysis Fall 207 Lecture Notes 0: Matrix Factorization Low-rank models. Rank- model Consider the problem of modeling a quantity y[i, j] that depends on two indices i and j. To

More information

Low-rank Matrix Completion with Noisy Observations: a Quantitative Comparison

Low-rank Matrix Completion with Noisy Observations: a Quantitative Comparison Low-rank Matrix Completion with Noisy Observations: a Quantitative Comparison Raghunandan H. Keshavan, Andrea Montanari and Sewoong Oh Electrical Engineering and Statistics Department Stanford University,

More information

Sparse Solutions of an Undetermined Linear System

Sparse Solutions of an Undetermined Linear System 1 Sparse Solutions of an Undetermined Linear System Maddullah Almerdasy New York University Tandon School of Engineering arxiv:1702.07096v1 [math.oc] 23 Feb 2017 Abstract This work proposes a research

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Sparse Recovery using L1 minimization - algorithms Yuejie Chi Department of Electrical and Computer Engineering Spring

More information

Sparse and Low-Rank Matrix Decompositions

Sparse and Low-Rank Matrix Decompositions Forty-Seventh Annual Allerton Conference Allerton House, UIUC, Illinois, USA September 30 - October 2, 2009 Sparse and Low-Rank Matrix Decompositions Venkat Chandrasekaran, Sujay Sanghavi, Pablo A. Parrilo,

More information

Relations Among Some Low-Rank Subspace Recovery Models

Relations Among Some Low-Rank Subspace Recovery Models LETTER Communicated by Guangcan Liu Relations Among Some Low-Rank Subspace Recovery Models Hongyang Zhang hy_zh@pku.edu.cn Zhouchen Lin zlin@pku.edu.cn Chao Zhang chzhang@cis.pku.edu.cn Key Laboratory

More information

Covariance Sketching via Quadratic Sampling

Covariance Sketching via Quadratic Sampling Covariance Sketching via Quadratic Sampling Yuejie Chi Department of ECE and BMI The Ohio State University Tsinghua University June 2015 Page 1 Acknowledgement Thanks to my academic collaborators on some

More information

The convex algebraic geometry of rank minimization

The convex algebraic geometry of rank minimization The convex algebraic geometry of rank minimization Pablo A. Parrilo Laboratory for Information and Decision Systems Massachusetts Institute of Technology International Symposium on Mathematical Programming

More information

Jointly Clustering Rows and Columns of Binary Matrices: Algorithms and Trade-offs

Jointly Clustering Rows and Columns of Binary Matrices: Algorithms and Trade-offs Jointly Clustering Rows and Columns of Binary Matrices: Algorithms and Trade-offs Jiaming Xu Joint work with Rui Wu, Kai Zhu, Bruce Hajek, R. Srikant, and Lei Ying University of Illinois, Urbana-Champaign

More information

SPARSE signal representations have gained popularity in recent

SPARSE signal representations have gained popularity in recent 6958 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011 Blind Compressed Sensing Sivan Gleichman and Yonina C. Eldar, Senior Member, IEEE Abstract The fundamental principle underlying

More information

Sparse regression. Optimization-Based Data Analysis. Carlos Fernandez-Granda

Sparse regression. Optimization-Based Data Analysis.   Carlos Fernandez-Granda Sparse regression Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 3/28/2016 Regression Least-squares regression Example: Global warming Logistic

More information

Learning Multiple Tasks with a Sparse Matrix-Normal Penalty

Learning Multiple Tasks with a Sparse Matrix-Normal Penalty Learning Multiple Tasks with a Sparse Matrix-Normal Penalty Yi Zhang and Jeff Schneider NIPS 2010 Presented by Esther Salazar Duke University March 25, 2011 E. Salazar (Reading group) March 25, 2011 1

More information

Sparse Parameter Estimation: Compressed Sensing meets Matrix Pencil

Sparse Parameter Estimation: Compressed Sensing meets Matrix Pencil Sparse Parameter Estimation: Compressed Sensing meets Matrix Pencil Yuejie Chi Departments of ECE and BMI The Ohio State University Colorado School of Mines December 9, 24 Page Acknowledgement Joint work

More information

Recent Developments in Compressed Sensing

Recent Developments in Compressed Sensing Recent Developments in Compressed Sensing M. Vidyasagar Distinguished Professor, IIT Hyderabad m.vidyasagar@iith.ac.in, www.iith.ac.in/ m vidyasagar/ ISL Seminar, Stanford University, 19 April 2018 Outline

More information

arxiv: v1 [cs.it] 26 Oct 2018

arxiv: v1 [cs.it] 26 Oct 2018 Outlier Detection using Generative Models with Theoretical Performance Guarantees arxiv:1810.11335v1 [cs.it] 6 Oct 018 Jirong Yi Anh Duc Le Tianming Wang Xiaodong Wu Weiyu Xu October 9, 018 Abstract This

More information

arxiv: v1 [math.oc] 11 Jun 2009

arxiv: v1 [math.oc] 11 Jun 2009 RANK-SPARSITY INCOHERENCE FOR MATRIX DECOMPOSITION VENKAT CHANDRASEKARAN, SUJAY SANGHAVI, PABLO A. PARRILO, S. WILLSKY AND ALAN arxiv:0906.2220v1 [math.oc] 11 Jun 2009 Abstract. Suppose we are given a

More information

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit New Coherence and RIP Analysis for Wea 1 Orthogonal Matching Pursuit Mingrui Yang, Member, IEEE, and Fran de Hoog arxiv:1405.3354v1 [cs.it] 14 May 2014 Abstract In this paper we define a new coherence

More information

Optimisation Combinatoire et Convexe.

Optimisation Combinatoire et Convexe. Optimisation Combinatoire et Convexe. Low complexity models, l 1 penalties. A. d Aspremont. M1 ENS. 1/36 Today Sparsity, low complexity models. l 1 -recovery results: three approaches. Extensions: matrix

More information

Sparse PCA with applications in finance

Sparse PCA with applications in finance Sparse PCA with applications in finance A. d Aspremont, L. El Ghaoui, M. Jordan, G. Lanckriet ORFE, Princeton University & EECS, U.C. Berkeley Available online at www.princeton.edu/~aspremon 1 Introduction

More information

Space-time signal processing for distributed pattern detection in sensor networks

Space-time signal processing for distributed pattern detection in sensor networks JOURNAL O SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 6, NO. 1, JANUARY 13 1 Space-time signal processing for distributed pattern detection in sensor networks *Randy Paffenroth, Philip du Toit, Ryan Nong,

More information

Direct Robust Matrix Factorization for Anomaly Detection

Direct Robust Matrix Factorization for Anomaly Detection Direct Robust Matrix Factorization for Anomaly Detection Liang Xiong Machine Learning Department Carnegie Mellon University lxiong@cs.cmu.edu Xi Chen Machine Learning Department Carnegie Mellon University

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Gaussian graphical models and Ising models: modeling networks Eric Xing Lecture 0, February 7, 04 Reading: See class website Eric Xing @ CMU, 005-04

More information

High-dimensional graphical model selection: Practical and information-theoretic limits

High-dimensional graphical model selection: Practical and information-theoretic limits 1 High-dimensional graphical model selection: Practical and information-theoretic limits Martin Wainwright Departments of Statistics, and EECS UC Berkeley, California, USA Based on joint work with: John

More information

Breaking the Limits of Subspace Inference

Breaking the Limits of Subspace Inference Breaking the Limits of Subspace Inference Claudia R. Solís-Lemus, Daniel L. Pimentel-Alarcón Emory University, Georgia State University Abstract Inferring low-dimensional subspaces that describe high-dimensional,

More information

ROBUST BLIND SPIKES DECONVOLUTION. Yuejie Chi. Department of ECE and Department of BMI The Ohio State University, Columbus, Ohio 43210

ROBUST BLIND SPIKES DECONVOLUTION. Yuejie Chi. Department of ECE and Department of BMI The Ohio State University, Columbus, Ohio 43210 ROBUST BLIND SPIKES DECONVOLUTION Yuejie Chi Department of ECE and Department of BMI The Ohio State University, Columbus, Ohio 4 ABSTRACT Blind spikes deconvolution, or blind super-resolution, deals with

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee227c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee227c@berkeley.edu

More information

arxiv: v2 [cs.it] 19 Sep 2016

arxiv: v2 [cs.it] 19 Sep 2016 Fast Algorithms for Robust PCA via Gradient Descent Xinyang Yi Dohyung Park Yudong Chen Constantine Caramanis The University of Texas at Austin Cornell University {yixy,dhpark,constantine}@utexas.edu yudong.chen@cornell.edu

More information

High-dimensional graphical model selection: Practical and information-theoretic limits

High-dimensional graphical model selection: Practical and information-theoretic limits 1 High-dimensional graphical model selection: Practical and information-theoretic limits Martin Wainwright Departments of Statistics, and EECS UC Berkeley, California, USA Based on joint work with: John

More information

SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices)

SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Chapter 14 SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Today we continue the topic of low-dimensional approximation to datasets and matrices. Last time we saw the singular

More information

https://goo.gl/kfxweg KYOTO UNIVERSITY Statistical Machine Learning Theory Sparsity Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT OF INTELLIGENCE SCIENCE AND TECHNOLOGY 1 KYOTO UNIVERSITY Topics:

More information

THIS work studies additive decompositions of matrices

THIS work studies additive decompositions of matrices Robust Matrix Decomposition with Sparse Corruptions Daniel Hsu, Sham M Kakade, Tong Zhang Abstract Suppose a given observation matrix can be decomposed as the sum of a low-rank matrix a sparse matrix,

More information

Performance Guarantees for ReProCS Correlated Low-Rank Matrix Entries Case

Performance Guarantees for ReProCS Correlated Low-Rank Matrix Entries Case Performance Guarantees for ReProCS Correlated Low-Rank Matrix Entries Case Jinchun Zhan Dep. of Electrical & Computer Eng. Iowa State University, Ames, Iowa, USA Email: jzhan@iastate.edu Namrata Vaswani

More information

Limitations in Approximating RIP

Limitations in Approximating RIP Alok Puranik Mentor: Adrian Vladu Fifth Annual PRIMES Conference, 2015 Outline 1 Background The Problem Motivation Construction Certification 2 Planted model Planting eigenvalues Analysis Distinguishing

More information

Reconstruction in the Generalized Stochastic Block Model

Reconstruction in the Generalized Stochastic Block Model Reconstruction in the Generalized Stochastic Block Model Marc Lelarge 1 Laurent Massoulié 2 Jiaming Xu 3 1 INRIA-ENS 2 INRIA-Microsoft Research Joint Centre 3 University of Illinois, Urbana-Champaign GDR

More information

8.1 Concentration inequality for Gaussian random matrix (cont d)

8.1 Concentration inequality for Gaussian random matrix (cont d) MGMT 69: Topics in High-dimensional Data Analysis Falll 26 Lecture 8: Spectral clustering and Laplacian matrices Lecturer: Jiaming Xu Scribe: Hyun-Ju Oh and Taotao He, October 4, 26 Outline Concentration

More information

Homework 5. Convex Optimization /36-725

Homework 5. Convex Optimization /36-725 Homework 5 Convex Optimization 10-725/36-725 Due Tuesday April 21 at 4:00pm submitted to Mallory Deptola in GHC 8001 (make sure to submit each problem separately) ***Instructions: you will solve 4 questions,

More information

Compressive Sensing and Beyond

Compressive Sensing and Beyond Compressive Sensing and Beyond Sohail Bahmani Gerorgia Tech. Signal Processing Compressed Sensing Signal Models Classics: bandlimited The Sampling Theorem Any signal with bandwidth B can be recovered

More information

Introduction How it works Theory behind Compressed Sensing. Compressed Sensing. Huichao Xue. CS3750 Fall 2011

Introduction How it works Theory behind Compressed Sensing. Compressed Sensing. Huichao Xue. CS3750 Fall 2011 Compressed Sensing Huichao Xue CS3750 Fall 2011 Table of Contents Introduction From News Reports Abstract Definition How it works A review of L 1 norm The Algorithm Backgrounds for underdetermined linear

More information

Low Rank Matrix Completion Formulation and Algorithm

Low Rank Matrix Completion Formulation and Algorithm 1 2 Low Rank Matrix Completion and Algorithm Jian Zhang Department of Computer Science, ETH Zurich zhangjianthu@gmail.com March 25, 2014 Movie Rating 1 2 Critic A 5 5 Critic B 6 5 Jian 9 8 Kind Guy B 9

More information

Greedy Signal Recovery and Uniform Uncertainty Principles

Greedy Signal Recovery and Uniform Uncertainty Principles Greedy Signal Recovery and Uniform Uncertainty Principles SPIE - IE 2008 Deanna Needell Joint work with Roman Vershynin UC Davis, January 2008 Greedy Signal Recovery and Uniform Uncertainty Principles

More information

arxiv: v1 [cs.cv] 17 Nov 2015

arxiv: v1 [cs.cv] 17 Nov 2015 Robust PCA via Nonconvex Rank Approximation Zhao Kang, Chong Peng, Qiang Cheng Department of Computer Science, Southern Illinois University, Carbondale, IL 6901, USA {zhao.kang, pchong, qcheng}@siu.edu

More information

Algorithms Reading Group Notes: Provable Bounds for Learning Deep Representations

Algorithms Reading Group Notes: Provable Bounds for Learning Deep Representations Algorithms Reading Group Notes: Provable Bounds for Learning Deep Representations Joshua R. Wang November 1, 2016 1 Model and Results Continuing from last week, we again examine provable algorithms for

More information

Inference For High Dimensional M-estimates. Fixed Design Results

Inference For High Dimensional M-estimates. Fixed Design Results : Fixed Design Results Lihua Lei Advisors: Peter J. Bickel, Michael I. Jordan joint work with Peter J. Bickel and Noureddine El Karoui Dec. 8, 2016 1/57 Table of Contents 1 Background 2 Main Results and

More information

Lecture: Introduction to Compressed Sensing Sparse Recovery Guarantees

Lecture: Introduction to Compressed Sensing Sparse Recovery Guarantees Lecture: Introduction to Compressed Sensing Sparse Recovery Guarantees http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html Acknowledgement: this slides is based on Prof. Emmanuel Candes and Prof. Wotao Yin

More information

Sparse and Low Rank Recovery via Null Space Properties

Sparse and Low Rank Recovery via Null Space Properties Sparse and Low Rank Recovery via Null Space Properties Holger Rauhut Lehrstuhl C für Mathematik (Analysis), RWTH Aachen Convexity, probability and discrete structures, a geometric viewpoint Marne-la-Vallée,

More information

Robust Sparse Recovery via Non-Convex Optimization

Robust Sparse Recovery via Non-Convex Optimization Robust Sparse Recovery via Non-Convex Optimization Laming Chen and Yuantao Gu Department of Electronic Engineering, Tsinghua University Homepage: http://gu.ee.tsinghua.edu.cn/ Email: gyt@tsinghua.edu.cn

More information

Stochastic dynamical modeling:

Stochastic dynamical modeling: Stochastic dynamical modeling: Structured matrix completion of partially available statistics Armin Zare www-bcf.usc.edu/ arminzar Joint work with: Yongxin Chen Mihailo R. Jovanovic Tryphon T. Georgiou

More information

Noisy Signal Recovery via Iterative Reweighted L1-Minimization

Noisy Signal Recovery via Iterative Reweighted L1-Minimization Noisy Signal Recovery via Iterative Reweighted L1-Minimization Deanna Needell UC Davis / Stanford University Asilomar SSC, November 2009 Problem Background Setup 1 Suppose x is an unknown signal in R d.

More information

Cooperative Non-Line-of-Sight Localization Using Low-rank + Sparse Matrix Decomposition

Cooperative Non-Line-of-Sight Localization Using Low-rank + Sparse Matrix Decomposition Cooperative Non-Line-of-Sight Localization Using Low-rank + Sparse Matrix Decomposition Venkatesan Ekambaram Kannan Ramchandran Electrical Engineering and Computer Sciences University of California at

More information

Robust Principal Component Analysis Based on Low-Rank and Block-Sparse Matrix Decomposition

Robust Principal Component Analysis Based on Low-Rank and Block-Sparse Matrix Decomposition 1 Robust Principal Component nalysis Based on Low-Rank and Block-Sparse Matrix Decomposition Qiuwei Li Colorado School of Mines Gongguo Tang Colorado School of Mines rye Nehorai Washington University in

More information

Tensor Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Tensors via Convex Optimization

Tensor Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Tensors via Convex Optimization Tensor Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Tensors via Convex Optimization Canyi Lu 1, Jiashi Feng 1, Yudong Chen, Wei Liu 3, Zhouchen Lin 4,5,, Shuicheng Yan 6,1

More information