Gaussian Graphical Models and Graphical Lasso

Size: px
Start display at page:

Download "Gaussian Graphical Models and Graphical Lasso"

Transcription

1 ELE 538B: Sparsity, Structure and Inference Gaussian Graphical Models and Graphical Lasso Yuxin Chen Princeton University, Spring 2017

2 Multivariate Gaussians Consider a random vector x N (0, Σ) with pdf { 1 f(x) = (2π) p/2 exp 1 } 1/2 det (Σ) 2 x Σ 1 x { det (Θ) 1/2 exp 1 } 2 x Θx where Σ = E[xx ] 0 is covariance matrix, and Θ = Σ 1 is inverse covariance matrix / precision matrix Graphical lasso 5-2

3 Undirected graphical models x 1 x 4 {x 2, x 3, x 5, x 6, x 7, x 8 } Represent a collection of variables x = [x 1,, x p ] by a vertex set V = {1,, p} Encode conditional independence by a set E of edges For any pair of vertices u and v, (u, v) / E x u x v x V\{u,v} Graphical lasso 5-3

4 Gaussian graphical models Fact 5.1 (Homework) Consider a Gaussian vector x N (0, Σ). For any u and v, x u x v x V\{u,v} iff Θ u,v = 0, where Θ = Σ 1. conditional independence sparsity Graphical lasso 5-4

5 Gaussian graphical models } {{ } Θ Graphical lasso 5-5

6 Likelihoods for Gaussian models Draw n i.i.d. samples x (1),, x (n) N (0, Σ), then log-likelihood (up to additive constant) is l (Θ) = 1 n log f(x (i) ) = 1 n 2 i=1 = 1 2 log det (Θ) 1 S, Θ, 2 log det (Θ) 1 2n n x (i) Θx (i) i=1 where S := 1 n ni=1 x (i) x (i) is sample covariance; S, Θ = tr(sθ) Maximum likelihood estimation maximize Θ 0 log det (Θ) S, Θ Graphical lasso 5-6

7 Challenge in high-dimensional regime Classical theory says MLE coverges to the truth as sample size n Practically, we are often in the regime where sample size n is small (n < p) In this regime, S is rank-deficient, and MLE does not even exist Graphical lasso 5-7

8 Graphical lasso (Friedman, Hastie, &Tibshirani 08) Many pairs of variables are conditionally independent many missing links in the graphical model (sparsity) Key idea: apply lasso by treating each node as a response variable maximize Θ 0 log det (Θ) S, Θ λ Θ 1 }{{} lasso penalty It is a convex program! (homework) First-order optimality condition Θ 1 S λ Θ 1 }{{} = 0 (5.1) subgradient = (Θ 1 ) i,i = S i,i + λ, 1 i p Graphical lasso 5-8

9 Blockwise coordinate descent Idea: repeatedly cycle through all columns/rows and, in each step, optimize only a single column/row Notation: use W to denote working version of Θ 1. Partition all matrices into 1 column/row vs. the rest [ ] [ ] [ ] Θ11 θ Θ = 12 S11 s θ12 S = 12 W11 w θ 22 s W = s 22 w12 w 22 Graphical lasso 5-9

10 Blockwise coordinate descent Blockwise step: suppose we fix all but the last row / column. It follows from (5.1) that 0 W 11 β s 12 λ θ 12 1 = W 11 β s 12 + λ β 1 (5.2) where β = θ 12 / θ 22 (since [ ] 1 [ ] Θ 11 θ 12 1 Θ 1 θ12 = θ θ 12 θ 22 ) with }{{} θ 22 = θ 22 θ 12 Θ 1 11 θ 12 > 0 matrix inverse formula This coincides with the optimality condition for 1 minimize β W 1/ β W 1/2 11 s λ β 1 (5.3) Graphical lasso 5-10

11 Blockwise coordinate descent Algorithm 5.1 Block coordinate descent for graphical lasso Initialize W = S + λi and fix its diagonals {w i,i }. Repeat until covergence: for t = 1, p: (i) Partition W (resp. S) into 4 parts, where the upper-left part consists of all but the jth row / column (ii) Solve (iii) Update w 12 = W 11 β 1 1/2 minimize β W11 2 β W 1/2 11 s λ β 1 Set ˆθ 12 = ˆθ 22 β with ˆθ 22 = 1/(w 22 w 12 β) Graphical lasso 5-11

12 Blockwise coordinate descent The only remaining thing is to ensure W 0. This is automatically satisfied: Lemma 5.2 (Mazumder & Hastie, 12) If we start with W 0 satisfying W S λ, then every row/column update maintains positive definiteness of W. If we start with W (0) = S + λi, then W (t) will always be positive definite Graphical lasso 5-12

13 Proof of Lemma 5.2 A key observation for the proof of Lemma 5.2 Fact 5.3 (Lemma 2, Mazumder & Hastie, 12) Solving (5.3) is equivalent to solving minimize γ (s 12 + γ) W 1 11 (s 12 + γ) s.t. γ λ (5.4) where solutions to 2 problems are related by ˆβ = W 1 11 (s 12 + ˆγ) Check that optimality condition of (5.3) and that of (5.4) match Graphical lasso 5-13

14 Proof of Lemma 5.2 Suppose in t th iteration one has W (t) S λ and W (t) 11 0; w 22 w (t) ( 12 W (t) 0 W (t) 11 ) 1w (t) 12 We only update w 12, so it suffices to show w 22 w (t+1) ( 12 W (t) 11 > 0 (Schur complement) ) 1w (t+1) 12 > 0 (5.5) Recall that w (t+1) 12 = W t 11 βt+1. It follows from Fact 5.3 that and w (t+1) 12 s 12 λ; w (t+1) ( (t)) 1w (t+1) 12 W w (t) 12 ( (t)) 1w (t) W Since w 22 = s 22 + λ remains unchanged, we establish (5.5). Graphical lasso 5-14

15 Reference [1] Sparse inverse covariance estimation with the graphical lasso, J. Friedman, T. Hastie, and R. Tibshirani, Biostatistics, [2] The graphical lasso: new insights and alternatives, R. Mazumder and T. Hastie, Electronic journal of statistics, [3] Statistical learning with sparsity: the Lasso and generalizations, T. Hastie, R. Tibshirani, and M. Wainwright, Graphical lasso 5-15

10708 Graphical Models: Homework 2

10708 Graphical Models: Homework 2 10708 Graphical Models: Homework 2 Due Monday, March 18, beginning of class Feburary 27, 2013 Instructions: There are five questions (one for extra credit) on this assignment. There is a problem involves

More information

Chapter 17: Undirected Graphical Models

Chapter 17: Undirected Graphical Models Chapter 17: Undirected Graphical Models The Elements of Statistical Learning Biaobin Jiang Department of Biological Sciences Purdue University bjiang@purdue.edu October 30, 2014 Biaobin Jiang (Purdue)

More information

Graphical Model Selection

Graphical Model Selection May 6, 2013 Trevor Hastie, Stanford Statistics 1 Graphical Model Selection Trevor Hastie Stanford University joint work with Jerome Friedman, Rob Tibshirani, Rahul Mazumder and Jason Lee May 6, 2013 Trevor

More information

An Introduction to Graphical Lasso

An Introduction to Graphical Lasso An Introduction to Graphical Lasso Bo Chang Graphical Models Reading Group May 15, 2015 Bo Chang (UBC) Graphical Lasso May 15, 2015 1 / 16 Undirected Graphical Models An undirected graph, each vertex represents

More information

Sparse Gaussian conditional random fields

Sparse Gaussian conditional random fields Sparse Gaussian conditional random fields Matt Wytock, J. ico Kolter School of Computer Science Carnegie Mellon University Pittsburgh, PA 53 {mwytock, zkolter}@cs.cmu.edu Abstract We propose sparse Gaussian

More information

Sparse inverse covariance estimation with the lasso

Sparse inverse covariance estimation with the lasso Sparse inverse covariance estimation with the lasso Jerome Friedman Trevor Hastie and Robert Tibshirani November 8, 2007 Abstract We consider the problem of estimating sparse graphs by a lasso penalty

More information

BAGUS: Bayesian Regularization for Graphical Models with Unequal Shrinkage

BAGUS: Bayesian Regularization for Graphical Models with Unequal Shrinkage BAGUS: Bayesian Regularization for Graphical Models with Unequal Shrinkage Lingrui Gan, Naveen N. Narisetty, Feng Liang Department of Statistics University of Illinois at Urbana-Champaign Problem Statement

More information

Approximation. Inderjit S. Dhillon Dept of Computer Science UT Austin. SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina.

Approximation. Inderjit S. Dhillon Dept of Computer Science UT Austin. SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina. Using Quadratic Approximation Inderjit S. Dhillon Dept of Computer Science UT Austin SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina Sept 12, 2012 Joint work with C. Hsieh, M. Sustik and

More information

Lecture 25: November 27

Lecture 25: November 27 10-725: Optimization Fall 2012 Lecture 25: November 27 Lecturer: Ryan Tibshirani Scribes: Matt Wytock, Supreeth Achar Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have

More information

Multivariate Normal Models

Multivariate Normal Models Case Study 3: fmri Prediction Graphical LASSO Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Emily Fox February 26 th, 2013 Emily Fox 2013 1 Multivariate Normal Models

More information

Coordinate descent. Geoff Gordon & Ryan Tibshirani Optimization /

Coordinate descent. Geoff Gordon & Ryan Tibshirani Optimization / Coordinate descent Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725 1 Adding to the toolbox, with stats and ML in mind We ve seen several general and useful minimization tools First-order methods

More information

Multivariate Normal Models

Multivariate Normal Models Case Study 3: fmri Prediction Coping with Large Covariances: Latent Factor Models, Graphical Models, Graphical LASSO Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox February

More information

MATH 829: Introduction to Data Mining and Analysis Graphical Models III - Gaussian Graphical Models (cont.)

MATH 829: Introduction to Data Mining and Analysis Graphical Models III - Gaussian Graphical Models (cont.) 1/12 MATH 829: Introduction to Data Mining and Analysis Graphical Models III - Gaussian Graphical Models (cont.) Dominique Guillot Departments of Mathematical Sciences University of Delaware May 6, 2016

More information

The graphical lasso: New insights and alternatives

The graphical lasso: New insights and alternatives Electronic Journal of Statistics Vol. 6 (2012) 2125 2149 ISSN: 1935-7524 DOI: 10.1214/12-EJS740 The graphical lasso: New insights and alternatives Rahul Mazumder Massachusetts Institute of Technology Cambridge,

More information

Inverse Covariance Estimation with Missing Data using the Concave-Convex Procedure

Inverse Covariance Estimation with Missing Data using the Concave-Convex Procedure Inverse Covariance Estimation with Missing Data using the Concave-Convex Procedure Jérôme Thai 1 Timothy Hunter 1 Anayo Akametalu 1 Claire Tomlin 1 Alex Bayen 1,2 1 Department of Electrical Engineering

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Gaussian graphical models and Ising models: modeling networks Eric Xing Lecture 0, February 7, 04 Reading: See class website Eric Xing @ CMU, 005-04

More information

Big & Quic: Sparse Inverse Covariance Estimation for a Million Variables

Big & Quic: Sparse Inverse Covariance Estimation for a Million Variables for a Million Variables Cho-Jui Hsieh The University of Texas at Austin NIPS Lake Tahoe, Nevada Dec 8, 2013 Joint work with M. Sustik, I. Dhillon, P. Ravikumar and R. Poldrack FMRI Brain Analysis Goal:

More information

Structure estimation for Gaussian graphical models

Structure estimation for Gaussian graphical models Faculty of Science Structure estimation for Gaussian graphical models Steffen Lauritzen, University of Copenhagen Department of Mathematical Sciences Minikurs TUM 2016 Lecture 3 Slide 1/48 Overview of

More information

Sparse Graph Learning via Markov Random Fields

Sparse Graph Learning via Markov Random Fields Sparse Graph Learning via Markov Random Fields Xin Sui, Shao Tang Sep 23, 2016 Xin Sui, Shao Tang Sparse Graph Learning via Markov Random Fields Sep 23, 2016 1 / 36 Outline 1 Introduction to graph learning

More information

MATH 829: Introduction to Data Mining and Analysis Graphical Models II - Gaussian Graphical Models

MATH 829: Introduction to Data Mining and Analysis Graphical Models II - Gaussian Graphical Models 1/13 MATH 829: Introduction to Data Mining and Analysis Graphical Models II - Gaussian Graphical Models Dominique Guillot Departments of Mathematical Sciences University of Delaware May 4, 2016 Recall

More information

Properties of optimizations used in penalized Gaussian likelihood inverse covariance matrix estimation

Properties of optimizations used in penalized Gaussian likelihood inverse covariance matrix estimation Properties of optimizations used in penalized Gaussian likelihood inverse covariance matrix estimation Adam J. Rothman School of Statistics University of Minnesota October 8, 2014, joint work with Liliana

More information

The lasso: some novel algorithms and applications

The lasso: some novel algorithms and applications 1 The lasso: some novel algorithms and applications Newton Institute, June 25, 2008 Robert Tibshirani Stanford University Collaborations with Trevor Hastie, Jerome Friedman, Holger Hoefling, Gen Nowak,

More information

Lasso: Algorithms and Extensions

Lasso: Algorithms and Extensions ELE 538B: Sparsity, Structure and Inference Lasso: Algorithms and Extensions Yuxin Chen Princeton University, Spring 2017 Outline Proximal operators Proximal gradient methods for lasso and its extensions

More information

Sparse regression. Optimization-Based Data Analysis. Carlos Fernandez-Granda

Sparse regression. Optimization-Based Data Analysis.   Carlos Fernandez-Granda Sparse regression Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 3/28/2016 Regression Least-squares regression Example: Global warming Logistic

More information

Optimization methods

Optimization methods Optimization methods Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda /8/016 Introduction Aim: Overview of optimization methods that Tend to

More information

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28 Sparsity Models Tong Zhang Rutgers University T. Zhang (Rutgers) Sparsity Models 1 / 28 Topics Standard sparse regression model algorithms: convex relaxation and greedy algorithm sparse recovery analysis:

More information

A Blockwise Descent Algorithm for Group-penalized Multiresponse and Multinomial Regression

A Blockwise Descent Algorithm for Group-penalized Multiresponse and Multinomial Regression A Blockwise Descent Algorithm for Group-penalized Multiresponse and Multinomial Regression Noah Simon Jerome Friedman Trevor Hastie November 5, 013 Abstract In this paper we purpose a blockwise descent

More information

High-dimensional Covariance Estimation Based On Gaussian Graphical Models

High-dimensional Covariance Estimation Based On Gaussian Graphical Models High-dimensional Covariance Estimation Based On Gaussian Graphical Models Shuheng Zhou, Philipp Rutimann, Min Xu and Peter Buhlmann February 3, 2012 Problem definition Want to estimate the covariance matrix

More information

Learning discrete graphical models via generalized inverse covariance matrices

Learning discrete graphical models via generalized inverse covariance matrices Learning discrete graphical models via generalized inverse covariance matrices Duzhe Wang, Yiming Lv, Yongjoon Kim, Young Lee Department of Statistics University of Wisconsin-Madison {dwang282, lv23, ykim676,

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Sparse Recovery using L1 minimization - algorithms Yuejie Chi Department of Electrical and Computer Engineering Spring

More information

Compressed Sensing and Sparse Recovery

Compressed Sensing and Sparse Recovery ELE 538B: Sparsity, Structure and Inference Compressed Sensing and Sparse Recovery Yuxin Chen Princeton University, Spring 217 Outline Restricted isometry property (RIP) A RIPless theory Compressed sensing

More information

Machine Learning and Computational Statistics, Spring 2017 Homework 2: Lasso Regression

Machine Learning and Computational Statistics, Spring 2017 Homework 2: Lasso Regression Machine Learning and Computational Statistics, Spring 2017 Homework 2: Lasso Regression Due: Monday, February 13, 2017, at 10pm (Submit via Gradescope) Instructions: Your answers to the questions below,

More information

Learning Multiple Tasks with a Sparse Matrix-Normal Penalty

Learning Multiple Tasks with a Sparse Matrix-Normal Penalty Learning Multiple Tasks with a Sparse Matrix-Normal Penalty Yi Zhang and Jeff Schneider NIPS 2010 Presented by Esther Salazar Duke University March 25, 2011 E. Salazar (Reading group) March 25, 2011 1

More information

Lecture 2 Part 1 Optimization

Lecture 2 Part 1 Optimization Lecture 2 Part 1 Optimization (January 16, 2015) Mu Zhu University of Waterloo Need for Optimization E(y x), P(y x) want to go after them first, model some examples last week then, estimate didn t discuss

More information

Learning Gaussian Graphical Models with Unknown Group Sparsity

Learning Gaussian Graphical Models with Unknown Group Sparsity Learning Gaussian Graphical Models with Unknown Group Sparsity Kevin Murphy Ben Marlin Depts. of Statistics & Computer Science Univ. British Columbia Canada Connections Graphical models Density estimation

More information

Robust and sparse Gaussian graphical modelling under cell-wise contamination

Robust and sparse Gaussian graphical modelling under cell-wise contamination Robust and sparse Gaussian graphical modelling under cell-wise contamination Shota Katayama 1, Hironori Fujisawa 2 and Mathias Drton 3 1 Tokyo Institute of Technology, Japan 2 The Institute of Statistical

More information

Robust Principal Component Analysis

Robust Principal Component Analysis ELE 538B: Mathematics of High-Dimensional Data Robust Principal Component Analysis Yuxin Chen Princeton University, Fall 2018 Disentangling sparse and low-rank matrices Suppose we are given a matrix M

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Gaussian graphical models and Ising models: modeling networks Eric Xing Lecture 0, February 5, 06 Reading: See class website Eric Xing @ CMU, 005-06

More information

Sparse Covariance Selection using Semidefinite Programming

Sparse Covariance Selection using Semidefinite Programming Sparse Covariance Selection using Semidefinite Programming A. d Aspremont ORFE, Princeton University Joint work with O. Banerjee, L. El Ghaoui & G. Natsoulis, U.C. Berkeley & Iconix Pharmaceuticals Support

More information

A Divide-and-Conquer Procedure for Sparse Inverse Covariance Estimation

A Divide-and-Conquer Procedure for Sparse Inverse Covariance Estimation A Divide-and-Conquer Procedure for Sparse Inverse Covariance Estimation Cho-Jui Hsieh Dept. of Computer Science University of Texas, Austin cjhsieh@cs.utexas.edu Inderjit S. Dhillon Dept. of Computer Science

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Multivariate Gaussians Mark Schmidt University of British Columbia Winter 2019 Last Time: Multivariate Gaussian http://personal.kenyon.edu/hartlaub/mellonproject/bivariate2.html

More information

Undirected Graphical Models

Undirected Graphical Models 17 Undirected Graphical Models 17.1 Introduction A graph consists of a set of vertices (nodes), along with a set of edges joining some pairs of the vertices. In graphical models, each vertex represents

More information

CS295: Convex Optimization. Xiaohui Xie Department of Computer Science University of California, Irvine

CS295: Convex Optimization. Xiaohui Xie Department of Computer Science University of California, Irvine CS295: Convex Optimization Xiaohui Xie Department of Computer Science University of California, Irvine Course information Prerequisites: multivariate calculus and linear algebra Textbook: Convex Optimization

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 2016 Robert Nowak Probabilistic Graphical Models 1 Introduction We have focused mainly on linear models for signals, in particular the subspace model x = Uθ, where U is a n k matrix and θ R k is a vector

More information

A note on the group lasso and a sparse group lasso

A note on the group lasso and a sparse group lasso A note on the group lasso and a sparse group lasso arxiv:1001.0736v1 [math.st] 5 Jan 2010 Jerome Friedman Trevor Hastie and Robert Tibshirani January 5, 2010 Abstract We consider the group lasso penalty

More information

An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss

An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss arxiv:1811.04545v1 [stat.co] 12 Nov 2018 Cheng Wang School of Mathematical Sciences, Shanghai Jiao

More information

Optimization methods

Optimization methods Lecture notes 3 February 8, 016 1 Introduction Optimization methods In these notes we provide an overview of a selection of optimization methods. We focus on methods which rely on first-order information,

More information

Node-Based Learning of Multiple Gaussian Graphical Models

Node-Based Learning of Multiple Gaussian Graphical Models Journal of Machine Learning Research 5 (04) 445-488 Submitted /; Revised 8/; Published /4 Node-Based Learning of Multiple Gaussian Graphical Models Karthik Mohan Palma London Maryam Fazel Department of

More information

Smoothly Clipped Absolute Deviation (SCAD) for Correlated Variables

Smoothly Clipped Absolute Deviation (SCAD) for Correlated Variables Smoothly Clipped Absolute Deviation (SCAD) for Correlated Variables LIB-MA, FSSM Cadi Ayyad University (Morocco) COMPSTAT 2010 Paris, August 22-27, 2010 Motivations Fan and Li (2001), Zou and Li (2008)

More information

Sparse Inverse Covariance Estimation for a Million Variables

Sparse Inverse Covariance Estimation for a Million Variables Sparse Inverse Covariance Estimation for a Million Variables Inderjit S. Dhillon Depts of Computer Science & Mathematics The University of Texas at Austin SAMSI LDHD Opening Workshop Raleigh, North Carolina

More information

OPTIMISATION CHALLENGES IN MODERN STATISTICS. Co-authors: Y. Chen, M. Cule, R. Gramacy, M. Yuan

OPTIMISATION CHALLENGES IN MODERN STATISTICS. Co-authors: Y. Chen, M. Cule, R. Gramacy, M. Yuan OPTIMISATION CHALLENGES IN MODERN STATISTICS Co-authors: Y. Chen, M. Cule, R. Gramacy, M. Yuan How do optimisation problems arise in Statistics? Let X 1,...,X n be independent and identically distributed

More information

11 : Gaussian Graphic Models and Ising Models

11 : Gaussian Graphic Models and Ising Models 10-708: Probabilistic Graphical Models 10-708, Spring 2017 11 : Gaussian Graphic Models and Ising Models Lecturer: Bryon Aragam Scribes: Chao-Ming Yen 1 Introduction Different from previous maximum likelihood

More information

Linear Models in Machine Learning

Linear Models in Machine Learning CS540 Intro to AI Linear Models in Machine Learning Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu We briefly go over two linear models frequently used in machine learning: linear regression for, well, regression,

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Undirected Graphical Models Mark Schmidt University of British Columbia Winter 2016 Admin Assignment 3: 2 late days to hand it in today, Thursday is final day. Assignment 4:

More information

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari MS&E 226: Small Data Lecture 11: Maximum likelihood (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 18 The likelihood function 2 / 18 Estimating the parameter This lecture develops the methodology behind

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information

Joint Gaussian Graphical Model Review Series I

Joint Gaussian Graphical Model Review Series I Joint Gaussian Graphical Model Review Series I Probability Foundations Beilun Wang Advisor: Yanjun Qi 1 Department of Computer Science, University of Virginia http://jointggm.org/ June 23rd, 2017 Beilun

More information

Graphical Models for Collaborative Filtering

Graphical Models for Collaborative Filtering Graphical Models for Collaborative Filtering Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Sequence modeling HMM, Kalman Filter, etc.: Similarity: the same graphical model topology,

More information

ECE521 lecture 4: 19 January Optimization, MLE, regularization

ECE521 lecture 4: 19 January Optimization, MLE, regularization ECE521 lecture 4: 19 January 2017 Optimization, MLE, regularization First four lectures Lectures 1 and 2: Intro to ML Probability review Types of loss functions and algorithms Lecture 3: KNN Convexity

More information

Gaussian Graphical Models: An Algebraic and Geometric Perspective

Gaussian Graphical Models: An Algebraic and Geometric Perspective Gaussian Graphical Models: An Algebraic and Geometric Perspective Caroline Uhler arxiv:707.04345v [math.st] 3 Jul 07 Abstract Gaussian graphical models are used throughout the natural sciences, social

More information

CSC 412 (Lecture 4): Undirected Graphical Models

CSC 412 (Lecture 4): Undirected Graphical Models CSC 412 (Lecture 4): Undirected Graphical Models Raquel Urtasun University of Toronto Feb 2, 2016 R Urtasun (UofT) CSC 412 Feb 2, 2016 1 / 37 Today Undirected Graphical Models: Semantics of the graph:

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Mixture Models, Density Estimation, Factor Analysis Mark Schmidt University of British Columbia Winter 2016 Admin Assignment 2: 1 late day to hand it in now. Assignment 3: Posted,

More information

Lecture 9: September 28

Lecture 9: September 28 0-725/36-725: Convex Optimization Fall 206 Lecturer: Ryan Tibshirani Lecture 9: September 28 Scribes: Yiming Wu, Ye Yuan, Zhihao Li Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These

More information

High-dimensional covariance estimation based on Gaussian graphical models

High-dimensional covariance estimation based on Gaussian graphical models High-dimensional covariance estimation based on Gaussian graphical models Shuheng Zhou Department of Statistics, The University of Michigan, Ann Arbor IMA workshop on High Dimensional Phenomena Sept. 26,

More information

Proximity-Based Anomaly Detection using Sparse Structure Learning

Proximity-Based Anomaly Detection using Sparse Structure Learning Proximity-Based Anomaly Detection using Sparse Structure Learning Tsuyoshi Idé (IBM Tokyo Research Lab) Aurelie C. Lozano, Naoki Abe, and Yan Liu (IBM T. J. Watson Research Center) 2009/04/ SDM 2009 /

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 11 CRFs, Exponential Family CS/CNS/EE 155 Andreas Krause Announcements Homework 2 due today Project milestones due next Monday (Nov 9) About half the work should

More information

Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data

Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data Onureena Banerjee Electrical Engineering and Computer Sciences University of California at Berkeley

More information

The picasso Package for Nonconvex Regularized M-estimation in High Dimensions in R

The picasso Package for Nonconvex Regularized M-estimation in High Dimensions in R The picasso Package for Nonconvex Regularized M-estimation in High Dimensions in R Xingguo Li Tuo Zhao Tong Zhang Han Liu Abstract We describe an R package named picasso, which implements a unified framework

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 Problem Set 3 Issued: Thursday, September 25, 2014 Due: Thursday,

More information

A Local Inverse Formula and a Factorization

A Local Inverse Formula and a Factorization A Local Inverse Formula and a Factorization arxiv:60.030v [math.na] 4 Oct 06 Gilbert Strang and Shev MacNamara With congratulations to Ian Sloan! Abstract When a matrix has a banded inverse there is a

More information

Learning Markov Network Structure using Brownian Distance Covariance

Learning Markov Network Structure using Brownian Distance Covariance arxiv:.v [stat.ml] Jun 0 Learning Markov Network Structure using Brownian Distance Covariance Ehsan Khoshgnauz May, 0 Abstract In this paper, we present a simple non-parametric method for learning the

More information

Sparsity Regularization

Sparsity Regularization Sparsity Regularization Bangti Jin Course Inverse Problems & Imaging 1 / 41 Outline 1 Motivation: sparsity? 2 Mathematical preliminaries 3 l 1 solvers 2 / 41 problem setup finite-dimensional formulation

More information

Lecture 4 September 15

Lecture 4 September 15 IFT 6269: Probabilistic Graphical Models Fall 2017 Lecture 4 September 15 Lecturer: Simon Lacoste-Julien Scribe: Philippe Brouillard & Tristan Deleu 4.1 Maximum Likelihood principle Given a parametric

More information

Linear Regression (9/11/13)

Linear Regression (9/11/13) STA561: Probabilistic machine learning Linear Regression (9/11/13) Lecturer: Barbara Engelhardt Scribes: Zachary Abzug, Mike Gloudemans, Zhuosheng Gu, Zhao Song 1 Why use linear regression? Figure 1: Scatter

More information

Variables. Cho-Jui Hsieh The University of Texas at Austin. ICML workshop on Covariance Selection Beijing, China June 26, 2014

Variables. Cho-Jui Hsieh The University of Texas at Austin. ICML workshop on Covariance Selection Beijing, China June 26, 2014 for a Million Variables Cho-Jui Hsieh The University of Texas at Austin ICML workshop on Covariance Selection Beijing, China June 26, 2014 Joint work with M. Sustik, I. Dhillon, P. Ravikumar, R. Poldrack,

More information

Proximal Gradient Descent and Acceleration. Ryan Tibshirani Convex Optimization /36-725

Proximal Gradient Descent and Acceleration. Ryan Tibshirani Convex Optimization /36-725 Proximal Gradient Descent and Acceleration Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: subgradient method Consider the problem min f(x) with f convex, and dom(f) = R n. Subgradient method:

More information

(Part 1) High-dimensional statistics May / 41

(Part 1) High-dimensional statistics May / 41 Theory for the Lasso Recall the linear model Y i = p j=1 β j X (j) i + ɛ i, i = 1,..., n, or, in matrix notation, Y = Xβ + ɛ, To simplify, we assume that the design X is fixed, and that ɛ is N (0, σ 2

More information

Adaptive First-Order Methods for General Sparse Inverse Covariance Selection

Adaptive First-Order Methods for General Sparse Inverse Covariance Selection Adaptive First-Order Methods for General Sparse Inverse Covariance Selection Zhaosong Lu December 2, 2008 Abstract In this paper, we consider estimating sparse inverse covariance of a Gaussian graphical

More information

Proximal Newton Method. Zico Kolter (notes by Ryan Tibshirani) Convex Optimization

Proximal Newton Method. Zico Kolter (notes by Ryan Tibshirani) Convex Optimization Proximal Newton Method Zico Kolter (notes by Ryan Tibshirani) Convex Optimization 10-725 Consider the problem Last time: quasi-newton methods min x f(x) with f convex, twice differentiable, dom(f) = R

More information

Divide-and-combine Strategies in Statistical Modeling for Massive Data

Divide-and-combine Strategies in Statistical Modeling for Massive Data Divide-and-combine Strategies in Statistical Modeling for Massive Data Liqun Yu Washington University in St. Louis March 30, 2017 Liqun Yu (WUSTL) D&C Statistical Modeling for Massive Data March 30, 2017

More information

Partitioned Covariance Matrices and Partial Correlations. Proposition 1 Let the (p + q) (p + q) covariance matrix C > 0 be partitioned as C = C11 C 12

Partitioned Covariance Matrices and Partial Correlations. Proposition 1 Let the (p + q) (p + q) covariance matrix C > 0 be partitioned as C = C11 C 12 Partitioned Covariance Matrices and Partial Correlations Proposition 1 Let the (p + q (p + q covariance matrix C > 0 be partitioned as ( C11 C C = 12 C 21 C 22 Then the symmetric matrix C > 0 has the following

More information

Extended Bayesian Information Criteria for Gaussian Graphical Models

Extended Bayesian Information Criteria for Gaussian Graphical Models Extended Bayesian Information Criteria for Gaussian Graphical Models Rina Foygel University of Chicago rina@uchicago.edu Mathias Drton University of Chicago drton@uchicago.edu Abstract Gaussian graphical

More information

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Let X 1, X 2,, X n be a sequence of i.i.d. observations from a

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maximum Likelihood Estimation Assume X P θ, θ Θ, with joint pdf (or pmf) f(x θ). Suppose we observe X = x. The Likelihood function is L(θ x) = f(x θ) as a function of θ (with the data x held fixed). The

More information

A Robust Approach to Regularized Discriminant Analysis

A Robust Approach to Regularized Discriminant Analysis A Robust Approach to Regularized Discriminant Analysis Moritz Gschwandtner Department of Statistics and Probability Theory Vienna University of Technology, Austria Österreichische Statistiktage, Graz,

More information

Regulatory Inferece from Gene Expression. CMSC858P Spring 2012 Hector Corrada Bravo

Regulatory Inferece from Gene Expression. CMSC858P Spring 2012 Hector Corrada Bravo Regulatory Inferece from Gene Expression CMSC858P Spring 2012 Hector Corrada Bravo 2 Graphical Model Let y be a vector- valued random variable Suppose some condi8onal independence proper8es hold for some

More information

Exact Hybrid Covariance Thresholding for Joint Graphical Lasso

Exact Hybrid Covariance Thresholding for Joint Graphical Lasso Exact Hybrid Covariance Thresholding for Joint Graphical Lasso Qingming Tang Chao Yang Jian Peng Jinbo Xu Toyota Technological Institute at Chicago Massachusetts Institute of Technology Abstract. This

More information

Sparse Inverse Covariance Estimation with Hierarchical Matrices

Sparse Inverse Covariance Estimation with Hierarchical Matrices Sparse Inverse Covariance Estimation with ierarchical Matrices Jonas Ballani Daniel Kressner October, 0 Abstract In statistics, a frequent task is to estimate the covariance matrix of a set of normally

More information

Multivariate Bernoulli Distribution 1

Multivariate Bernoulli Distribution 1 DEPARTMENT OF STATISTICS University of Wisconsin 1300 University Ave. Madison, WI 53706 TECHNICAL REPORT NO. 1170 June 6, 2012 Multivariate Bernoulli Distribution 1 Bin Dai 2 Department of Statistics University

More information

The Nonparanormal skeptic

The Nonparanormal skeptic The Nonpara skeptic Han Liu Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205 USA Fang Han Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205 USA Ming Yuan Georgia Institute

More information

Selected Topics in Optimization. Some slides borrowed from

Selected Topics in Optimization. Some slides borrowed from Selected Topics in Optimization Some slides borrowed from http://www.stat.cmu.edu/~ryantibs/convexopt/ Overview Optimization problems are almost everywhere in statistics and machine learning. Input Model

More information

Nonconcave Penalized Likelihood with A Diverging Number of Parameters

Nonconcave Penalized Likelihood with A Diverging Number of Parameters Nonconcave Penalized Likelihood with A Diverging Number of Parameters Jianqing Fan and Heng Peng Presenter: Jiale Xu March 12, 2010 Jianqing Fan and Heng Peng Presenter: JialeNonconcave Xu () Penalized

More information

Sparse and Locally Constant Gaussian Graphical Models

Sparse and Locally Constant Gaussian Graphical Models Sparse and Locally Constant Gaussian Graphical Models Jean Honorio, Luis Ortiz, Dimitris Samaras Department of Computer Science Stony Brook University Stony Brook, NY 794 {jhonorio,leortiz,samaras}@cs.sunysb.edu

More information

Learning Graphical Models With Hubs

Learning Graphical Models With Hubs Learning Graphical Models With Hubs Kean Ming Tan, Palma London, Karthik Mohan, Su-In Lee, Maryam Fazel, Daniela Witten arxiv:140.7349v1 [stat.ml] 8 Feb 014 Abstract We consider the problem of learning

More information

Confidence Intervals for Low-dimensional Parameters with High-dimensional Data

Confidence Intervals for Low-dimensional Parameters with High-dimensional Data Confidence Intervals for Low-dimensional Parameters with High-dimensional Data Cun-Hui Zhang and Stephanie S. Zhang Rutgers University and Columbia University September 14, 2012 Outline Introduction Methodology

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

Lecture 5: Gradient Descent. 5.1 Unconstrained minimization problems and Gradient descent

Lecture 5: Gradient Descent. 5.1 Unconstrained minimization problems and Gradient descent 10-725/36-725: Convex Optimization Spring 2015 Lecturer: Ryan Tibshirani Lecture 5: Gradient Descent Scribes: Loc Do,2,3 Disclaimer: These notes have not been subjected to the usual scrutiny reserved for

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information