Smoothly Clipped Absolute Deviation (SCAD) for Correlated Variables

Size: px
Start display at page:

Download "Smoothly Clipped Absolute Deviation (SCAD) for Correlated Variables"

Transcription

1 Smoothly Clipped Absolute Deviation (SCAD) for Correlated Variables LIB-MA, FSSM Cadi Ayyad University (Morocco) COMPSTAT 2010 Paris, August 22-27, 2010

2 Motivations Fan and Li (2001), Zou and Li (2008) works Convex penalties (e.g quadratic penalties) : make trade-off between bias and variance, can create unnecessary biases when the true parameters are large and cannot produce parsimonious models. Nonconcave penalties (e.g: SCAD penalty,fan 1997 and hard thresholding penalty, Antoniadis 1997) Variables selection in high dimension (correlated variables) Penalized likelihood framework

3 Ideal procedure for variable selection Unbiasedness: The resulting estimator is nearly unbiasedness when the true unkwown parameter is large to avoid excessive estimation bias. Sparsity: Estimating a small coefficient as zero, to reduce model complexity. Continuity: The resulting estimator is continuous in the data to avoid instability in model prediction.

4 The Smoothly Clipped Absolute Deviation (SCAD) Penalty The SCAD penalty noted J λ (.) satisfies all three requirements (unbiasedness,sparsity,continuity) and is defined by J λ (0) = 0 and for β j > 0 J λ ( β j ) = λi( β j λ) + (aλ β j ) + I( β j > λ), (1) a 1 where (z) + = max(z, 0), a > 2 and λ > 0. SCAD possesses oracle properties.

5 Generalities Let (x i, y i ), i = 1,..., n an i.i.d random variables sample where x i IR p, y i IR. The conditional log-likelihood function knowing x i is: l i (β) = l i (β, φ) = l i (x t i β, y i, φ) (2) where φ is the dispersion parameter, supposed known. We want to estimate β maximizing: Pl(β) = n p l i (β) n J λ ( β j ), (3) i=1 j=1

6 The penalized likelihood is nonconcave and nondifferentiable Maximization problem Alternative: Approximation of the SCAD penalty by convex functions Iterative algorithms LQA Algorithm: Fan and Li (2001) n β (k+1) = argmax β l i (β) n i=1 p j=1 J λ ( β(k) j ) 2 β (k) j β 2 j. (4) When β (k) j < ɛ 0 put ˆβ j = 0 Two drawbacks: Choice of ɛ 0 and definitive exclusion of variables.

7 LLA Algorithm: Zou and Li (2008) n β (k+1) = argmax β l i (β) n i=1 p j=1 J λ ( β(k) j ) β j. (5) The one step LLA estimations are good as estimations obtained after the fully iterative LLA. The well known LARS algorithm is used when computing the solution. Therefore, as with LASSO (Tibshirani, 1996) there is a problem of selection in the case p >> n.

8 Our contribution: MLLQA Algorithm β (k+1) = argmax β n l i (β) n i=1 p ωj 1 β j n 2 j=1 p j=1 ω 2 j,τ β2 j. (6) Where ωj 1 and ωj,τ 2 depend on J λ ( β(0) j ), β (0) j and eventually τ > 0. β (0) is the Maximum Likelihood Estimator. The second term is for selection. The third one guarantees grouping effect as with the elastic net (Zou and Hastie, 2005). For the convergence we prove that MLLQA is an instance of MM algorithms (Hunter and Li 2005).

9 Augmented data problem We show that solving problem (6) is equivalent to find: 1 p β = argmin β 2 Y X β 2 +n ωj 1 βj. Y IR n+p, X of dimension (n + p) p and (Y, X ) depend on data (Y, X). Proposition Solving the problem (3) via one-step MLLQA algorithm is equivalent to One-step LLA on augmented data. j=1 (7)

10 Oracle and Statistical Properties of the one step MLLQA estimator Let β(ose) be the one-step estimator β (1) and β 0 the true model parameter. Assume β 0 = (β 01,..., β 0p ) T = (β T 10, βt 20 )T and β 20 = 0. Under some regularity conditions we have the following theorem: Theorem If nλ n and λ n 0, β(ose) is Sparse: with probability tending to 1, β(ose) 2 = 0. Asymptotically normal: n( β(ose) 1 β 10 ) N(0, I 1 1 (β 10)) Continuity: the minimum of the function β +J λ ( β ) must be attained at zero (Fan and Li 2001).In the case of one-step it suffices that J λ ( β ) be continuous for β > 0 to have the continuity of β(ose).

11 Grouping effect: case of correlated variables Assume that the response variable is centered and the predictors are standardized. If β (0) i = β (0) j 0 i, j {1,..., p} we then have: 1. D λ,τ,β (0)(i, j) β(0) j +τ 2(1 ρ) nj λ ( β(0) j ) 2. x i = x j β i = β j Where ρ = x t i x j and D λ,τ,β (0)(i, j) = β i β j Y 1

12 Linear Model In this example, simulation data were generated from the linear regression model, y = x T β + ɛ, where β = (3, 1.5, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0) T, ɛ N (0, 1) and x is multivariate normal distribution with zero mean and covariance between the ith and jth elements being ρ i j with ρ {0.5, 0.7, 0.9}.The sample size is set to be 50 and 100.For each case we repeated the simulation 500 times.

13 n = 50 No. of Zeros Proportion of Method MRME C IC Underfit Correctfit Overfit ρ =.5 LLA MLLQA ρ =.7 LLA MLLQA ρ =.9 LLA MLLQA

14 n = 100 No. of Zeros Proportion of Method MRME C IC Underfit Correctfit Overfit ρ =.5 LLA MLLQA ρ =.7 LLA MLLQA ρ =.9 LLA MLLQA

15 Using convexe approximation of SCAD penalty, we ve transformed our initial problem in one-step LLA on augmented data. This approach is adapted in the high dimensional setting (p >> n).so, allows the selection of more than n variables. We considered one-step estimator as final estimation because it s naturally adopt sparse representation and has oracle properties. Our approach improves one-step LLA results in the case (p < n).

16 EFRON, B., HASTIE, T., JOHNSTONE, I. and TIBSHIRANI, R.(2004): Least angle regression. The annals of statistics (32), FAN, J. and LI, R.(2001): Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association (96), HUNTER, D. and Li, R.(2005): Variable selection using MM algorithms. The annals of statistics, volume 33, TIBSHIRANI, R.(1996): Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society (58), ZOU, H. and HASTIE, T.(2005): Regularization and variable selection via the elastic-net. Journal of the Royal Statistical Society (67), ZOU, H. and LI, R.(2008): One-step sparse estimates in nonconcave penalized likelihood co-authors models. Mkhadri Abdallah The and annals N Guessan of Assi

17 Thank you for your attention!!! MERCI DE VOTRE ATTENTION!!!

Nonconcave Penalized Likelihood with A Diverging Number of Parameters

Nonconcave Penalized Likelihood with A Diverging Number of Parameters Nonconcave Penalized Likelihood with A Diverging Number of Parameters Jianqing Fan and Heng Peng Presenter: Jiale Xu March 12, 2010 Jianqing Fan and Heng Peng Presenter: JialeNonconcave Xu () Penalized

More information

Paper Review: Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties by Jianqing Fan and Runze Li (2001)

Paper Review: Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties by Jianqing Fan and Runze Li (2001) Paper Review: Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties by Jianqing Fan and Runze Li (2001) Presented by Yang Zhao March 5, 2010 1 / 36 Outlines 2 / 36 Motivation

More information

Selection of Smoothing Parameter for One-Step Sparse Estimates with L q Penalty

Selection of Smoothing Parameter for One-Step Sparse Estimates with L q Penalty Journal of Data Science 9(2011), 549-564 Selection of Smoothing Parameter for One-Step Sparse Estimates with L q Penalty Masaru Kanba and Kanta Naito Shimane University Abstract: This paper discusses the

More information

MSA220/MVE440 Statistical Learning for Big Data

MSA220/MVE440 Statistical Learning for Big Data MSA220/MVE440 Statistical Learning for Big Data Lecture 9-10 - High-dimensional regression Rebecka Jörnsten Mathematical Sciences University of Gothenburg and Chalmers University of Technology Recap from

More information

Generalized Elastic Net Regression

Generalized Elastic Net Regression Abstract Generalized Elastic Net Regression Geoffroy MOURET Jean-Jules BRAULT Vahid PARTOVINIA This work presents a variation of the elastic net penalization method. We propose applying a combined l 1

More information

Lecture 14: Variable Selection - Beyond LASSO

Lecture 14: Variable Selection - Beyond LASSO Fall, 2017 Extension of LASSO To achieve oracle properties, L q penalty with 0 < q < 1, SCAD penalty (Fan and Li 2001; Zhang et al. 2007). Adaptive LASSO (Zou 2006; Zhang and Lu 2007; Wang et al. 2007)

More information

SOLVING NON-CONVEX LASSO TYPE PROBLEMS WITH DC PROGRAMMING. Gilles Gasso, Alain Rakotomamonjy and Stéphane Canu

SOLVING NON-CONVEX LASSO TYPE PROBLEMS WITH DC PROGRAMMING. Gilles Gasso, Alain Rakotomamonjy and Stéphane Canu SOLVING NON-CONVEX LASSO TYPE PROBLEMS WITH DC PROGRAMMING Gilles Gasso, Alain Rakotomamonjy and Stéphane Canu LITIS - EA 48 - INSA/Universite de Rouen Avenue de l Université - 768 Saint-Etienne du Rouvray

More information

The Adaptive Lasso and Its Oracle Properties Hui Zou (2006), JASA

The Adaptive Lasso and Its Oracle Properties Hui Zou (2006), JASA The Adaptive Lasso and Its Oracle Properties Hui Zou (2006), JASA Presented by Dongjun Chung March 12, 2010 Introduction Definition Oracle Properties Computations Relationship: Nonnegative Garrote Extensions:

More information

The MNet Estimator. Patrick Breheny. Department of Biostatistics Department of Statistics University of Kentucky. August 2, 2010

The MNet Estimator. Patrick Breheny. Department of Biostatistics Department of Statistics University of Kentucky. August 2, 2010 Department of Biostatistics Department of Statistics University of Kentucky August 2, 2010 Joint work with Jian Huang, Shuangge Ma, and Cun-Hui Zhang Penalized regression methods Penalized methods have

More information

Genomics, Transcriptomics and Proteomics in Clinical Research. Statistical Learning for Analyzing Functional Genomic Data. Explanation vs.

Genomics, Transcriptomics and Proteomics in Clinical Research. Statistical Learning for Analyzing Functional Genomic Data. Explanation vs. Genomics, Transcriptomics and Proteomics in Clinical Research Statistical Learning for Analyzing Functional Genomic Data German Cancer Research Center, Heidelberg, Germany June 16, 6 Diagnostics signatures

More information

Regularization: Ridge Regression and the LASSO

Regularization: Ridge Regression and the LASSO Agenda Wednesday, November 29, 2006 Agenda Agenda 1 The Bias-Variance Tradeoff 2 Ridge Regression Solution to the l 2 problem Data Augmentation Approach Bayesian Interpretation The SVD and Ridge Regression

More information

Regularization and Variable Selection via the Elastic Net

Regularization and Variable Selection via the Elastic Net p. 1/1 Regularization and Variable Selection via the Elastic Net Hui Zou and Trevor Hastie Journal of Royal Statistical Society, B, 2005 Presenter: Minhua Chen, Nov. 07, 2008 p. 2/1 Agenda Introduction

More information

Comparisons of penalized least squares. methods by simulations

Comparisons of penalized least squares. methods by simulations Comparisons of penalized least squares arxiv:1405.1796v1 [stat.co] 8 May 2014 methods by simulations Ke ZHANG, Fan YIN University of Science and Technology of China, Hefei 230026, China Shifeng XIONG Academy

More information

Variable Selection for Highly Correlated Predictors

Variable Selection for Highly Correlated Predictors Variable Selection for Highly Correlated Predictors Fei Xue and Annie Qu Department of Statistics, University of Illinois at Urbana-Champaign WHOA-PSI, Aug, 2017 St. Louis, Missouri 1 / 30 Background Variable

More information

On High-Dimensional Cross-Validation

On High-Dimensional Cross-Validation On High-Dimensional Cross-Validation BY WEI-CHENG HSIAO Institute of Statistical Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan hsiaowc@stat.sinica.edu.tw 5 WEI-YING

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

Iterative Selection Using Orthogonal Regression Techniques

Iterative Selection Using Orthogonal Regression Techniques Iterative Selection Using Orthogonal Regression Techniques Bradley Turnbull 1, Subhashis Ghosal 1 and Hao Helen Zhang 2 1 Department of Statistics, North Carolina State University, Raleigh, NC, USA 2 Department

More information

Confidence Intervals for Low-dimensional Parameters with High-dimensional Data

Confidence Intervals for Low-dimensional Parameters with High-dimensional Data Confidence Intervals for Low-dimensional Parameters with High-dimensional Data Cun-Hui Zhang and Stephanie S. Zhang Rutgers University and Columbia University September 14, 2012 Outline Introduction Methodology

More information

On Mixture Regression Shrinkage and Selection via the MR-LASSO

On Mixture Regression Shrinkage and Selection via the MR-LASSO On Mixture Regression Shrinage and Selection via the MR-LASSO Ronghua Luo, Hansheng Wang, and Chih-Ling Tsai Guanghua School of Management, Peing University & Graduate School of Management, University

More information

Bayesian Grouped Horseshoe Regression with Application to Additive Models

Bayesian Grouped Horseshoe Regression with Application to Additive Models Bayesian Grouped Horseshoe Regression with Application to Additive Models Zemei Xu, Daniel F. Schmidt, Enes Makalic, Guoqi Qian, and John L. Hopper Centre for Epidemiology and Biostatistics, Melbourne

More information

Consistent high-dimensional Bayesian variable selection via penalized credible regions

Consistent high-dimensional Bayesian variable selection via penalized credible regions Consistent high-dimensional Bayesian variable selection via penalized credible regions Howard Bondell bondell@stat.ncsu.edu Joint work with Brian Reich Howard Bondell p. 1 Outline High-Dimensional Variable

More information

Robust Variable Selection Through MAVE

Robust Variable Selection Through MAVE Robust Variable Selection Through MAVE Weixin Yao and Qin Wang Abstract Dimension reduction and variable selection play important roles in high dimensional data analysis. Wang and Yin (2008) proposed sparse

More information

A Blockwise Descent Algorithm for Group-penalized Multiresponse and Multinomial Regression

A Blockwise Descent Algorithm for Group-penalized Multiresponse and Multinomial Regression A Blockwise Descent Algorithm for Group-penalized Multiresponse and Multinomial Regression Noah Simon Jerome Friedman Trevor Hastie November 5, 013 Abstract In this paper we purpose a blockwise descent

More information

Bi-level feature selection with applications to genetic association

Bi-level feature selection with applications to genetic association Bi-level feature selection with applications to genetic association studies October 15, 2008 Motivation In many applications, biological features possess a grouping structure Categorical variables may

More information

Sparse regression. Optimization-Based Data Analysis. Carlos Fernandez-Granda

Sparse regression. Optimization-Based Data Analysis.   Carlos Fernandez-Granda Sparse regression Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 3/28/2016 Regression Least-squares regression Example: Global warming Logistic

More information

Forward Selection and Estimation in High Dimensional Single Index Models

Forward Selection and Estimation in High Dimensional Single Index Models Forward Selection and Estimation in High Dimensional Single Index Models Shikai Luo and Subhashis Ghosal North Carolina State University August 29, 2016 Abstract We propose a new variable selection and

More information

Robust Variable Selection Methods for Grouped Data. Kristin Lee Seamon Lilly

Robust Variable Selection Methods for Grouped Data. Kristin Lee Seamon Lilly Robust Variable Selection Methods for Grouped Data by Kristin Lee Seamon Lilly A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree

More information

High dimensional thresholded regression and shrinkage effect

High dimensional thresholded regression and shrinkage effect J. R. Statist. Soc. B (014) 76, Part 3, pp. 67 649 High dimensional thresholded regression and shrinkage effect Zemin Zheng, Yingying Fan and Jinchi Lv University of Southern California, Los Angeles, USA

More information

VARIABLE SELECTION IN QUANTILE REGRESSION

VARIABLE SELECTION IN QUANTILE REGRESSION Statistica Sinica 19 (2009), 801-817 VARIABLE SELECTION IN QUANTILE REGRESSION Yichao Wu and Yufeng Liu North Carolina State University and University of North Carolina, Chapel Hill Abstract: After its

More information

Gaussian Graphical Models and Graphical Lasso

Gaussian Graphical Models and Graphical Lasso ELE 538B: Sparsity, Structure and Inference Gaussian Graphical Models and Graphical Lasso Yuxin Chen Princeton University, Spring 2017 Multivariate Gaussians Consider a random vector x N (0, Σ) with pdf

More information

Variable Selection in Restricted Linear Regression Models. Y. Tuaç 1 and O. Arslan 1

Variable Selection in Restricted Linear Regression Models. Y. Tuaç 1 and O. Arslan 1 Variable Selection in Restricted Linear Regression Models Y. Tuaç 1 and O. Arslan 1 Ankara University, Faculty of Science, Department of Statistics, 06100 Ankara/Turkey ytuac@ankara.edu.tr, oarslan@ankara.edu.tr

More information

Pairwise Fused Lasso

Pairwise Fused Lasso Sebastian Petry, Claudia Flexeder & Gerhard Tutz Pairwise Fused Lasso Technical Report Number 102, 2011 Department of Statistics University of Munich http://www.stat.uni-muenchen.de Pairwise Fused Lasso

More information

TECHNICAL REPORT NO. 1091r. A Note on the Lasso and Related Procedures in Model Selection

TECHNICAL REPORT NO. 1091r. A Note on the Lasso and Related Procedures in Model Selection DEPARTMENT OF STATISTICS University of Wisconsin 1210 West Dayton St. Madison, WI 53706 TECHNICAL REPORT NO. 1091r April 2004, Revised December 2004 A Note on the Lasso and Related Procedures in Model

More information

A significance test for the lasso

A significance test for the lasso 1 First part: Joint work with Richard Lockhart (SFU), Jonathan Taylor (Stanford), and Ryan Tibshirani (Carnegie-Mellon Univ.) Second part: Joint work with Max Grazier G Sell, Stefan Wager and Alexandra

More information

Direct Learning: Linear Regression. Donglin Zeng, Department of Biostatistics, University of North Carolina

Direct Learning: Linear Regression. Donglin Zeng, Department of Biostatistics, University of North Carolina Direct Learning: Linear Regression Parametric learning We consider the core function in the prediction rule to be a parametric function. The most commonly used function is a linear function: squared loss:

More information

An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss

An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss arxiv:1811.04545v1 [stat.co] 12 Nov 2018 Cheng Wang School of Mathematical Sciences, Shanghai Jiao

More information

Analysis Methods for Supersaturated Design: Some Comparisons

Analysis Methods for Supersaturated Design: Some Comparisons Journal of Data Science 1(2003), 249-260 Analysis Methods for Supersaturated Design: Some Comparisons Runze Li 1 and Dennis K. J. Lin 2 The Pennsylvania State University Abstract: Supersaturated designs

More information

ASYMPTOTIC PROPERTIES OF BRIDGE ESTIMATORS IN SPARSE HIGH-DIMENSIONAL REGRESSION MODELS

ASYMPTOTIC PROPERTIES OF BRIDGE ESTIMATORS IN SPARSE HIGH-DIMENSIONAL REGRESSION MODELS ASYMPTOTIC PROPERTIES OF BRIDGE ESTIMATORS IN SPARSE HIGH-DIMENSIONAL REGRESSION MODELS Jian Huang 1, Joel L. Horowitz 2, and Shuangge Ma 3 1 Department of Statistics and Actuarial Science, University

More information

Forward Regression for Ultra-High Dimensional Variable Screening

Forward Regression for Ultra-High Dimensional Variable Screening Forward Regression for Ultra-High Dimensional Variable Screening Hansheng Wang Guanghua School of Management, Peking University This version: April 9, 2009 Abstract Motivated by the seminal theory of Sure

More information

Lecture 5: Soft-Thresholding and Lasso

Lecture 5: Soft-Thresholding and Lasso High Dimensional Data and Statistical Learning Lecture 5: Soft-Thresholding and Lasso Weixing Song Department of Statistics Kansas State University Weixing Song STAT 905 October 23, 2014 1/54 Outline Penalized

More information

The lasso, persistence, and cross-validation

The lasso, persistence, and cross-validation The lasso, persistence, and cross-validation Daniel J. McDonald Department of Statistics Indiana University http://www.stat.cmu.edu/ danielmc Joint work with: Darren Homrighausen Colorado State University

More information

Variable Selection and Parameter Estimation Using a Continuous and Differentiable Approximation to the L0 Penalty Function

Variable Selection and Parameter Estimation Using a Continuous and Differentiable Approximation to the L0 Penalty Function Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2011-03-10 Variable Selection and Parameter Estimation Using a Continuous and Differentiable Approximation to the L0 Penalty Function

More information

Optimization methods

Optimization methods Optimization methods Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda /8/016 Introduction Aim: Overview of optimization methods that Tend to

More information

Variable Screening in High-dimensional Feature Space

Variable Screening in High-dimensional Feature Space ICCM 2007 Vol. II 735 747 Variable Screening in High-dimensional Feature Space Jianqing Fan Abstract Variable selection in high-dimensional space characterizes many contemporary problems in scientific

More information

Consistent Group Identification and Variable Selection in Regression with Correlated Predictors

Consistent Group Identification and Variable Selection in Regression with Correlated Predictors Consistent Group Identification and Variable Selection in Regression with Correlated Predictors Dhruv B. Sharma, Howard D. Bondell and Hao Helen Zhang Abstract Statistical procedures for variable selection

More information

Biostatistics Advanced Methods in Biostatistics IV

Biostatistics Advanced Methods in Biostatistics IV Biostatistics 140.754 Advanced Methods in Biostatistics IV Jeffrey Leek Assistant Professor Department of Biostatistics jleek@jhsph.edu Lecture 12 1 / 36 Tip + Paper Tip: As a statistician the results

More information

The Pennsylvania State University The Graduate School Eberly College of Science NEW PROCEDURES FOR COX S MODEL WITH HIGH DIMENSIONAL PREDICTORS

The Pennsylvania State University The Graduate School Eberly College of Science NEW PROCEDURES FOR COX S MODEL WITH HIGH DIMENSIONAL PREDICTORS The Pennsylvania State University The Graduate School Eberly College of Science NEW PROCEDURES FOR COX S MODEL WITH HIGH DIMENSIONAL PREDICTORS A Dissertation in Statistics by Ye Yu c 2015 Ye Yu Submitted

More information

ESL Chap3. Some extensions of lasso

ESL Chap3. Some extensions of lasso ESL Chap3 Some extensions of lasso 1 Outline Consistency of lasso for model selection Adaptive lasso Elastic net Group lasso 2 Consistency of lasso for model selection A number of authors have studied

More information

Or How to select variables Using Bayesian LASSO

Or How to select variables Using Bayesian LASSO Or How to select variables Using Bayesian LASSO x 1 x 2 x 3 x 4 Or How to select variables Using Bayesian LASSO x 1 x 2 x 3 x 4 Or How to select variables Using Bayesian LASSO On Bayesian Variable Selection

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Regression II: Regularization and Shrinkage Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

A Bootstrap Lasso + Partial Ridge Method to Construct Confidence Intervals for Parameters in High-dimensional Sparse Linear Models

A Bootstrap Lasso + Partial Ridge Method to Construct Confidence Intervals for Parameters in High-dimensional Sparse Linear Models A Bootstrap Lasso + Partial Ridge Method to Construct Confidence Intervals for Parameters in High-dimensional Sparse Linear Models Jingyi Jessica Li Department of Statistics University of California, Los

More information

VARIABLE SELECTION IN ROBUST LINEAR MODELS

VARIABLE SELECTION IN ROBUST LINEAR MODELS The Pennsylvania State University The Graduate School Eberly College of Science VARIABLE SELECTION IN ROBUST LINEAR MODELS A Thesis in Statistics by Bo Kai c 2008 Bo Kai Submitted in Partial Fulfillment

More information

Ultra High Dimensional Variable Selection with Endogenous Variables

Ultra High Dimensional Variable Selection with Endogenous Variables 1 / 39 Ultra High Dimensional Variable Selection with Endogenous Variables Yuan Liao Princeton University Joint work with Jianqing Fan Job Market Talk January, 2012 2 / 39 Outline 1 Examples of Ultra High

More information

Regression Shrinkage and Selection via the Lasso

Regression Shrinkage and Selection via the Lasso Regression Shrinkage and Selection via the Lasso ROBERT TIBSHIRANI, 1996 Presenter: Guiyun Feng April 27 () 1 / 20 Motivation Estimation in Linear Models: y = β T x + ɛ. data (x i, y i ), i = 1, 2,...,

More information

Linear regression methods

Linear regression methods Linear regression methods Most of our intuition about statistical methods stem from linear regression. For observations i = 1,..., n, the model is Y i = p X ij β j + ε i, j=1 where Y i is the response

More information

Adaptive Lasso for correlated predictors

Adaptive Lasso for correlated predictors Adaptive Lasso for correlated predictors Keith Knight Department of Statistics University of Toronto e-mail: keith@utstat.toronto.edu This research was supported by NSERC of Canada. OUTLINE 1. Introduction

More information

Asymptotic Equivalence of Regularization Methods in Thresholded Parameter Space

Asymptotic Equivalence of Regularization Methods in Thresholded Parameter Space Asymptotic Equivalence of Regularization Methods in Thresholded Parameter Space Jinchi Lv Data Sciences and Operations Department Marshall School of Business University of Southern California http://bcf.usc.edu/

More information

Chapter 3. Linear Models for Regression

Chapter 3. Linear Models for Regression Chapter 3. Linear Models for Regression Wei Pan Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455 Email: weip@biostat.umn.edu PubH 7475/8475 c Wei Pan Linear

More information

Spatial Lasso with Applications to GIS Model Selection

Spatial Lasso with Applications to GIS Model Selection Spatial Lasso with Applications to GIS Model Selection Hsin-Cheng Huang Institute of Statistical Science, Academia Sinica Nan-Jung Hsu National Tsing-Hua University David Theobald Colorado State University

More information

Shrinkage Methods: Ridge and Lasso

Shrinkage Methods: Ridge and Lasso Shrinkage Methods: Ridge and Lasso Jonathan Hersh 1 Chapman University, Argyros School of Business hersh@chapman.edu February 27, 2019 J.Hersh (Chapman) Ridge & Lasso February 27, 2019 1 / 43 1 Intro and

More information

A Confidence Region Approach to Tuning for Variable Selection

A Confidence Region Approach to Tuning for Variable Selection A Confidence Region Approach to Tuning for Variable Selection Funda Gunes and Howard D. Bondell Department of Statistics North Carolina State University Abstract We develop an approach to tuning of penalized

More information

Sparse Learning and Distributed PCA. Jianqing Fan

Sparse Learning and Distributed PCA. Jianqing Fan w/ control of statistical errors and computing resources Jianqing Fan Princeton University Coauthors Han Liu Qiang Sun Tong Zhang Dong Wang Kaizheng Wang Ziwei Zhu Outline Computational Resources and Statistical

More information

A Survey of L 1. Regression. Céline Cunen, 20/10/2014. Vidaurre, Bielza and Larranaga (2013)

A Survey of L 1. Regression. Céline Cunen, 20/10/2014. Vidaurre, Bielza and Larranaga (2013) A Survey of L 1 Regression Vidaurre, Bielza and Larranaga (2013) Céline Cunen, 20/10/2014 Outline of article 1.Introduction 2.The Lasso for Linear Regression a) Notation and Main Concepts b) Statistical

More information

A robust hybrid of lasso and ridge regression

A robust hybrid of lasso and ridge regression A robust hybrid of lasso and ridge regression Art B. Owen Stanford University October 2006 Abstract Ridge regression and the lasso are regularized versions of least squares regression using L 2 and L 1

More information

In Search of Desirable Compounds

In Search of Desirable Compounds In Search of Desirable Compounds Adrijo Chakraborty University of Georgia Email: adrijoc@uga.edu Abhyuday Mandal University of Georgia Email: amandal@stat.uga.edu Kjell Johnson Arbor Analytics, LLC Email:

More information

The Iterated Lasso for High-Dimensional Logistic Regression

The Iterated Lasso for High-Dimensional Logistic Regression The Iterated Lasso for High-Dimensional Logistic Regression By JIAN HUANG Department of Statistics and Actuarial Science, 241 SH University of Iowa, Iowa City, Iowa 52242, U.S.A. SHUANGE MA Division of

More information

Stability and the elastic net

Stability and the elastic net Stability and the elastic net Patrick Breheny March 28 Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 1/32 Introduction Elastic Net Our last several lectures have concentrated on methods for

More information

Shrinkage Tuning Parameter Selection in Precision Matrices Estimation

Shrinkage Tuning Parameter Selection in Precision Matrices Estimation arxiv:0909.1123v1 [stat.me] 7 Sep 2009 Shrinkage Tuning Parameter Selection in Precision Matrices Estimation Heng Lian Division of Mathematical Sciences School of Physical and Mathematical Sciences Nanyang

More information

Non-linear Supervised High Frequency Trading Strategies with Applications in US Equity Markets

Non-linear Supervised High Frequency Trading Strategies with Applications in US Equity Markets Non-linear Supervised High Frequency Trading Strategies with Applications in US Equity Markets Nan Zhou, Wen Cheng, Ph.D. Associate, Quantitative Research, J.P. Morgan nan.zhou@jpmorgan.com The 4th Annual

More information

M-estimation in high-dimensional linear model

M-estimation in high-dimensional linear model Wang and Zhu Journal of Inequalities and Applications 208 208:225 https://doi.org/0.86/s3660-08-89-3 R E S E A R C H Open Access M-estimation in high-dimensional linear model Kai Wang and Yanling Zhu *

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Regularization: Ridge Regression and Lasso Week 14, Lecture 2

MA 575 Linear Models: Cedric E. Ginestet, Boston University Regularization: Ridge Regression and Lasso Week 14, Lecture 2 MA 575 Linear Models: Cedric E. Ginestet, Boston University Regularization: Ridge Regression and Lasso Week 14, Lecture 2 1 Ridge Regression Ridge regression and the Lasso are two forms of regularized

More information

Ensemble estimation and variable selection with semiparametric regression models

Ensemble estimation and variable selection with semiparametric regression models Ensemble estimation and variable selection with semiparametric regression models Sunyoung Shin Department of Mathematical Sciences University of Texas at Dallas Joint work with Jason Fine, Yufeng Liu,

More information

A simulation study of model fitting to high dimensional data using penalized logistic regression

A simulation study of model fitting to high dimensional data using penalized logistic regression A simulation study of model fitting to high dimensional data using penalized logistic regression Ellinor Krona Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats

More information

Identification and Estimation for Generalized Varying Coefficient Partially Linear Models

Identification and Estimation for Generalized Varying Coefficient Partially Linear Models Identification and Estimation for Generalized Varying Coefficient Partially Linear Models Mingqiu Wang, Xiuli Wang and Muhammad Amin Abstract The generalized varying coefficient partially linear model

More information

The picasso Package for Nonconvex Regularized M-estimation in High Dimensions in R

The picasso Package for Nonconvex Regularized M-estimation in High Dimensions in R The picasso Package for Nonconvex Regularized M-estimation in High Dimensions in R Xingguo Li Tuo Zhao Tong Zhang Han Liu Abstract We describe an R package named picasso, which implements a unified framework

More information

The Risk of James Stein and Lasso Shrinkage

The Risk of James Stein and Lasso Shrinkage Econometric Reviews ISSN: 0747-4938 (Print) 1532-4168 (Online) Journal homepage: http://tandfonline.com/loi/lecr20 The Risk of James Stein and Lasso Shrinkage Bruce E. Hansen To cite this article: Bruce

More information

Penalized Methods for Bi-level Variable Selection

Penalized Methods for Bi-level Variable Selection Penalized Methods for Bi-level Variable Selection By PATRICK BREHENY Department of Biostatistics University of Iowa, Iowa City, Iowa 52242, U.S.A. By JIAN HUANG Department of Statistics and Actuarial Science

More information

ADAPTIVE LASSO FOR SPARSE HIGH-DIMENSIONAL REGRESSION MODELS

ADAPTIVE LASSO FOR SPARSE HIGH-DIMENSIONAL REGRESSION MODELS Statistica Sinica 18(2008), 1603-1618 ADAPTIVE LASSO FOR SPARSE HIGH-DIMENSIONAL REGRESSION MODELS Jian Huang, Shuangge Ma and Cun-Hui Zhang University of Iowa, Yale University and Rutgers University Abstract:

More information

MODEL SELECTION FOR CORRELATED DATA WITH DIVERGING NUMBER OF PARAMETERS

MODEL SELECTION FOR CORRELATED DATA WITH DIVERGING NUMBER OF PARAMETERS Statistica Sinica 23 (2013), 901-927 doi:http://dx.doi.org/10.5705/ss.2011.058 MODEL SELECTION FOR CORRELATED DATA WITH DIVERGING NUMBER OF PARAMETERS Hyunkeun Cho and Annie Qu University of Illinois at

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Sparse Recovery using L1 minimization - algorithms Yuejie Chi Department of Electrical and Computer Engineering Spring

More information

Least Absolute Gradient Selector: variable selection via Pseudo-Hard Thresholding

Least Absolute Gradient Selector: variable selection via Pseudo-Hard Thresholding arxiv:204.2353v4 [stat.ml] 9 Oct 202 Least Absolute Gradient Selector: variable selection via Pseudo-Hard Thresholding Kun Yang September 2, 208 Abstract In this paper, we propose a new approach, called

More information

Single Index Quantile Regression for Heteroscedastic Data

Single Index Quantile Regression for Heteroscedastic Data Single Index Quantile Regression for Heteroscedastic Data E. Christou M. G. Akritas Department of Statistics The Pennsylvania State University SMAC, November 6, 2015 E. Christou, M. G. Akritas (PSU) SIQR

More information

Permutation-invariant regularization of large covariance matrices. Liza Levina

Permutation-invariant regularization of large covariance matrices. Liza Levina Liza Levina Permutation-invariant covariance regularization 1/42 Permutation-invariant regularization of large covariance matrices Liza Levina Department of Statistics University of Michigan Joint work

More information

LASSO Review, Fused LASSO, Parallel LASSO Solvers

LASSO Review, Fused LASSO, Parallel LASSO Solvers Case Study 3: fmri Prediction LASSO Review, Fused LASSO, Parallel LASSO Solvers Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade May 3, 2016 Sham Kakade 2016 1 Variable

More information

Bayesian variable selection via. Penalized credible regions. Brian Reich, NCSU. Joint work with. Howard Bondell and Ander Wilson

Bayesian variable selection via. Penalized credible regions. Brian Reich, NCSU. Joint work with. Howard Bondell and Ander Wilson Bayesian variable selection via penalized credible regions Brian Reich, NC State Joint work with Howard Bondell and Ander Wilson Brian Reich, NCSU Penalized credible regions 1 Motivation big p, small n

More information

Linear Model Selection and Regularization

Linear Model Selection and Regularization Linear Model Selection and Regularization Recall the linear model Y = β 0 + β 1 X 1 + + β p X p + ɛ. In the lectures that follow, we consider some approaches for extending the linear model framework. In

More information

arxiv: v2 [stat.me] 23 Feb 2012

arxiv: v2 [stat.me] 23 Feb 2012 The Annals of Statistics 2011, Vol. 39, No. 5, 2607 2625 DOI: 10.1214/11-AOS919 c Institute of Mathematical Statistics, 2011 PENALIZED MAXIMUM LIKELIHOOD ESTIMATION AND VARIABLE SELECTION IN GEOSTATISTICS

More information

A Short Introduction to the Lasso Methodology

A Short Introduction to the Lasso Methodology A Short Introduction to the Lasso Methodology Michael Gutmann sites.google.com/site/michaelgutmann University of Helsinki Aalto University Helsinki Institute for Information Technology March 9, 2016 Michael

More information

Outlier detection and variable selection via difference based regression model and penalized regression

Outlier detection and variable selection via difference based regression model and penalized regression Journal of the Korean Data & Information Science Society 2018, 29(3), 815 825 http://dx.doi.org/10.7465/jkdi.2018.29.3.815 한국데이터정보과학회지 Outlier detection and variable selection via difference based regression

More information

A UNIFIED APPROACH TO MODEL SELECTION AND SPARS. REGULARIZED LEAST SQUARES by Jinchi Lv and Yingying Fan The annals of Statistics (2009)

A UNIFIED APPROACH TO MODEL SELECTION AND SPARS. REGULARIZED LEAST SQUARES by Jinchi Lv and Yingying Fan The annals of Statistics (2009) A UNIFIED APPROACH TO MODEL SELECTION AND SPARSE RECOVERY USING REGULARIZED LEAST SQUARES by Jinchi Lv and Yingying Fan The annals of Statistics (2009) Mar. 19. 2010 Outline 1 2 Sideline information Notations

More information

THE Mnet METHOD FOR VARIABLE SELECTION

THE Mnet METHOD FOR VARIABLE SELECTION Statistica Sinica 26 (2016), 903-923 doi:http://dx.doi.org/10.5705/ss.202014.0011 THE Mnet METHOD FOR VARIABLE SELECTION Jian Huang 1, Patrick Breheny 1, Sangin Lee 2, Shuangge Ma 3 and Cun-Hui Zhang 4

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Linear Regression Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574 1

More information

ISyE 691 Data mining and analytics

ISyE 691 Data mining and analytics ISyE 691 Data mining and analytics Regression Instructor: Prof. Kaibo Liu Department of Industrial and Systems Engineering UW-Madison Email: kliu8@wisc.edu Office: Room 3017 (Mechanical Engineering Building)

More information

Regularized Discriminant Analysis and Its Application in Microarrays

Regularized Discriminant Analysis and Its Application in Microarrays Biostatistics (2005), 1, 1, pp. 1 18 Printed in Great Britain Regularized Discriminant Analysis and Its Application in Microarrays By YAQIAN GUO Department of Statistics, Stanford University Stanford,

More information

Regularization Paths. Theme

Regularization Paths. Theme June 00 Trevor Hastie, Stanford Statistics June 00 Trevor Hastie, Stanford Statistics Theme Regularization Paths Trevor Hastie Stanford University drawing on collaborations with Brad Efron, Mee-Young Park,

More information

Robust variable selection through MAVE

Robust variable selection through MAVE This is the author s final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher s web site or your institution s library. Robust

More information

Fixed and Random Effects Selection in Mixed Effects Models

Fixed and Random Effects Selection in Mixed Effects Models Biometrics 67, 495 503 June 2011 DOI: 10.1111/j.1541-0420.2010.01463.x Fixed and Random Effects Selection in Mixed Effects Models Joseph G. Ibrahim, Hongtu Zhu, Ramon I. Garcia, and Ruixin Guo Department

More information

application in microarrays

application in microarrays Biostatistics Advance Access published April 7, 2006 Regularized linear discriminant analysis and its application in microarrays Yaqian Guo, Trevor Hastie and Robert Tibshirani Abstract In this paper,

More information

High-dimensional covariance estimation based on Gaussian graphical models

High-dimensional covariance estimation based on Gaussian graphical models High-dimensional covariance estimation based on Gaussian graphical models Shuheng Zhou Department of Statistics, The University of Michigan, Ann Arbor IMA workshop on High Dimensional Phenomena Sept. 26,

More information

Variable Selection for Models with Missing Data

Variable Selection for Models with Missing Data Variable Selection for Models with Missing Data Ramon Israel Garcia A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements

More information