Variable Selection for Highly Correlated Predictors

Size: px
Start display at page:

Download "Variable Selection for Highly Correlated Predictors"

Transcription

1 Variable Selection for Highly Correlated Predictors Fei Xue and Annie Qu Department of Statistics, University of Illinois at Urbana-Champaign WHOA-PSI, Aug, 2017 St. Louis, Missouri 1 / 30

2 Background Variable selection: Detect relevant predictors Important in model building with a large number of predictors Sparsity Interpretability Model selection consistency Strong correlations between predictors 2 / 30

3 A Motivating example Gene expression data of 90 Asians from the international Haplotype Map ( HapMap ) project Response: The gene CHRNA6 (nicotine addiction) Potential predictors: 47, 292 probes 17, 656, 192 correlations between potential predictors have absolute value greater than / 30

4 A Motivating example A correlated subset: 6743 probes Fig. 1: Correlations between all probes in the subset 4 / 30

5 Traditional variable selection methods Penalized least squares methods: Lasso (Tibshirani, 1996), adaptive Lasso (Zou, 2006), SCAD (Fan and Li, 2001), elastic net (Zou and Hastie, 2005) Screening methods: Sure independence screening (Fan and Lv, 2008), forward regression (Wang, 2009), forward-lasso adaptive shrinkage (Radchenko and James, 2011) Lack variable selection consistency for strongly correlated data 5 / 30

6 Failure of irrepresentable condition (Zhao and Yu, 2006) Weak irrepresentable condition C 21 (C 11 ) 1 sign(β (1) ) < 1 Example: ( ) C11 C C = 12, C 21 C 22 where C 11 and C 22 have exchangeable structure with correlation α 1 and α 3 respectively, C 12 = (α 2 ) q (p q). Failure of the irrepresentable condition α 2 > α 1 (q/ q i=1 sign(β i) ) 6 / 30

7 Failure of irrepresentable condition A sparse linear setting: y n 1 = X n p β p 1 + ε n 1 n = 80, p = 150 β j = β s if 1 j 10; β j = 0 if 11 j p Block-exchangeable covariance matrix with α 1 = 0.5, α 2 = 0.7, α 3 = 0.9 β s Lasso Adaptive Lasso SCAD FNR FPR FNR FPR FNR FPR Table 1: FNR: false negative rate; FPR: false positive rate Unable to identify signals 7 / 30

8 Another motivation: Direct effect? Mediator = X + ε 1 Mediator variable: transmits indirect effects from X and has direct effects on the response variable Fig. 2: Y = Mediator + ε 2, conditional independence Fig. 3: Y = X + Mediator + ε 2 Example: X : sex Mediator: qualification Y : hiring decision 8 / 30

9 Existing methods dealing with correlated predictors The nonconvex penalties and ridge regression (Wang and Wang, 2014) Gauss-Lasso selector (Javanmard and Montanari, 2013) Preconditioning the Lasso (Jia et al., 2015) PC-simple algorithm (Bühlmann et al., 2010) Requiring partial faithfulness: If partial correlation between Y and X j is nonzero, then conditional correlation between Y and X j given any subset of other predictors is nonzero. 9 / 30

10 Partial correlation Partial correlation between Y and X j : Cov(Y,X ρ j = j X j ) Var(Y X j )Var(X j X j ) Limited range: weakens the strength of signal coefficients s j = Var(Y X j ) is larger for relevant covariates Standard deviation of Y conditional on X j : sj 2 + β 2 j d jj, = 1/σyy 1 ρ j 2 = 1 σ yy where d jj is the jth diagonal element of precision matrix, and σ yy is the first diagonal element of Σ 1 = Cov(Y, X 1,..., X p ) / 30

11 Semi-standard partial covariance (SPAC) Semi-standard PArtial Covariance (SPAC) between Y and X j : γ j = ρ j s j = β j Var(X j X j ) γ j = 0 if and only if β j = 0 11 / 30

12 Partial correlation and SPAC Y = β 1 X 1 + ε; X 2 is correlated with X 1 Partial correlaiton: cos ω 1 and cos ω 2 Semi-standard PArtial Covariance (SPAC): The projection γ 1 and γ 2 Fig. 4: γ 1 and cos ω 1 Fig. 5: γ 2 and cos ω 2 12 / 30

13 Partial correlation and SPAC SPAC has unrestrictive range Incorporate magnitude of coefficients Differentiate signals and noises 13 / 30

14 Coefficients and SPAC γ j = ρ j s j = β j Var(Xj X j ) = β j 1 R 2 j, where Rj 2 is the coefficient of the multiple correlation between X and all other covariates Encourage selection of predictors that are important to the response but are not correlated with other covariates Discourage irrelevant covariates which are highly correlated with relevant predictors 14 / 30

15 SPAC variable selection method Original penalized least square function: L(γ, ˆd) = 1 p 2 y X j β j 2 + j=1 p p λ (β j ) j=1 Replace the coefficients β in the above function by SPACs γ (γ j = β j / d jj ) L(γ, ˆd) = 1 p 2 y X j ˆd jj γ j 2 + j=1 p p λ (γ j ) ˆd jj j=1 Possible choices of the penality pλ : Lasso (SPAC-Lasso), adaptive Lasso (SPAC-ALasso), and SCAD (SPAC-SCAD) 15 / 30

16 Example: the block-exchangeable C is block-exchangeable q n, p n q n as n, where p n : number of all predictors; q n : number of relevant predictors m n = q n i=1 sign(γ i), L: limit inferior of q n /m n Proposition 1 If C 21 (C 11 ) 1 sign(β (1) ) 1 (Irrepresentable conditions do not hold), then α 2 α 1 L α 1 α 3 α 2 > α 1 16 / 30

17 Example: the block-exchangeable Proposition 2 If there exists a positive constant η such that 1 α1 α 2 < (1 η) α 1 L, (1) 1 α 3 then the SPAC-Lasso is strongly sign consistent when q n and p n q n increase as n. The SPAC-Lasso can still be strongly sign consistent when Lasso does NOT have variable selection consistency 17 / 30

18 Transformed Strong Irrepresentable Condition Original Strong Irrepresentable Condition: There exists a positive constant vector η such that C 21 (C 11 ) 1 sign(β (1) ) 1 η, Transformed Strong Irrepresentable Condition: There exists a positive constant vector η such that V (2)C 21 (C 11 ) 1 V (1) 1 sign(γ (1) ) 1 η, V (1) = diag{1/ d11,..., 1/ d qq } V (2) = diag{1/ dq+1q+1,..., 1/ d pp } Incorporate more situations with highly correlated predictors C with larger correlations between relevant and irrelevant predictors than correlations between relevant predictors 18 / 30

19 General theoretical results for the SPAC-Lasso Theorem 1 Let ˆd = { ˆd 11,..., ˆd pnp n }. Under Transformed Strong Irrepresentable and regularity conditions, there exists a M 0, for any δ > 0, the following holds with probability at least 1 O(n δ ): (1) There exists a solution ˆγ = ˆγ(λ n, ˆd) (2) Strong sign consistency: ˆγ = s γ (3) Estimation consistency: ˆγ γ 2 M 0 qn λ n 19 / 30

20 Simulation studies Y = X β + N(0, σ 2 I n ), n = 100, p = 200, q = 10 β = (β s,..., β }{{} s, 0,..., 0), where β }{{} s is from 0.1 to 1 q p q The C is block-exchangeable with α = (α 1, α 2, α 3 ) T α1 : correlation between relevant predictors α2 : correlation between relevant and irrelevant predictors α3 : correlation between irrelevant predictors λ is tuned by the BIC 20 / 30

21 Simulation results FNR: False negative rate; FPR: False positive rate Ratio: FNR+FPR of the existing method / FNR+FPR of the corresponding proposed method β β Lasso SPAC-Lasso ALasso SPAC-ALasso s FNR FPR FNR FPR Ratio FNR FPR FNR FPR Ratio SCAD SPAC-SCAD PC-simple SPAC-ALasso s FNR FPR FNR FPR Ratio FNR FPR FNR FPR Ratio >50 Table 2: α 1 = 0.3, α 2 = 0.5, α 3 = / 30

22 Simulation results Fig. 6: β s = 0.3, α 1 = 0.3, α 2 = 0.5, α 3 = / 30

23 Simulation results False Positive Rate + False Negative Rate Fig. 7: α 1 = 0.3, α 2 = 0.5, α 3 = 0.8 Fig. 8: α 1 = 0.5, α 2 = 0.7, α 3 = / 30

24 Simulation summay The SPAC methods produce smaller FNRs and FPRs (with smaller variation) than traditional penalty-based methods in all the settings The SPAC-ALasso outperforms the PC-simple algorithm Under highly correlated settings (α 2 = 0.7), SPAC methods perform siginificantly better than traditional methods when signals are strong 24 / 30

25 Real data Gene expression data of 90 Asians from the international HapMap project (ftp://ftp.sanger.ac.uk/pub/ge nevar/) A highly correlated subset: 6743 probes Randomly split data into a training set (90%) and a testing set (10%) for 100 times 25 / 30

26 Real data Means of number of selected probes (NS) and prediction mean squared error (PMSE) for the testing set The proposed methods select fewer probes, and has smaller prediction error than corresponding original methods Lasso SPAC-L ALasso SPAC-AL SCAD SPAC-SCAD PCL Mean of NS SD of NS Mean of PMSE Table 3: PCL : the PC-simple algorithm with Lasso; SPAC-L : the SPAC with Lasso penalty; SPAC-AL : the SPAC with adaptive Lasso penalty 26 / 30

27 Real data Apply SPAC-Lasso to all observations Fig. 9: Correlations between relevant probes and irrelevant probes based on the SPAC-Lasso. 27 / 30

28 Conclusions SPAC reduces correlation effects from other predictors Compared with partial correlation, SPAC incorporates magnitude of coefficients SPAC facilitates choosing predictors with direct association with the response variable Asymptotic theory: the SPAC-Lasso has model selection consistency for highly correlated data Numerical studies: SPAC method outperforms existing competing methods with other penalty functions for highly correlated data 28 / 30

29 The end Thank You! 29 / 30

30 References Bühlmann, P., Kalisch, M., and Maathuis, M. H. (2010). Variable selection in high- dimensional linear models: partially faithful distributions and the PC-simple algorithm. Biometrika, 97(2), Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96(456), Fan, J. and Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature space. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(5), Javanmard, A. and Montanari, A. (2013). Model selection for high-dimensional regression under the generalized irrepresentability condition. Advances in neural information processing systems, Jia, J., Rohe, K., et al. (2015). Preconditioning the lasso for sign consistency. Electronic Journal of Statistics, 9(1), Radchenko, P., James, G. M., et al. (2011). Improved variable selection with forward-lasso adaptive shrinkage. The Annals of Applied Statistics, 5(1), Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58(1), Wang, H. (2009). Forward regression for ultra-high dimensional variable screening. Journal of the American Statistical Association, 104(488), Wang, X. and Leng, C. (2015). High dimensional ordinary least squares projection for screening variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 78(3), Wang, X. and Wang, M. (2014). Combination of nonconvex penalties and ridge regres- sion for high-dimensional linear models. Journal of Mathematical Research with Applications, 34(6), Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics, 38(2), Zhao, P. and Yu, B. (2006). On model selection consistency of lasso. Journal of Machine Learning Research, 7(Nov), Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101(476), Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), / 30

Variable Selection for Highly Correlated Predictors

Variable Selection for Highly Correlated Predictors Variable Selection for Highly Correlated Predictors Fei Xue and Annie Qu arxiv:1709.04840v1 [stat.me] 14 Sep 2017 Abstract Penalty-based variable selection methods are powerful in selecting relevant covariates

More information

Comparisons of penalized least squares. methods by simulations

Comparisons of penalized least squares. methods by simulations Comparisons of penalized least squares arxiv:1405.1796v1 [stat.co] 8 May 2014 methods by simulations Ke ZHANG, Fan YIN University of Science and Technology of China, Hefei 230026, China Shifeng XIONG Academy

More information

A New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables

A New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables A New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables Niharika Gauraha and Swapan Parui Indian Statistical Institute Abstract. We consider the problem of

More information

A Bootstrap Lasso + Partial Ridge Method to Construct Confidence Intervals for Parameters in High-dimensional Sparse Linear Models

A Bootstrap Lasso + Partial Ridge Method to Construct Confidence Intervals for Parameters in High-dimensional Sparse Linear Models A Bootstrap Lasso + Partial Ridge Method to Construct Confidence Intervals for Parameters in High-dimensional Sparse Linear Models Jingyi Jessica Li Department of Statistics University of California, Los

More information

Smoothly Clipped Absolute Deviation (SCAD) for Correlated Variables

Smoothly Clipped Absolute Deviation (SCAD) for Correlated Variables Smoothly Clipped Absolute Deviation (SCAD) for Correlated Variables LIB-MA, FSSM Cadi Ayyad University (Morocco) COMPSTAT 2010 Paris, August 22-27, 2010 Motivations Fan and Li (2001), Zou and Li (2008)

More information

Iterative Selection Using Orthogonal Regression Techniques

Iterative Selection Using Orthogonal Regression Techniques Iterative Selection Using Orthogonal Regression Techniques Bradley Turnbull 1, Subhashis Ghosal 1 and Hao Helen Zhang 2 1 Department of Statistics, North Carolina State University, Raleigh, NC, USA 2 Department

More information

Two Tales of Variable Selection for High Dimensional Regression: Screening and Model Building

Two Tales of Variable Selection for High Dimensional Regression: Screening and Model Building Two Tales of Variable Selection for High Dimensional Regression: Screening and Model Building Cong Liu, Tao Shi and Yoonkyung Lee Department of Statistics, The Ohio State University Abstract Variable selection

More information

Pre-Selection in Cluster Lasso Methods for Correlated Variable Selection in High-Dimensional Linear Models

Pre-Selection in Cluster Lasso Methods for Correlated Variable Selection in High-Dimensional Linear Models Pre-Selection in Cluster Lasso Methods for Correlated Variable Selection in High-Dimensional Linear Models Niharika Gauraha and Swapan Parui Indian Statistical Institute Abstract. We consider variable

More information

Selection of Smoothing Parameter for One-Step Sparse Estimates with L q Penalty

Selection of Smoothing Parameter for One-Step Sparse Estimates with L q Penalty Journal of Data Science 9(2011), 549-564 Selection of Smoothing Parameter for One-Step Sparse Estimates with L q Penalty Masaru Kanba and Kanta Naito Shimane University Abstract: This paper discusses the

More information

Lecture 14: Variable Selection - Beyond LASSO

Lecture 14: Variable Selection - Beyond LASSO Fall, 2017 Extension of LASSO To achieve oracle properties, L q penalty with 0 < q < 1, SCAD penalty (Fan and Li 2001; Zhang et al. 2007). Adaptive LASSO (Zou 2006; Zhang and Lu 2007; Wang et al. 2007)

More information

Forward Regression for Ultra-High Dimensional Variable Screening

Forward Regression for Ultra-High Dimensional Variable Screening Forward Regression for Ultra-High Dimensional Variable Screening Hansheng Wang Guanghua School of Management, Peking University This version: April 9, 2009 Abstract Motivated by the seminal theory of Sure

More information

High-dimensional Ordinary Least-squares Projection for Screening Variables

High-dimensional Ordinary Least-squares Projection for Screening Variables 1 / 38 High-dimensional Ordinary Least-squares Projection for Screening Variables Chenlei Leng Joint with Xiangyu Wang (Duke) Conference on Nonparametric Statistics for Big Data and Celebration to Honor

More information

In Search of Desirable Compounds

In Search of Desirable Compounds In Search of Desirable Compounds Adrijo Chakraborty University of Georgia Email: adrijoc@uga.edu Abhyuday Mandal University of Georgia Email: amandal@stat.uga.edu Kjell Johnson Arbor Analytics, LLC Email:

More information

SOLVING NON-CONVEX LASSO TYPE PROBLEMS WITH DC PROGRAMMING. Gilles Gasso, Alain Rakotomamonjy and Stéphane Canu

SOLVING NON-CONVEX LASSO TYPE PROBLEMS WITH DC PROGRAMMING. Gilles Gasso, Alain Rakotomamonjy and Stéphane Canu SOLVING NON-CONVEX LASSO TYPE PROBLEMS WITH DC PROGRAMMING Gilles Gasso, Alain Rakotomamonjy and Stéphane Canu LITIS - EA 48 - INSA/Universite de Rouen Avenue de l Université - 768 Saint-Etienne du Rouvray

More information

Statistica Sinica Preprint No: SS R3

Statistica Sinica Preprint No: SS R3 Statistica Sinica Preprint No: SS-2015-0413.R3 Title Regularization after retention in ultrahigh dimensional linear regression models Manuscript ID SS-2015-0413.R3 URL http://www.stat.sinica.edu.tw/statistica/

More information

Generalized Elastic Net Regression

Generalized Elastic Net Regression Abstract Generalized Elastic Net Regression Geoffroy MOURET Jean-Jules BRAULT Vahid PARTOVINIA This work presents a variation of the elastic net penalization method. We propose applying a combined l 1

More information

TECHNICAL REPORT NO. 1091r. A Note on the Lasso and Related Procedures in Model Selection

TECHNICAL REPORT NO. 1091r. A Note on the Lasso and Related Procedures in Model Selection DEPARTMENT OF STATISTICS University of Wisconsin 1210 West Dayton St. Madison, WI 53706 TECHNICAL REPORT NO. 1091r April 2004, Revised December 2004 A Note on the Lasso and Related Procedures in Model

More information

WEIGHTED QUANTILE REGRESSION THEORY AND ITS APPLICATION. Abstract

WEIGHTED QUANTILE REGRESSION THEORY AND ITS APPLICATION. Abstract Journal of Data Science,17(1). P. 145-160,2019 DOI:10.6339/JDS.201901_17(1).0007 WEIGHTED QUANTILE REGRESSION THEORY AND ITS APPLICATION Wei Xiong *, Maozai Tian 2 1 School of Statistics, University of

More information

Hard Thresholded Regression Via Linear Programming

Hard Thresholded Regression Via Linear Programming Hard Thresholded Regression Via Linear Programming Qiang Sun, Hongtu Zhu and Joseph G. Ibrahim Departments of Biostatistics, The University of North Carolina at Chapel Hill. Q. Sun, is Ph.D. student (E-mail:

More information

Linear regression methods

Linear regression methods Linear regression methods Most of our intuition about statistical methods stem from linear regression. For observations i = 1,..., n, the model is Y i = p X ij β j + ε i, j=1 where Y i is the response

More information

The Adaptive Lasso and Its Oracle Properties Hui Zou (2006), JASA

The Adaptive Lasso and Its Oracle Properties Hui Zou (2006), JASA The Adaptive Lasso and Its Oracle Properties Hui Zou (2006), JASA Presented by Dongjun Chung March 12, 2010 Introduction Definition Oracle Properties Computations Relationship: Nonnegative Garrote Extensions:

More information

A Confidence Region Approach to Tuning for Variable Selection

A Confidence Region Approach to Tuning for Variable Selection A Confidence Region Approach to Tuning for Variable Selection Funda Gunes and Howard D. Bondell Department of Statistics North Carolina State University Abstract We develop an approach to tuning of penalized

More information

Robust Variable Selection Through MAVE

Robust Variable Selection Through MAVE Robust Variable Selection Through MAVE Weixin Yao and Qin Wang Abstract Dimension reduction and variable selection play important roles in high dimensional data analysis. Wang and Yin (2008) proposed sparse

More information

The MNet Estimator. Patrick Breheny. Department of Biostatistics Department of Statistics University of Kentucky. August 2, 2010

The MNet Estimator. Patrick Breheny. Department of Biostatistics Department of Statistics University of Kentucky. August 2, 2010 Department of Biostatistics Department of Statistics University of Kentucky August 2, 2010 Joint work with Jian Huang, Shuangge Ma, and Cun-Hui Zhang Penalized regression methods Penalized methods have

More information

BAGUS: Bayesian Regularization for Graphical Models with Unequal Shrinkage

BAGUS: Bayesian Regularization for Graphical Models with Unequal Shrinkage BAGUS: Bayesian Regularization for Graphical Models with Unequal Shrinkage Lingrui Gan, Naveen N. Narisetty, Feng Liang Department of Statistics University of Illinois at Urbana-Champaign Problem Statement

More information

Chapter 3. Linear Models for Regression

Chapter 3. Linear Models for Regression Chapter 3. Linear Models for Regression Wei Pan Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455 Email: weip@biostat.umn.edu PubH 7475/8475 c Wei Pan Linear

More information

Regularization and Variable Selection via the Elastic Net

Regularization and Variable Selection via the Elastic Net p. 1/1 Regularization and Variable Selection via the Elastic Net Hui Zou and Trevor Hastie Journal of Royal Statistical Society, B, 2005 Presenter: Minhua Chen, Nov. 07, 2008 p. 2/1 Agenda Introduction

More information

Bayesian variable selection via. Penalized credible regions. Brian Reich, NCSU. Joint work with. Howard Bondell and Ander Wilson

Bayesian variable selection via. Penalized credible regions. Brian Reich, NCSU. Joint work with. Howard Bondell and Ander Wilson Bayesian variable selection via penalized credible regions Brian Reich, NC State Joint work with Howard Bondell and Ander Wilson Brian Reich, NCSU Penalized credible regions 1 Motivation big p, small n

More information

An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss

An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss arxiv:1811.04545v1 [stat.co] 12 Nov 2018 Cheng Wang School of Mathematical Sciences, Shanghai Jiao

More information

Package Grace. R topics documented: April 9, Type Package

Package Grace. R topics documented: April 9, Type Package Type Package Package Grace April 9, 2017 Title Graph-Constrained Estimation and Hypothesis Tests Version 0.5.3 Date 2017-4-8 Author Sen Zhao Maintainer Sen Zhao Description Use

More information

MS-C1620 Statistical inference

MS-C1620 Statistical inference MS-C1620 Statistical inference 10 Linear regression III Joni Virta Department of Mathematics and Systems Analysis School of Science Aalto University Academic year 2018 2019 Period III - IV 1 / 32 Contents

More information

Bayesian Grouped Horseshoe Regression with Application to Additive Models

Bayesian Grouped Horseshoe Regression with Application to Additive Models Bayesian Grouped Horseshoe Regression with Application to Additive Models Zemei Xu, Daniel F. Schmidt, Enes Makalic, Guoqi Qian, and John L. Hopper Centre for Epidemiology and Biostatistics, Melbourne

More information

Properties of optimizations used in penalized Gaussian likelihood inverse covariance matrix estimation

Properties of optimizations used in penalized Gaussian likelihood inverse covariance matrix estimation Properties of optimizations used in penalized Gaussian likelihood inverse covariance matrix estimation Adam J. Rothman School of Statistics University of Minnesota October 8, 2014, joint work with Liliana

More information

arxiv: v1 [stat.me] 30 Dec 2017

arxiv: v1 [stat.me] 30 Dec 2017 arxiv:1801.00105v1 [stat.me] 30 Dec 2017 An ISIS screening approach involving threshold/partition for variable selection in linear regression 1. Introduction Yu-Hsiang Cheng e-mail: 96354501@nccu.edu.tw

More information

HIGH-DIMENSIONAL VARIABLE SELECTION WITH THE GENERALIZED SELO PENALTY

HIGH-DIMENSIONAL VARIABLE SELECTION WITH THE GENERALIZED SELO PENALTY Vol. 38 ( 2018 No. 6 J. of Math. (PRC HIGH-DIMENSIONAL VARIABLE SELECTION WITH THE GENERALIZED SELO PENALTY SHI Yue-yong 1,3, CAO Yong-xiu 2, YU Ji-chang 2, JIAO Yu-ling 2 (1.School of Economics and Management,

More information

Least Absolute Shrinkage is Equivalent to Quadratic Penalization

Least Absolute Shrinkage is Equivalent to Quadratic Penalization Least Absolute Shrinkage is Equivalent to Quadratic Penalization Yves Grandvalet Heudiasyc, UMR CNRS 6599, Université de Technologie de Compiègne, BP 20.529, 60205 Compiègne Cedex, France Yves.Grandvalet@hds.utc.fr

More information

ADAPTIVE LASSO FOR SPARSE HIGH-DIMENSIONAL REGRESSION MODELS

ADAPTIVE LASSO FOR SPARSE HIGH-DIMENSIONAL REGRESSION MODELS Statistica Sinica 18(2008), 1603-1618 ADAPTIVE LASSO FOR SPARSE HIGH-DIMENSIONAL REGRESSION MODELS Jian Huang, Shuangge Ma and Cun-Hui Zhang University of Iowa, Yale University and Rutgers University Abstract:

More information

ESL Chap3. Some extensions of lasso

ESL Chap3. Some extensions of lasso ESL Chap3 Some extensions of lasso 1 Outline Consistency of lasso for model selection Adaptive lasso Elastic net Group lasso 2 Consistency of lasso for model selection A number of authors have studied

More information

On Mixture Regression Shrinkage and Selection via the MR-LASSO

On Mixture Regression Shrinkage and Selection via the MR-LASSO On Mixture Regression Shrinage and Selection via the MR-LASSO Ronghua Luo, Hansheng Wang, and Chih-Ling Tsai Guanghua School of Management, Peing University & Graduate School of Management, University

More information

On High-Dimensional Cross-Validation

On High-Dimensional Cross-Validation On High-Dimensional Cross-Validation BY WEI-CHENG HSIAO Institute of Statistical Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan hsiaowc@stat.sinica.edu.tw 5 WEI-YING

More information

Consistent Selection of Tuning Parameters via Variable Selection Stability

Consistent Selection of Tuning Parameters via Variable Selection Stability Journal of Machine Learning Research 14 2013 3419-3440 Submitted 8/12; Revised 7/13; Published 11/13 Consistent Selection of Tuning Parameters via Variable Selection Stability Wei Sun Department of Statistics

More information

LASSO Review, Fused LASSO, Parallel LASSO Solvers

LASSO Review, Fused LASSO, Parallel LASSO Solvers Case Study 3: fmri Prediction LASSO Review, Fused LASSO, Parallel LASSO Solvers Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade May 3, 2016 Sham Kakade 2016 1 Variable

More information

Analysis Methods for Supersaturated Design: Some Comparisons

Analysis Methods for Supersaturated Design: Some Comparisons Journal of Data Science 1(2003), 249-260 Analysis Methods for Supersaturated Design: Some Comparisons Runze Li 1 and Dennis K. J. Lin 2 The Pennsylvania State University Abstract: Supersaturated designs

More information

A Survey of L 1. Regression. Céline Cunen, 20/10/2014. Vidaurre, Bielza and Larranaga (2013)

A Survey of L 1. Regression. Céline Cunen, 20/10/2014. Vidaurre, Bielza and Larranaga (2013) A Survey of L 1 Regression Vidaurre, Bielza and Larranaga (2013) Céline Cunen, 20/10/2014 Outline of article 1.Introduction 2.The Lasso for Linear Regression a) Notation and Main Concepts b) Statistical

More information

Direct Learning: Linear Regression. Donglin Zeng, Department of Biostatistics, University of North Carolina

Direct Learning: Linear Regression. Donglin Zeng, Department of Biostatistics, University of North Carolina Direct Learning: Linear Regression Parametric learning We consider the core function in the prediction rule to be a parametric function. The most commonly used function is a linear function: squared loss:

More information

Shrinkage Tuning Parameter Selection in Precision Matrices Estimation

Shrinkage Tuning Parameter Selection in Precision Matrices Estimation arxiv:0909.1123v1 [stat.me] 7 Sep 2009 Shrinkage Tuning Parameter Selection in Precision Matrices Estimation Heng Lian Division of Mathematical Sciences School of Physical and Mathematical Sciences Nanyang

More information

Consistent Group Identification and Variable Selection in Regression with Correlated Predictors

Consistent Group Identification and Variable Selection in Regression with Correlated Predictors Consistent Group Identification and Variable Selection in Regression with Correlated Predictors Dhruv B. Sharma, Howard D. Bondell and Hao Helen Zhang Abstract Statistical procedures for variable selection

More information

The Double Dantzig. Some key words: Dantzig Selector; Double Dantzig; Generalized Linear Models; Lasso; Variable Selection.

The Double Dantzig. Some key words: Dantzig Selector; Double Dantzig; Generalized Linear Models; Lasso; Variable Selection. The Double Dantzig GARETH M. JAMES AND PETER RADCHENKO Abstract The Dantzig selector (Candes and Tao, 2007) is a new approach that has been proposed for performing variable selection and model fitting

More information

CONSISTENT BI-LEVEL VARIABLE SELECTION VIA COMPOSITE GROUP BRIDGE PENALIZED REGRESSION INDU SEETHARAMAN

CONSISTENT BI-LEVEL VARIABLE SELECTION VIA COMPOSITE GROUP BRIDGE PENALIZED REGRESSION INDU SEETHARAMAN CONSISTENT BI-LEVEL VARIABLE SELECTION VIA COMPOSITE GROUP BRIDGE PENALIZED REGRESSION by INDU SEETHARAMAN B.S., University of Madras, India, 2001 M.B.A., University of Madras, India, 2003 A REPORT submitted

More information

The picasso Package for Nonconvex Regularized M-estimation in High Dimensions in R

The picasso Package for Nonconvex Regularized M-estimation in High Dimensions in R The picasso Package for Nonconvex Regularized M-estimation in High Dimensions in R Xingguo Li Tuo Zhao Tong Zhang Han Liu Abstract We describe an R package named picasso, which implements a unified framework

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Regression II: Regularization and Shrinkage Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

FEATURE SCREENING IN ULTRAHIGH DIMENSIONAL

FEATURE SCREENING IN ULTRAHIGH DIMENSIONAL Statistica Sinica 26 (2016), 881-901 doi:http://dx.doi.org/10.5705/ss.2014.171 FEATURE SCREENING IN ULTRAHIGH DIMENSIONAL COX S MODEL Guangren Yang 1, Ye Yu 2, Runze Li 2 and Anne Buu 3 1 Jinan University,

More information

Stability and the elastic net

Stability and the elastic net Stability and the elastic net Patrick Breheny March 28 Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 1/32 Introduction Elastic Net Our last several lectures have concentrated on methods for

More information

High-dimensional variable selection via tilting

High-dimensional variable selection via tilting High-dimensional variable selection via tilting Haeran Cho and Piotr Fryzlewicz September 2, 2010 Abstract This paper considers variable selection in linear regression models where the number of covariates

More information

Sparse survival regression

Sparse survival regression Sparse survival regression Anders Gorst-Rasmussen gorst@math.aau.dk Department of Mathematics Aalborg University November 2010 1 / 27 Outline Penalized survival regression The semiparametric additive risk

More information

MSA220/MVE440 Statistical Learning for Big Data

MSA220/MVE440 Statistical Learning for Big Data MSA220/MVE440 Statistical Learning for Big Data Lecture 9-10 - High-dimensional regression Rebecka Jörnsten Mathematical Sciences University of Gothenburg and Chalmers University of Technology Recap from

More information

Variable selection and estimation in high-dimensional models

Variable selection and estimation in high-dimensional models Variable selection and estimation in high-dimensional models Joel L. Horowitz Department of Economics, Northwestern University Abstract. Models with high-dimensional covariates arise frequently in economics

More information

Linear Methods for Regression. Lijun Zhang

Linear Methods for Regression. Lijun Zhang Linear Methods for Regression Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Linear Regression Models and Least Squares Subset Selection Shrinkage Methods Methods Using Derived

More information

An Improved 1-norm SVM for Simultaneous Classification and Variable Selection

An Improved 1-norm SVM for Simultaneous Classification and Variable Selection An Improved 1-norm SVM for Simultaneous Classification and Variable Selection Hui Zou School of Statistics University of Minnesota Minneapolis, MN 55455 hzou@stat.umn.edu Abstract We propose a novel extension

More information

Consistent high-dimensional Bayesian variable selection via penalized credible regions

Consistent high-dimensional Bayesian variable selection via penalized credible regions Consistent high-dimensional Bayesian variable selection via penalized credible regions Howard Bondell bondell@stat.ncsu.edu Joint work with Brian Reich Howard Bondell p. 1 Outline High-Dimensional Variable

More information

Robust variable selection through MAVE

Robust variable selection through MAVE This is the author s final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher s web site or your institution s library. Robust

More information

Regularization: Ridge Regression and the LASSO

Regularization: Ridge Regression and the LASSO Agenda Wednesday, November 29, 2006 Agenda Agenda 1 The Bias-Variance Tradeoff 2 Ridge Regression Solution to the l 2 problem Data Augmentation Approach Bayesian Interpretation The SVD and Ridge Regression

More information

Stepwise Searching for Feature Variables in High-Dimensional Linear Regression

Stepwise Searching for Feature Variables in High-Dimensional Linear Regression Stepwise Searching for Feature Variables in High-Dimensional Linear Regression Qiwei Yao Department of Statistics, London School of Economics q.yao@lse.ac.uk Joint work with: Hongzhi An, Chinese Academy

More information

The Pennsylvania State University The Graduate School Eberly College of Science NEW PROCEDURES FOR COX S MODEL WITH HIGH DIMENSIONAL PREDICTORS

The Pennsylvania State University The Graduate School Eberly College of Science NEW PROCEDURES FOR COX S MODEL WITH HIGH DIMENSIONAL PREDICTORS The Pennsylvania State University The Graduate School Eberly College of Science NEW PROCEDURES FOR COX S MODEL WITH HIGH DIMENSIONAL PREDICTORS A Dissertation in Statistics by Ye Yu c 2015 Ye Yu Submitted

More information

Tuning Parameter Selection in L1 Regularized Logistic Regression

Tuning Parameter Selection in L1 Regularized Logistic Regression Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2012 Tuning Parameter Selection in L1 Regularized Logistic Regression Shujing Shi Virginia Commonwealth University

More information

The lasso, persistence, and cross-validation

The lasso, persistence, and cross-validation The lasso, persistence, and cross-validation Daniel J. McDonald Department of Statistics Indiana University http://www.stat.cmu.edu/ danielmc Joint work with: Darren Homrighausen Colorado State University

More information

Indirect multivariate response linear regression

Indirect multivariate response linear regression Biometrika (2016), xx, x, pp. 1 22 1 2 3 4 5 6 C 2007 Biometrika Trust Printed in Great Britain Indirect multivariate response linear regression BY AARON J. MOLSTAD AND ADAM J. ROTHMAN School of Statistics,

More information

Outlier detection and variable selection via difference based regression model and penalized regression

Outlier detection and variable selection via difference based regression model and penalized regression Journal of the Korean Data & Information Science Society 2018, 29(3), 815 825 http://dx.doi.org/10.7465/jkdi.2018.29.3.815 한국데이터정보과학회지 Outlier detection and variable selection via difference based regression

More information

Nonconcave Penalized Likelihood with A Diverging Number of Parameters

Nonconcave Penalized Likelihood with A Diverging Number of Parameters Nonconcave Penalized Likelihood with A Diverging Number of Parameters Jianqing Fan and Heng Peng Presenter: Jiale Xu March 12, 2010 Jianqing Fan and Heng Peng Presenter: JialeNonconcave Xu () Penalized

More information

Permutation-invariant regularization of large covariance matrices. Liza Levina

Permutation-invariant regularization of large covariance matrices. Liza Levina Liza Levina Permutation-invariant covariance regularization 1/42 Permutation-invariant regularization of large covariance matrices Liza Levina Department of Statistics University of Michigan Joint work

More information

MODEL SELECTION FOR CORRELATED DATA WITH DIVERGING NUMBER OF PARAMETERS

MODEL SELECTION FOR CORRELATED DATA WITH DIVERGING NUMBER OF PARAMETERS Statistica Sinica 23 (2013), 901-927 doi:http://dx.doi.org/10.5705/ss.2011.058 MODEL SELECTION FOR CORRELATED DATA WITH DIVERGING NUMBER OF PARAMETERS Hyunkeun Cho and Annie Qu University of Illinois at

More information

P-Values for High-Dimensional Regression

P-Values for High-Dimensional Regression P-Values for High-Dimensional Regression Nicolai einshausen Lukas eier Peter Bühlmann November 13, 2008 Abstract Assigning significance in high-dimensional regression is challenging. ost computationally

More information

Feature Screening in Ultrahigh Dimensional Cox s Model

Feature Screening in Ultrahigh Dimensional Cox s Model Feature Screening in Ultrahigh Dimensional Cox s Model Guangren Yang School of Economics, Jinan University, Guangzhou, P.R. China Ye Yu Runze Li Department of Statistics, Penn State Anne Buu Indiana University

More information

STAT 992 Paper Review: Sure Independence Screening in Generalized Linear Models with NP-Dimensionality J.Fan and R.Song

STAT 992 Paper Review: Sure Independence Screening in Generalized Linear Models with NP-Dimensionality J.Fan and R.Song STAT 992 Paper Review: Sure Independence Screening in Generalized Linear Models with NP-Dimensionality J.Fan and R.Song Presenter: Jiwei Zhao Department of Statistics University of Wisconsin Madison April

More information

Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR

Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR Howard D. Bondell and Brian J. Reich Department of Statistics, North Carolina State University,

More information

Regularized Estimation of High Dimensional Covariance Matrices. Peter Bickel. January, 2008

Regularized Estimation of High Dimensional Covariance Matrices. Peter Bickel. January, 2008 Regularized Estimation of High Dimensional Covariance Matrices Peter Bickel Cambridge January, 2008 With Thanks to E. Levina (Joint collaboration, slides) I. M. Johnstone (Slides) Choongsoon Bae (Slides)

More information

Forward Selection and Estimation in High Dimensional Single Index Models

Forward Selection and Estimation in High Dimensional Single Index Models Forward Selection and Estimation in High Dimensional Single Index Models Shikai Luo and Subhashis Ghosal North Carolina State University August 29, 2016 Abstract We propose a new variable selection and

More information

Asymptotic Equivalence of Regularization Methods in Thresholded Parameter Space

Asymptotic Equivalence of Regularization Methods in Thresholded Parameter Space Asymptotic Equivalence of Regularization Methods in Thresholded Parameter Space Jinchi Lv Data Sciences and Operations Department Marshall School of Business University of Southern California http://bcf.usc.edu/

More information

THE Mnet METHOD FOR VARIABLE SELECTION

THE Mnet METHOD FOR VARIABLE SELECTION Statistica Sinica 26 (2016), 903-923 doi:http://dx.doi.org/10.5705/ss.202014.0011 THE Mnet METHOD FOR VARIABLE SELECTION Jian Huang 1, Patrick Breheny 1, Sangin Lee 2, Shuangge Ma 3 and Cun-Hui Zhang 4

More information

Or How to select variables Using Bayesian LASSO

Or How to select variables Using Bayesian LASSO Or How to select variables Using Bayesian LASSO x 1 x 2 x 3 x 4 Or How to select variables Using Bayesian LASSO x 1 x 2 x 3 x 4 Or How to select variables Using Bayesian LASSO On Bayesian Variable Selection

More information

Consistent Model Selection Criteria on High Dimensions

Consistent Model Selection Criteria on High Dimensions Journal of Machine Learning Research 13 (2012) 1037-1057 Submitted 6/11; Revised 1/12; Published 4/12 Consistent Model Selection Criteria on High Dimensions Yongdai Kim Department of Statistics Seoul National

More information

A comparative study of the Lasso-type and heuristic model selection methods

A comparative study of the Lasso-type and heuristic model selection methods Computational Optimization Methods in Statistics, Econometrics and Finance - Marie Curie Research and Training Network funded by the EU Commission through MRTN-CT-2006-034270 - COMISEF WORKING PAPERS SERIES

More information

The Risk of James Stein and Lasso Shrinkage

The Risk of James Stein and Lasso Shrinkage Econometric Reviews ISSN: 0747-4938 (Print) 1532-4168 (Online) Journal homepage: http://tandfonline.com/loi/lecr20 The Risk of James Stein and Lasso Shrinkage Bruce E. Hansen To cite this article: Bruce

More information

A Blockwise Descent Algorithm for Group-penalized Multiresponse and Multinomial Regression

A Blockwise Descent Algorithm for Group-penalized Multiresponse and Multinomial Regression A Blockwise Descent Algorithm for Group-penalized Multiresponse and Multinomial Regression Noah Simon Jerome Friedman Trevor Hastie November 5, 013 Abstract In this paper we purpose a blockwise descent

More information

The Iterated Lasso for High-Dimensional Logistic Regression

The Iterated Lasso for High-Dimensional Logistic Regression The Iterated Lasso for High-Dimensional Logistic Regression By JIAN HUANG Department of Statistics and Actuarial Science, 241 SH University of Iowa, Iowa City, Iowa 52242, U.S.A. SHUANGE MA Division of

More information

High dimensional thresholded regression and shrinkage effect

High dimensional thresholded regression and shrinkage effect J. R. Statist. Soc. B (014) 76, Part 3, pp. 67 649 High dimensional thresholded regression and shrinkage effect Zemin Zheng, Yingying Fan and Jinchi Lv University of Southern California, Los Angeles, USA

More information

ADAPTIVE LASSO FOR SPARSE HIGH-DIMENSIONAL REGRESSION MODELS. November The University of Iowa. Department of Statistics and Actuarial Science

ADAPTIVE LASSO FOR SPARSE HIGH-DIMENSIONAL REGRESSION MODELS. November The University of Iowa. Department of Statistics and Actuarial Science ADAPTIVE LASSO FOR SPARSE HIGH-DIMENSIONAL REGRESSION MODELS Jian Huang 1, Shuangge Ma 2, and Cun-Hui Zhang 3 1 University of Iowa, 2 Yale University, 3 Rutgers University November 2006 The University

More information

Regularization Path Algorithms for Detecting Gene Interactions

Regularization Path Algorithms for Detecting Gene Interactions Regularization Path Algorithms for Detecting Gene Interactions Mee Young Park Trevor Hastie July 16, 2006 Abstract In this study, we consider several regularization path algorithms with grouped variable

More information

On Model Selection Consistency of Lasso

On Model Selection Consistency of Lasso On Model Selection Consistency of Lasso Peng Zhao Department of Statistics University of Berkeley 367 Evans Hall Berkeley, CA 94720-3860, USA Bin Yu Department of Statistics University of Berkeley 367

More information

Robust Variable Selection Methods for Grouped Data. Kristin Lee Seamon Lilly

Robust Variable Selection Methods for Grouped Data. Kristin Lee Seamon Lilly Robust Variable Selection Methods for Grouped Data by Kristin Lee Seamon Lilly A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree

More information

Semi-Penalized Inference with Direct FDR Control

Semi-Penalized Inference with Direct FDR Control Jian Huang University of Iowa April 4, 2016 The problem Consider the linear regression model y = p x jβ j + ε, (1) j=1 where y IR n, x j IR n, ε IR n, and β j is the jth regression coefficient, Here p

More information

Marginal Regression For Multitask Learning

Marginal Regression For Multitask Learning Mladen Kolar Machine Learning Department Carnegie Mellon University mladenk@cs.cmu.edu Han Liu Biostatistics Johns Hopkins University hanliu@jhsph.edu Abstract Variable selection is an important and practical

More information

A General Framework for Variable Selection in Linear Mixed Models with Applications to Genetic Studies with Structured Populations

A General Framework for Variable Selection in Linear Mixed Models with Applications to Genetic Studies with Structured Populations A General Framework for Variable Selection in Linear Mixed Models with Applications to Genetic Studies with Structured Populations Joint work with Karim Oualkacha (UQÀM), Yi Yang (McGill), Celia Greenwood

More information

RECENT ADVANCES IN STATISTICAL MODELS: TOPICS IN MODEL SELECTION AND SEMI-PARAMETRIC INFERENCE

RECENT ADVANCES IN STATISTICAL MODELS: TOPICS IN MODEL SELECTION AND SEMI-PARAMETRIC INFERENCE RECENT ADVANCES IN STATISTICAL MODELS: TOPICS IN MODEL SELECTION AND SEMI-PARAMETRIC INFERENCE BY WENQIAN QIAO A dissertation submitted to the Graduate School New Brunswick Rutgers, The State University

More information

DISCUSSION OF A SIGNIFICANCE TEST FOR THE LASSO. By Peter Bühlmann, Lukas Meier and Sara van de Geer ETH Zürich

DISCUSSION OF A SIGNIFICANCE TEST FOR THE LASSO. By Peter Bühlmann, Lukas Meier and Sara van de Geer ETH Zürich Submitted to the Annals of Statistics DISCUSSION OF A SIGNIFICANCE TEST FOR THE LASSO By Peter Bühlmann, Lukas Meier and Sara van de Geer ETH Zürich We congratulate Richard Lockhart, Jonathan Taylor, Ryan

More information

Homogeneity Pursuit. Jianqing Fan

Homogeneity Pursuit. Jianqing Fan Jianqing Fan Princeton University with Tracy Ke and Yichao Wu http://www.princeton.edu/ jqfan June 5, 2014 Get my own profile - Help Amazing Follow this author Grace Wahba 9 Followers Follow new articles

More information

Statistical Learning with the Lasso, spring The Lasso

Statistical Learning with the Lasso, spring The Lasso Statistical Learning with the Lasso, spring 2017 1 Yeast: understanding basic life functions p=11,904 gene values n number of experiments ~ 10 Blomberg et al. 2003, 2010 The Lasso fmri brain scans function

More information

Feature Selection for Varying Coefficient Models With Ultrahigh Dimensional Covariates

Feature Selection for Varying Coefficient Models With Ultrahigh Dimensional Covariates Feature Selection for Varying Coefficient Models With Ultrahigh Dimensional Covariates Jingyuan Liu, Runze Li and Rongling Wu Abstract This paper is concerned with feature screening and variable selection

More information

Risk estimation for high-dimensional lasso regression

Risk estimation for high-dimensional lasso regression Risk estimation for high-dimensional lasso regression arxiv:161522v1 [stat.me] 4 Feb 216 Darren Homrighausen Department of Statistics Colorado State University darrenho@stat.colostate.edu Daniel J. McDonald

More information

Variable Screening in High-dimensional Feature Space

Variable Screening in High-dimensional Feature Space ICCM 2007 Vol. II 735 747 Variable Screening in High-dimensional Feature Space Jianqing Fan Abstract Variable selection in high-dimensional space characterizes many contemporary problems in scientific

More information