Climatology of the Arctic Ocean based on NEMO results

Size: px
Start display at page:

Download "Climatology of the Arctic Ocean based on NEMO results"

Transcription

1 Climatology of the Arctic Ocean based on NEMO results SU Jie LI Xiang, ZHANG Yang Key Lab of Polar Oceanography and Global Ocean Change Ocean University of China, Qingdao, China Cooperator: Youyu Lu, Zeliang Wang, Frederic Dupont Bedford Institute of Oceanography, Dartmouth, Canada

2 Outline Motivation Model description Basic results of -y s standard run (global and Arctic) Scientific interest Pacific inflow s effect on sea ice distribution and upper layer ocean How to get a reasonable middle layer water from Atlantic with a coarse resolution model? SU Jie,OUC AOMIP,WHIO,.

3 Motivation Realistic modelling Arctic conditions (climatology and variability) and its influences on global ocean climate Understanding the Pacific inflow and Atlantic inflow s influences on Arctic Ocean SU Jie,OUC AOMIP,WHIO,. 3

4 Model Description A coupled ice-ocean model under the NEMO framework the Ocean model: OPA (Madec, et al., 998) ; The ice model: LIM (Fichefet and Morales, 997;Christian and Gurvan) Initial field: January climatology of temperature and salinity based on PHC3. Sea ice thickness: 3m in northern hemisphere; m in southern hemisphere Surface forcing: OMIP daily climatology (from957 - ERA-4) of wind stress, air temperature, cloud cover, relative humidity, precipitation, wind speed; SSS restored Boundary forcing Arctic model takes boundary forcing from global model SU Jie,OUC AOMIP,WHIO,. 4

5 Model s Grid Tri-polar grids The horizontal resolution: degrees Mercator mesh with finest resolution in CAA is 5km The vertical resolution is 46 levels (interval: 6-5m) The time step is 8s. Standard run include both global and arctic domain Model is integrated for years ORCA glob grids ORCA actc grids

6 Basic results of -y s global and Arctic standard run Ice area Ice concentration Ice motion Ocean current (upper m and 45m) Sea temperature field (m and 45m) Vertical temperature profile SU Jie,OUC AOMIP,WHIO,. 6

7 Total ice area of Arctic SU Jie,OUC AOMIP,WHIO,. 7

8 SSM/I 979- Sea ice concentration Modeled-glob Modeled-actc March September

9 NSIDC 979- Sea ice motion Modeled-glob Modeled-actc March September

10 upper m Ocean current 45m March September

11 m sea temperature PHC3. Modeled-glob Modeled-actc March September

12 PHC3. 45m sea temperature Modeled-glob Modeled-actc March September

13 Vertical temperature profile SU Jie,OUC AOMIP,WHIO,. 3

14 Station,,3,5,6,7 SU Jie,OUC AOMIP,WHIO,. 4

15 Station 4,8,9,, SU Jie,OUC AOMIP,WHIO,. 5

16 Station,3 SU Jie,OUC AOMIP,WHIO,. 6

17 How to get a reasonable middle layer water from Atlantic in a coarse resolution model? SU Jie,OUC AOMIP,WHIO,. 7

18 ¼ degree resolution SU Jie,OUC AOMIP,WHIO,. 8

19 Velocity section of Fram Strait OPA SODA CFSR Schauer et al.(4) Oct. 998 (Obs.) depth(m) V(cm/s) Oct998 opa depth(m) V(cm/s) Oct998 CFSR SU Jie,OUC AOMIP,WHIO,. lon lon Adding Neptune effect (Hollway,99) did help to increase the current of Atlantic inflow, but still work not well for the vertical Temp. profile depth(m) V(cm/s) Oct998 soda

20 45m sea temperature (September) PHC3. initial model result model result - initial SU Jie,OUC AOMIP,WHIO,.

21 Max Temp. depth of Middle layer water (September) PHC3. initial model result model result - initial SU Jie,OUC AOMIP,WHIO,.

22 Experiments on vertical turbulence problem The vertical turbulent coefficient include three items: TKE (turbulent closure scheme) DDM (double diffusion mixing) Item caused by choosing horizontal mixing scheme ε ε l e c k e e A k e N A k v k u e A t e vm vt vm 3 / = e l C A k k vm = n vm vt P A A / = ( T ) A D lt lt R = + R = r r r r r r = k i r ρ ρ = k j r ρ ρ + k T r r A k lt ) ( iso-level iso-neutral

23 Experiments on vertical turbulence problem 3 all R = r r r r r + r Exp:limit wslp to e-5 Exp:limit r,r to e-6 Exp3:limit Alt (under ice ) to e-7

24 Two years experiments SU Jie,OUC AOMIP,WHIO,. 4

25 Summary and discussion The modeled sea ice results can represent the seasonal cycle of Arctic sea ice in basic pattern. Ice area agrees well with those calculated by SSMR-SSMI ice concentration. The Beaufort gyre and the transpolar drift are showed obviously in the modeled ice drift and upper m current field. y run fails to reproduce the Atlantic layer in ice covered region, especially in Euro-Asian Basin. This problem can be solved by enhance model resolution. Using a coarse model, the problem of Atlantic layer is possibly caused by too weak transport though Fram Strait and too strong vertical diffusion which caused by iso-neutral horizontal mixing scheme. Limit the advection diffusion coefficient can partly improve the results. SU Jie,OUC AOMIP,WHIO,. 5

26 Thank you for your attention! Any Question? SU Jie,OUC AOMIP,WHIO,. 6

Modeling Arctic Intermediate Water: The effects of Neptune parameterization and horizontal resolution

Modeling Arctic Intermediate Water: The effects of Neptune parameterization and horizontal resolution Article Advances in Polar Science doi: 10.3724/SP.J.1085.2013.00098 June 2013 Vol. 24 No. 2: 98-105 Modeling Arctic Intermediate Water: The effects of Neptune parameterization and horizontal resolution

More information

Intercomparison of the Arctic sea ice cover in global ocean-sea ice reanalyses

Intercomparison of the Arctic sea ice cover in global ocean-sea ice reanalyses Intercomparison of the Arctic sea ice cover in global ocean-sea ice reanalyses Matthieu Chevallier (CNRM, Météo France/CNRS) Greg Smith, Frédéric Dupont, Jean-François Lemieux (ECC Canada), Gilles Garric

More information

SIMULATION OF ARCTIC STORMS 7B.3. Zhenxia Long 1, Will Perrie 1, 2 and Lujun Zhang 2

SIMULATION OF ARCTIC STORMS 7B.3. Zhenxia Long 1, Will Perrie 1, 2 and Lujun Zhang 2 7B.3 SIMULATION OF ARCTIC STORMS Zhenxia Long 1, Will Perrie 1, 2 and Lujun Zhang 2 1 Fisheries & Oceans Canada, Bedford Institute of Oceanography, Dartmouth NS, Canada 2 Department of Engineering Math,

More information

Arctic Ocean simulation in the CCSM4

Arctic Ocean simulation in the CCSM4 Arctic Ocean simulation in the CCSM4 Alexandra Jahn National Center for Atmospheric Sciences, Boulder, USA Collaborators: K. Sterling, M.M. Holland, J. Kay, J.A. Maslanik, C.M. Bitz, D.A. Bailey, J. Stroeve,

More information

A data assimilation approach for reconstructing sea ice volume in the Southern Hemisphere

A data assimilation approach for reconstructing sea ice volume in the Southern Hemisphere Harmony on Ice 2 meeting Paris, 28-29 Nov. 2011 A data assimilation approach for reconstructing sea ice volume in the Southern Hemisphere F. Massonnet, P. Mathiot, T. Fichefet, H. Goosse, C. König Beatty,

More information

Seasonal Simulaions of a coupled ice-ocean model in the Bohai Sea and North Yellow Sea

Seasonal Simulaions of a coupled ice-ocean model in the Bohai Sea and North Yellow Sea Seasonal Simulaions of a coupled ice-ocean model in the Bohai Sea and North Yellow Sea Yu LIU,Qinzheng LIU,Jie Su*, Shan BAI,Maoning Tang National Marine Environmental Forecasting Center * Ocean University

More information

Arctic sea ice in IPCC climate scenarios in view of the 2007 record low sea ice event A comment by Ralf Döscher, Michael Karcher and Frank Kauker

Arctic sea ice in IPCC climate scenarios in view of the 2007 record low sea ice event A comment by Ralf Döscher, Michael Karcher and Frank Kauker Arctic sea ice in IPCC climate scenarios in view of the 2007 record low sea ice event A comment by Ralf Döscher, Michael Karcher and Frank Kauker Fig. 1: Arctic September sea ice extent in observations

More information

Importance of physics, resolution and forcing in hindcast simulations of Arctic and Antarctic sea ice variability and trends

Importance of physics, resolution and forcing in hindcast simulations of Arctic and Antarctic sea ice variability and trends WCRP Workshop on Seasonal to Multi-Decadal Predictability of Polar Climate Bergen, 25-29 October 2010 Importance of physics, resolution and forcing in hindcast simulations of Arctic and Antarctic sea ice

More information

Role of the SST coupling frequency and «intra-daily» SST variability on ENSO and monsoon-enso relationship in a global coupled model

Role of the SST coupling frequency and «intra-daily» SST variability on ENSO and monsoon-enso relationship in a global coupled model Role of the SST coupling frequency and «intra-daily» SST variability on ENSO and monsoon-enso relationship in a global coupled model Pascal Terray, Sébastien Masson, Kamala Kakitha, Gurvan Madec LOCEAN/IPSL,

More information

A NEMO-based hydrodynamic/hydraulic system for the Great Lakes. F. Dupont, P. Chittibabu, A. Huang, R. Yerubandi, V. Fortin, Y. Lu

A NEMO-based hydrodynamic/hydraulic system for the Great Lakes. F. Dupont, P. Chittibabu, A. Huang, R. Yerubandi, V. Fortin, Y. Lu A NEMO-based hydrodynamic/hydraulic system for the Great Lakes F. Dupont, P. Chittibabu, A. Huang, R. Yerubandi, V. Fortin, Y. Lu Objectives: Development of a coupled hydrological forecasting system for

More information

Response of water temperature to surface wave effects: experiments with the coupled NEMO-WAM

Response of water temperature to surface wave effects: experiments with the coupled NEMO-WAM Response of water temperature to surface wave effects: experiments with the coupled NEMO-WAM Victor Alari (HZG), Joanna Staneva (HZG), Sebastian Grayek (HZG) and Oyvind Breivik (ECMWF/Norwegian Met. Institute)

More information

Reassessing the Role of Sea Ice Drift in Arctic Sea Ice Loss

Reassessing the Role of Sea Ice Drift in Arctic Sea Ice Loss Reassessing the Role of Sea Ice Drift in Arctic Sea Ice Loss Paul Kushner (Presenting) Department of Physics, University of Toronto Neil Tandon (Project lead) Environment and Climate Change Canada, Toronto

More information

High-Resolution MPAS Simulations for Analysis of Climate Change Effects on Weather Extremes

High-Resolution MPAS Simulations for Analysis of Climate Change Effects on Weather Extremes High-Resolution MPAS Simulations for Analysis of Climate Change Effects on Weather Extremes ALLISON MICHAELIS, GARY LACKMANN, & WALT ROBINSON Department of Marine, Earth, and Atmospheric Sciences, North

More information

Sensitivity of the spherical granular sea-ice model to the ice strength and the angle of friction

Sensitivity of the spherical granular sea-ice model to the ice strength and the angle of friction to the ice strength and the angle of friction Jan Sedláček 1 Jean-François Lemieux 1 Bruno Tremblay 2 David M. Holland 3 Lawrence A. Mysak 1 1 Department of Atmospheric and Oceanic Sciences McGill University,

More information

Don't let your PBL scheme be rejected by brine: Parameterization of salt plumes under sea ice in climate models

Don't let your PBL scheme be rejected by brine: Parameterization of salt plumes under sea ice in climate models Don't let your PBL scheme be rejected by brine: Parameterization of salt plumes under sea ice in climate models Dimitris Menemenlis California Institute of Technology, Jet Propulsion Laboratory Frontiers

More information

Update on Coupled Air-Sea-Ice Modelling

Update on Coupled Air-Sea-Ice Modelling Update on Coupled Air-Sea-Ice Modelling H. Ritchie 1,4, G. Smith 1, J.-M. Belanger 1, J-F Lemieux 1, C. Beaudoin 1, P. Pellerin 1, M. Buehner 1, A. Caya 1, L. Fillion 1, F. Roy 2, F. Dupont 2, M. Faucher

More information

What makes the Arctic hot?

What makes the Arctic hot? 1/3 total USA UN Environ Prog What makes the Arctic hot? Local communities subsistence Arctic Shipping Routes? Decreasing Ice cover Sept 2007 -ice extent (Pink=1979-2000 mean min) Source: NSIDC Oil/Gas

More information

The CONCEPTS Global Ice-Ocean Prediction System Establishing an Environmental Prediction Capability in Canada

The CONCEPTS Global Ice-Ocean Prediction System Establishing an Environmental Prediction Capability in Canada The CONCEPTS Global Ice-Ocean Prediction System Establishing an Environmental Prediction Capability in Canada WWOSC 2014 Montreal, Quebec, Canada Dorina Surcel Colan 1, Gregory C. Smith 2, Francois Roy

More information

Understanding Oceans Sustaining Future. Shaoqing Zhang

Understanding Oceans Sustaining Future. Shaoqing Zhang Understanding Oceans Sustaining Future Shaoqing Zhang OUTLINE 1. Background: Problem in AMOC reconstruction of GFDL ECDA 2. Hypothesis Importance of tropical high-frequency information to maintain the

More information

Outline: 1) Extremes were triggered by anomalous synoptic patterns 2) Cloud-Radiation-PWV positive feedback on 2007 low SIE

Outline: 1) Extremes were triggered by anomalous synoptic patterns 2) Cloud-Radiation-PWV positive feedback on 2007 low SIE Identifying Dynamical Forcing and Cloud-Radiative Feedbacks Critical to the Formation of Extreme Arctic Sea-Ice Extent in the Summers of 2007 and 1996 Xiquan Dong University of North Dakota Outline: 1)

More information

On Modeling the Oceanic Heat Fluxes from the North Pacific / Atlantic into the Arctic Ocean

On Modeling the Oceanic Heat Fluxes from the North Pacific / Atlantic into the Arctic Ocean On Modeling the Oceanic Heat Fluxes from the North Pacific / Atlantic into the Arctic Ocean Wieslaw Maslowski Naval Postgraduate School Collaborators: Jaclyn Clement Kinney Terry McNamara, John Whelan

More information

O.M Smedstad 1, E.J. Metzger 2, R.A. Allard 2, R. Broome 1, D.S. Franklin 1 and A.J. Wallcraft 2. QinetiQ North America 2. Naval Research Laboratory

O.M Smedstad 1, E.J. Metzger 2, R.A. Allard 2, R. Broome 1, D.S. Franklin 1 and A.J. Wallcraft 2. QinetiQ North America 2. Naval Research Laboratory An eddy-resolving ocean reanalysis using the 1/12 global HYbrid Coordinate Ocean Model (HYCOM) and the Navy Coupled Ocean Data Assimilation (NCODA) scheme O.M Smedstad 1, E.J. Metzger 2, R.A. Allard 2,

More information

Interannual Climate Prediction at IC3

Interannual Climate Prediction at IC3 Interannual Climate Prediction at IC3 F. J. Doblas-Reyes ICREA & IC3, Barcelona, Spain M. Asif, H. Du, J. García-Serrano, V. Guémas, F. Lienert IC3, Barcelona, Spain Outline Decadal experiment benchmarking

More information

Upper Ocean Circulation

Upper Ocean Circulation Upper Ocean Circulation C. Chen General Physical Oceanography MAR 555 School for Marine Sciences and Technology Umass-Dartmouth 1 MAR555 Lecture 4: The Upper Oceanic Circulation The Oceanic Circulation

More information

Causes of Changes in Arctic Sea Ice

Causes of Changes in Arctic Sea Ice Causes of Changes in Arctic Sea Ice Wieslaw Maslowski Naval Postgraduate School Outline 1. Rationale 2. Observational background 3. Modeling insights on Arctic change Pacific / Atlantic Water inflow 4.

More information

The Northern Hemisphere Sea ice Trends: Regional Features and the Late 1990s Change. Renguang Wu

The Northern Hemisphere Sea ice Trends: Regional Features and the Late 1990s Change. Renguang Wu The Northern Hemisphere Sea ice Trends: Regional Features and the Late 1990s Change Renguang Wu Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing World Conference on Climate Change

More information

An Update on the 1/12 Global HYCOM Effort

An Update on the 1/12 Global HYCOM Effort An Update on the 1/12 Global HYCOM Effort E. Joseph Metzger, Alan J. Wallcraft, Jay F. Shriver and Harley E. Hurlburt Naval Research Laboratory 10 th HYCOM Consortium Meeting 7-99 November 2006 FSU-COAPS,

More information

Climate prediction activities at Météo-France & CERFACS

Climate prediction activities at Météo-France & CERFACS Climate prediction activities at Météo-France & CERFACS Hervé Douville Météo-France/CNRM herve.douville@meteo.fr Acknowledgements: L. Batté, C. Cassou, M. Chevallier, M. Déqué, A. Germe, E. Martin, and

More information

Uncertainty in Ocean Surface Winds over the Nordic Seas

Uncertainty in Ocean Surface Winds over the Nordic Seas Uncertainty in Ocean Surface Winds over the Nordic Seas Dmitry Dukhovskoy and Mark Bourassa Arctic Ocean Center for Ocean-Atmospheric Prediction Studies Florida State University Funded by the NASA OVWST,

More information

Environment and Climate Change Canada / GPC Montreal

Environment and Climate Change Canada / GPC Montreal Environment and Climate Change Canada / GPC Montreal Assessment, research and development Bill Merryfield Canadian Centre for Climate Modelling and Analysis (CCCma) with contributions from colleagues at

More information

Advancements and Limitations in Understanding and Predicting Arctic Climate Change

Advancements and Limitations in Understanding and Predicting Arctic Climate Change Advancements and Limitations in Understanding and Predicting Arctic Climate Change Wieslaw Maslowski Naval Postgraduate School Collaborators: Jaclyn Clement Kinney, Rose Tseng, Timothy McGeehan - NPS Jaromir

More information

The ECMWF coupled data assimilation system

The ECMWF coupled data assimilation system The ECMWF coupled data assimilation system Patrick Laloyaux Acknowledgments: Magdalena Balmaseda, Kristian Mogensen, Peter Janssen, Dick Dee August 21, 214 Patrick Laloyaux (ECMWF) CERA August 21, 214

More information

Comparison between vertical shear mixing and surface wave-induced mixing in the global ocean

Comparison between vertical shear mixing and surface wave-induced mixing in the global ocean Comparison between vertical shear mixing and surface wave-induced mixing in the global ocean Fangli Qiao and Chuanjiang Huang Key Laboratory of Marine Science and Numerical Modeling First Institute of

More information

New perspectives of climate change impacts on marine anthropogenic radioactivity in Arctic regions

New perspectives of climate change impacts on marine anthropogenic radioactivity in Arctic regions New perspectives of climate change impacts on marine anthropogenic radioactivity in Arctic regions M. Karcher 1,3, I. Harms 2, R. Gerdes 3, W.J.F. Standring 4, M. Dowdall 4, P. Strand 4 1 O.A.Sys Ocean

More information

10.2 AN ENERGY-DIAGNOSTICS INTERCOMPARISON OF COUPLED ICE-OCEAN ARCTIC MODELS

10.2 AN ENERGY-DIAGNOSTICS INTERCOMPARISON OF COUPLED ICE-OCEAN ARCTIC MODELS .2 AN ENERGY-DIAGNOSTICS INTERCOMPARISON OF COUPLED ICE-OCEAN ARCTIC MODELS Petteri Uotila, David M. Holland New York University, New York, NY Sirpa Häkkinen NASA/Goddard Space Flight Center, Greenbelt,

More information

Dmitry Dukhovskoy and Mark Bourassa

Dmitry Dukhovskoy and Mark Bourassa Dmitry Dukhovskoy and Mark Bourassa Center for Ocean-Atmospheric Prediction Studies Florida State University Funded by the NASA OVWST, HYCOM consortium and NSF AOMIP Acknowledgement: P. Hughes (FSU), E.J.

More information

Thermohaline variability of the North Ionian and South Adriatic Sea in

Thermohaline variability of the North Ionian and South Adriatic Sea in Thermohaline variability of the North Ionian and South Adriatic Sea in 2013-2016 Κλικ για προσθήκη κειμένου Zoi kokkini, P. - M. Poulain, R. Gerin, E. Mauri and G. Notarstefano 6th Euro-Argo Users Meeting,

More information

Evaluating a Genesis Potential Index with Community Climate System Model Version 3 (CCSM3) By: Kieran Bhatia

Evaluating a Genesis Potential Index with Community Climate System Model Version 3 (CCSM3) By: Kieran Bhatia Evaluating a Genesis Potential Index with Community Climate System Model Version 3 (CCSM3) By: Kieran Bhatia I. Introduction To assess the impact of large-scale environmental conditions on tropical cyclone

More information

The Arctic Ocean's response to the NAM

The Arctic Ocean's response to the NAM The Arctic Ocean's response to the NAM Gerd Krahmann and Martin Visbeck Lamont-Doherty Earth Observatory of Columbia University RT 9W, Palisades, NY 10964, USA Abstract The sea ice response of the Arctic

More information

CMIP5-based global wave climate projections including the entire Arctic Ocean

CMIP5-based global wave climate projections including the entire Arctic Ocean CMIP5-based global wave climate projections including the entire Arctic Ocean 1 ST International Workshop ON Waves, storm Surges and Coastal Hazards Liverpool, UK, 10-15 September 2017 Mercè Casas-Prat,

More information

Changing predictability characteristics of Arctic sea ice in a warming climate

Changing predictability characteristics of Arctic sea ice in a warming climate Changing predictability characteristics of Arctic sea ice in a warming climate Marika Holland 1 Laura Landrum 1, John Mioduszewski 2, Steve Vavrus 2, Muyin Wang 3 1. NCAR, 2. U. Wisconsin-Madison, 3. NOAA

More information

Feature resolution in OSTIA L4 analyses. Chongyuan Mao, Emma Fiedler, Simon Good, Jennie Waters, Matthew Martin

Feature resolution in OSTIA L4 analyses. Chongyuan Mao, Emma Fiedler, Simon Good, Jennie Waters, Matthew Martin Feature resolution in OSTIA L4 analyses Chongyuan Mao, Emma Fiedler, Simon Good, Jennie Waters, Matthew Martin GHRSST XVIII, Qingdao, China, 5-9 June 2017 Talk outline Introduction NEMOVAR in OSTIA Methods

More information

2. Can you describe how temperature and dissolved solids changes the density of water?

2. Can you describe how temperature and dissolved solids changes the density of water? Unit 4: Oceanography LT 4.1 Density: I can explain the role density plays to help form some currents. #1 Yes I can: 1. Can you explain what density is and how you calculate it? 2. Can you describe how

More information

MODELING EAST ASIAN SUMMER MONSOON IN 1998 WITH A COUPLED REGIONAL AIR-SEA MODEL. Xuejuan Ren

MODELING EAST ASIAN SUMMER MONSOON IN 1998 WITH A COUPLED REGIONAL AIR-SEA MODEL. Xuejuan Ren INYS 2008 MODELING EAST ASIAN SUMMER MONSOON IN 1998 WITH A COUPLED REGIONAL AIR-SEA MODEL Xuejuan Ren Yaocun Zhang, Yongfu Qian, Huijuan Lin Department of Atmospheric Sciences, Nanjing University, Nanjing,

More information

Spectral Albedos. a: dry snow. b: wet new snow. c: melting old snow. a: cold MY ice. b: melting MY ice. d: frozen pond. c: melting FY white ice

Spectral Albedos. a: dry snow. b: wet new snow. c: melting old snow. a: cold MY ice. b: melting MY ice. d: frozen pond. c: melting FY white ice Spectral Albedos a: dry snow b: wet new snow a: cold MY ice c: melting old snow b: melting MY ice d: frozen pond c: melting FY white ice d: melting FY blue ice e: early MY pond e: ageing ponds Extinction

More information

Seasonal forecasting activities at ECMWF

Seasonal forecasting activities at ECMWF Seasonal forecasting activities at ECMWF An upgraded ECMWF seasonal forecast system: Tim Stockdale, Stephanie Johnson, Magdalena Balmaseda, and Laura Ferranti Progress with C3S: Anca Brookshaw ECMWF June

More information

The Arctic Energy Budget

The Arctic Energy Budget The Arctic Energy Budget The global heat engine [courtesy Kevin Trenberth, NCAR]. Differential solar heating between low and high latitudes gives rise to a circulation of the atmosphere and ocean that

More information

Current status and plans for developing sea ice forecast services and products for the WMO Arctic Regional Climate Centre Sea Ice Outlook

Current status and plans for developing sea ice forecast services and products for the WMO Arctic Regional Climate Centre Sea Ice Outlook Current status and plans for developing sea ice forecast services and products for the WMO Arctic Regional Climate Centre 2018 Sea Ice Outlook 13 WMO Global Producing Centres providing seasonal forecasts

More information

THE WINTER OF JUST HOW WEIRD WAS IT EXACTLY?

THE WINTER OF JUST HOW WEIRD WAS IT EXACTLY? Courtesy Reuters Buffalo New York THE WINTER OF 2013-2014 JUST HOW WEIRD WAS IT EXACTLY? Eyad Atallah and John Gyakum McGill University Some Headlines Certainly for large portions of southern Canada and

More information

The Rossby Centre Ocean model applied to the Arctic Ocean using ERA-40

The Rossby Centre Ocean model applied to the Arctic Ocean using ERA-40 The Ocean model applied to the Arctic Ocean using ERA-40 H.E. Markus Meier, R. Döscher, K. Wyser /SMHI, Norrköping and K. Döös MISU, Stockholm University, Stockholm Ocean model (RCO) based on the BRYAN-COX-SEMTNER

More information

The ECMWF prototype for coupled reanalysis. Patrick Laloyaux

The ECMWF prototype for coupled reanalysis. Patrick Laloyaux The ECMWF prototype for coupled reanalysis Patrick Laloyaux ECMWF July 10, 2015 Outline Current status and future plans for ECMWF operational reanalyses Extended climate reanalyses Coupled atmosphere-ocean

More information

Canadian Ice Service

Canadian Ice Service Canadian Ice Service Key Points and Details concerning the 2009 Arctic Minimum Summer Sea Ice Extent October 1 st, 2009 http://ice-glaces.ec.gc.ca 1 Key Points of Interest Arctic-wide The Arctic-wide minimum

More information

Evaluation of the sea ice forecast at DMI

Evaluation of the sea ice forecast at DMI DMI Evaluation of the sea ice forecast at DMI Till A. S. Rasmussen 1 Kristine S. Madsen 1, Mads H. Ribergaard 1, Leif T.Pedersen 1, Jacob L Høyer 1, Gorm Dybkjær 1, Mads Bruun Poulsen 2 and Sofie Abildgaard

More information

An Assessment of the Navy's Sea Ice Outlook Predictions for 2014

An Assessment of the Navy's Sea Ice Outlook Predictions for 2014 An Assessment of the Navy's Sea Ice Outlook Predictions for 2014 Pam Posey 1, Rick Allard 1, David Hebert 1, Joe Metzger 1, Ruth Preller 1, Alan Wallcraft 1, Ole Martin Smedstad 2, Michael Phelps 3 and

More information

Modeling of deep currents in the Japan/East Sea

Modeling of deep currents in the Japan/East Sea Modeling of deep currents in the Japan/East Sea Olga Trusenkova V.I.Il ichev Pacific Oceanological Institute, FEB RAS Vladivostok, Russia PICES 2014 Annual Meeting, 16-26 October 2014, Korea, Yeosu Deep

More information

GEOCHEMICAL TRACERS OF ARCTIC OCEAN CIRCULATION

GEOCHEMICAL TRACERS OF ARCTIC OCEAN CIRCULATION GEOCHEMICAL TRACERS OF ARCTIC OCEAN CIRCULATION Earth Sciences Division Lawrence Berkeley National Laboratory Fresh Water Cycle Maintains Stratification of Upper Arctic Ocean Stably stratified surface

More information

Outline of 4 Lectures

Outline of 4 Lectures Outline of 4 Lectures 1. Sept. 17, 2008: TC best track definition and datasets, global distribution of TCs; Review of history of meteorological satellites, introducing different orbits, scanning patterns,

More information

ECMWF: Weather and Climate Dynamical Forecasts

ECMWF: Weather and Climate Dynamical Forecasts ECMWF: Weather and Climate Dynamical Forecasts Medium-Range (0-day) Partial coupling Extended + Monthly Fully coupled Seasonal Forecasts Fully coupled Atmospheric model Atmospheric model Wave model Wave

More information

Sea Level Variability in the Western North Pacific during the 20th Century

Sea Level Variability in the Western North Pacific during the 20th Century Sea Level Variability in the Western North Pacific during the 20th Century Yoshi N. Sasaki (sasakiyo@sci.hokudai.ac.jp), R. Washizu, S. Minobe Hokkaido University, Japan T. Yasuda: Japan Meteorological

More information

Polar Portal Season Report 2013

Polar Portal Season Report 2013 Polar Portal Season Report 2013 All in all, 2013 has been a year with large melting from both the Greenland Ice Sheet and the Arctic sea ice but not nearly as large as the record-setting year of 2012.

More information

Observed rate of loss of Arctic ice extent is faster than IPCC AR4 predictions

Observed rate of loss of Arctic ice extent is faster than IPCC AR4 predictions When will Summer Arctic Sea Ice Disappear? Wieslaw Maslowski Naval Postgraduate School Collaborators: Jaclyn Clement Kinney, Andrew Miller, Terry McNamara, John Whelan - Naval Postgraduate School Jay Zwally

More information

Impacts of Climate Change on Autumn North Atlantic Wave Climate

Impacts of Climate Change on Autumn North Atlantic Wave Climate Impacts of Climate Change on Autumn North Atlantic Wave Climate Will Perrie, Lanli Guo, Zhenxia Long, Bash Toulany Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS Abstract

More information

Evolution of the Mercator Océan system, main components for reanalysis and forecast

Evolution of the Mercator Océan system, main components for reanalysis and forecast Evolution of the Mercator Océan system, main components for reanalysis and forecast Y. Drillet, J.M. Lellouche, O. Le Galloudec, M. Drévillon, G. Garric, R. Bourdallé- Badie, C. Bricaud, J. Chanut, G.

More information

Presentation of met.no s experience and expertise related to high resolution reanalysis

Presentation of met.no s experience and expertise related to high resolution reanalysis Presentation of met.no s experience and expertise related to high resolution reanalysis Oyvind Saetra, Ole Einar Tveito, Harald Schyberg and Lars Anders Breivik Norwegian Meteorological Institute Daily

More information

Performance of a 23 years TOPAZ reanalysis

Performance of a 23 years TOPAZ reanalysis Performance of a 23 years TOPAZ reanalysis L. Bertino, F. Counillon, J. Xie,, NERSC LOM meeting, Copenhagen, 2 nd -4 th June 2015 Outline Presentation of the TOPAZ4 system Choice of modeling and assimilation

More information

Sensitivity to the PBL and convective schemes in forecasts with CAM along the Pacific Cross-section

Sensitivity to the PBL and convective schemes in forecasts with CAM along the Pacific Cross-section Sensitivity to the PBL and convective schemes in forecasts with CAM along the Pacific Cross-section Cécile Hannay, Jeff Kiehl, Dave Williamson, Jerry Olson, Jim Hack, Richard Neale and Chris Bretherton*

More information

Arne Biastoch Helmholtz Centre for Ocean Research Kiel. Modelling the Agulhas Current and its Coupling with the Atlantic Circulation

Arne Biastoch Helmholtz Centre for Ocean Research Kiel. Modelling the Agulhas Current and its Coupling with the Atlantic Circulation Arne Biastoch Helmholtz Centre for Ocean Research Kiel Modelling the Agulhas Current and its Coupling with the Atlantic Circulation The Agulhas System as a Key Region of the Global Oceanic Circulation

More information

Léo Siqueira Ph.D. Meteorology and Physical Oceanography

Léo Siqueira Ph.D. Meteorology and Physical Oceanography Léo Siqueira Ph.D. Meteorology and Physical Oceanography Modular Ocean Model (Griffies 2009) from GFDL version MOM4p1: Includes the Sea Ice Simulator (SIS) built-in ice model (Winton 2000). Includes TOPAZ

More information

Inter-linkage case study in Pakistan

Inter-linkage case study in Pakistan 7 th GEOSS Asia Pacific Symposium GEOSS AWCI Parallel Session: 26-28 May, 2014, Tokyo, Japan Inter-linkage case study in Pakistan Snow and glaciermelt runoff modeling in Upper Indus Basin of Pakistan Maheswor

More information

Winter Forecast for GPC Tokyo. Shotaro TANAKA Tokyo Climate Center (TCC) Japan Meteorological Agency (JMA)

Winter Forecast for GPC Tokyo. Shotaro TANAKA Tokyo Climate Center (TCC) Japan Meteorological Agency (JMA) Winter Forecast for 2013 2014 GPC Tokyo Shotaro TANAKA Tokyo Climate Center (TCC) Japan Meteorological Agency (JMA) NEACOF 5, October 29 November 1, 2013 1 Outline 1. Numerical prediction 2. Interannual

More information

Development of Super High Resolution Global and Regional Climate Models

Development of Super High Resolution Global and Regional Climate Models Development of Super High Resolution Global and Regional Climate Models Project Representative Akira Noda Meteorological Research Institute Authors Akira Noda 1, Shoji Kusunoki 1 and Masanori Yoshizaki

More information

Sea Ice Forecast Verification in the Canadian Global Ice Ocean Prediction System

Sea Ice Forecast Verification in the Canadian Global Ice Ocean Prediction System Sea Ice Forecast Verification in the Canadian Global Ice Ocean Prediction System G Smith 1, F Roy 2, M Reszka 2, D Surcel Colan, Z He 1, J-M Belanger 1, S Skachko 3, Y Liu 3, F Dupont 2, J-F Lemieux 1,

More information

Using Arctic Ocean Color Data in ocean-sea ice-biogeochemistry seasonal forecasting systems

Using Arctic Ocean Color Data in ocean-sea ice-biogeochemistry seasonal forecasting systems Using Arctic Ocean Color Data in ocean-sea ice-biogeochemistry seasonal forecasting systems Matthieu Chevallier 1 The POLARIS project David Salas y Mélia 1, Roland Séférian 1, Marion Gehlen 2, Gilles Garric

More information

CAM Tutorial. Sea Ice Modeling 31 July 2009 David Bailey and Marika Holland, NCAR

CAM Tutorial. Sea Ice Modeling 31 July 2009 David Bailey and Marika Holland, NCAR CAM Tutorial Sea Ice Modeling 31 July 2009 David Bailey and Marika Holland, NCAR Sea ice influences in the climate system Surface albedo in March > 0.8 < 0.1 Ice-Ocean Freshwater Exchange Contrasting the

More information

1 What Is Climate? TAKE A LOOK 2. Explain Why do areas near the equator tend to have high temperatures?

1 What Is Climate? TAKE A LOOK 2. Explain Why do areas near the equator tend to have high temperatures? CHAPTER 17 1 What Is Climate? SECTION Climate BEFORE YOU READ After you read this section, you should be able to answer these questions: What is climate? What factors affect climate? How do climates differ

More information

The Beaufort Gyre: Models, Observations, & Truth

The Beaufort Gyre: Models, Observations, & Truth The Beaufort Gyre: Models, Observations, & Truth Michael Steele, Jinlun Zhang, & Wendy Ermold PSC / APL / U of WA Seattle WA 7 th AOMIP workshop GFDL, Princeton, NJ June 14-15, 2004 Abstract We have performed

More information

Arctic sea ice response to wind stress variations

Arctic sea ice response to wind stress variations JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004jc002678, 2005 Arctic sea ice response to wind stress variations Eiji Watanabe and Hiroyasu Hasumi Center for Climate System Research, University

More information

NOAA Snow Map Climate Data Record Generated at Rutgers

NOAA Snow Map Climate Data Record Generated at Rutgers NOAA Snow Map Climate Data Record Generated at Rutgers David A. Robinson Rutgers University Piscataway, NJ Snow Watch 2013 Downsview, Ontario January 29, 2013 December 2012 snow extent departures Motivation

More information

M. Ballarotta 1, L. Brodeau 1, J. Brandefelt 2, P. Lundberg 1, and K. Döös 1. This supplementary part includes the Figures S1 to S16 and Table S1.

M. Ballarotta 1, L. Brodeau 1, J. Brandefelt 2, P. Lundberg 1, and K. Döös 1. This supplementary part includes the Figures S1 to S16 and Table S1. Supplementary Information: Last Glacial Maximum World-Ocean simulations at eddy-permitting and coarse resolutions: Do eddies contribute to a better consistency between models and paleo-proxies? M. Ballarotta

More information

Climate Change Impacts on the Marine Environment

Climate Change Impacts on the Marine Environment Climate Change Impacts on the Marine Environment Ken Ridgway CSIRO Marine and Atmospheric Research Wealth from Oceans National Research Flagship www.csiro.au Acknowledgements Jeff Dunn, John Church, Katy

More information

John Kindle. Sergio derada Igor Shulman Ole Martin Smedstad Stephanie Anderson. Data Assimilation in Coastal Modeing April

John Kindle. Sergio derada Igor Shulman Ole Martin Smedstad Stephanie Anderson. Data Assimilation in Coastal Modeing April John Kindle Sergio derada Igor Shulman Ole Martin Smedstad Stephanie Anderson Data Assimilation in Coastal Modeing April 3 2007 MODELS Motivation: Global->Coastal Real-Time Regional Coastal Models Global

More information

Record low sea ice concentration in the central Arctic during the summer of Jinping Zhao Ocean University of China

Record low sea ice concentration in the central Arctic during the summer of Jinping Zhao Ocean University of China Record low sea ice concentration in the central Arctic during the summer of 2010 Jinping Zhao Ocean University of China Expedition to the north pole in 1995 Sea ice retreat in the Arctic 3 Replacement

More information

Climate Prediction Center Research Interests/Needs

Climate Prediction Center Research Interests/Needs Climate Prediction Center Research Interests/Needs 1 Outline Operational Prediction Branch research needs Operational Monitoring Branch research needs New experimental products at CPC Background on CPC

More information

ATMOSPHERIC MODELLING. GEOG/ENST 3331 Lecture 9 Ahrens: Chapter 13; A&B: Chapters 12 and 13

ATMOSPHERIC MODELLING. GEOG/ENST 3331 Lecture 9 Ahrens: Chapter 13; A&B: Chapters 12 and 13 ATMOSPHERIC MODELLING GEOG/ENST 3331 Lecture 9 Ahrens: Chapter 13; A&B: Chapters 12 and 13 Agenda for February 3 Assignment 3: Due on Friday Lecture Outline Numerical modelling Long-range forecasts Oscillations

More information

Evaluation of a Low cost Drifting Buoy equipped with a Sonic Anemometer

Evaluation of a Low cost Drifting Buoy equipped with a Sonic Anemometer Evaluation of a Low cost Drifting Buoy equipped with a Sonic Anemometer Chris Marshall Environment Canada National Manager of Marine Monitoring Findings first presented at CMOS Conference, Montreal by

More information

SEA ICE PREDICTION NETWORK (SIPN) Pan-Arctic Sea Ice Outlook Core Contributions June 2015 Report

SEA ICE PREDICTION NETWORK (SIPN) Pan-Arctic Sea Ice Outlook Core Contributions June 2015 Report SEA ICE PREDICTION NETWORK (SIPN) Pan-Arctic Sea Ice Outlook Core Contributions June 2015 Report *REQUIRED 1. *Contributor Name(s)/Group how you would like your contribution to be labeled in the report

More information

Chapter outline. Reference 12/13/2016

Chapter outline. Reference 12/13/2016 Chapter 2. observation CC EST 5103 Climate Change Science Rezaul Karim Environmental Science & Technology Jessore University of science & Technology Chapter outline Temperature in the instrumental record

More information

ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY. Lecture 2

ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY. Lecture 2 ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY Lecture 2 Ocean basins and relation to climate Learning objectives: (1)What are the similarities and differences among different ocean basins? (2) How does

More information

Moisture transport to Syowa Station and Dome Fuji Station, Antarctica

Moisture transport to Syowa Station and Dome Fuji Station, Antarctica Session 5: Science Using Ground-Based and Satellite Measurements Moisture transport to Syowa Station and Dome Fuji Station, Antarctica Kazue Suzuki, Takashi Yamanouchi, Naohiko Hirasawa and Hideaki Motoyama

More information

Forecasting. Theory Types Examples

Forecasting. Theory Types Examples Forecasting Theory Types Examples How Good Are Week Out Weather Forecasts? For forecasts greater than nine days out, weather forecasters do WORSE than the climate average forecast. Why is there predictability

More information

OCN/ATM/ESS 587. Ocean circulation, dynamics and thermodynamics.

OCN/ATM/ESS 587. Ocean circulation, dynamics and thermodynamics. OCN/ATM/ESS 587 Ocean circulation, dynamics and thermodynamics. Equation of state for seawater General T/S properties of the upper ocean Heat balance of the upper ocean Upper ocean circulation Deep circulation

More information

Desertification in the Aral Sea Region: A study of the natural and Anthropogenic Impacts

Desertification in the Aral Sea Region: A study of the natural and Anthropogenic Impacts EU Inco-Copernicus Program: The Aral-Kum Project Desertification in the Aral Sea Region: A study of the natural and Anthropogenic Impacts Contract number : ICA2-CT-2000-10023 Final objective of the project

More information

Multi-century climate integrations at NOC

Multi-century climate integrations at NOC Multi-century climate integrations at NOC Alex Megann, Adam Blaker and Adrian New Marine Systems Modelling National Oceanography Centre, Southampton, UK LOM, Ann Arbor, May 2013 Multi-century climate integrations

More information

Lecture 7: The Monash Simple Climate

Lecture 7: The Monash Simple Climate Climate of the Ocean Lecture 7: The Monash Simple Climate Model Dr. Claudia Frauen Leibniz Institute for Baltic Sea Research Warnemünde (IOW) claudia.frauen@io-warnemuende.de Outline: Motivation The GREB

More information

Improving numerical sea ice predictions in the Arctic Ocean by data assimilation using satellite observations

Improving numerical sea ice predictions in the Arctic Ocean by data assimilation using satellite observations Okhotsk Sea and Polar Oceans Research 1 (2017) 7-11 Okhotsk Sea and Polar Oceans Research Association Article Improving numerical sea ice predictions in the Arctic Ocean by data assimilation using satellite

More information

SPECIAL PROJECT PROGRESS REPORT

SPECIAL PROJECT PROGRESS REPORT SPECIAL PROJECT PROGRESS REPORT Reporting year 2015 Project Title: Potential sea-ice predictability with a high resolution Arctic sea ice-ocean model Computer Project Account: Principal Investigator(s):

More information

Activity #2 - Major Ocean Surface Currents

Activity #2 - Major Ocean Surface Currents Activity #2 - Major Ocean Surface Currents Concepts # 3 & 6 # 3 Atmospheric cells and ocean gyres redistribute heat from low to high latitudes, which influences climate, weather, and ocean temperature.

More information

Interannual Variations of Arctic Cloud Types:

Interannual Variations of Arctic Cloud Types: Interannual Variations of Arctic Cloud Types: Relationships with Sea Ice and Surface Temperature Ryan Eastman Stephen Warren University of Washington Department of Atmospheric Sciences Changes in Arctic

More information

Oceanography Quiz 2. Multiple Choice Identify the choice that best completes the statement or answers the question.

Oceanography Quiz 2. Multiple Choice Identify the choice that best completes the statement or answers the question. Oceanography Quiz 2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The highest and lowest tides are known as the spring tides. When do these occur? a.

More information

Sea Ice Motion: Physics and Observations Ron Kwok Jet Propulsion Laboratory California Institute of Technology, Pasadena, CA

Sea Ice Motion: Physics and Observations Ron Kwok Jet Propulsion Laboratory California Institute of Technology, Pasadena, CA Sea Ice Motion: Physics and Observations Ron Kwok Jet Propulsion Laboratory California Institute of Technology, Pasadena, CA 7 th ESA Earth Observation Summer School ESRIN, Frascati, Italy 4-14 August

More information