Be#er Generaliza,on with Forecasts. Tom Schaul Mark Ring

Size: px
Start display at page:

Download "Be#er Generaliza,on with Forecasts. Tom Schaul Mark Ring"

Transcription

1 Be#er Generaliza,on with Forecasts Tom Schaul Mark Ring

2 Which Representa,ons? Type: Feature- based representa,ons (state = feature vector) Quality 1: Usefulness for linear policies Quality 2: Generaliza,on Be#er Generaliza,on with Forecasts Tom Schaul 29/04/ /20

3 ü Mo,va,on Representa,on Outline Predic,ve State Representa,ons General Value Func,ons, aka Forecasts Simplified subclass of Forecasts Evalua,ng Generaliza,on Results 3 /20

4 Predic,ve State Representa,ons Ques,on/test: Will I hit the wall if I take a step le\ and then a step back? Expected answer = feature Defined as a set of testable predic,ons Observable quan,,es (wall sensor) Condi,onal on ac,on sequence (step le\, step back) Open- loop (ends at t+2) 4 /20

5 General Value Func,ons = A\er how many steps will I encounter a door if I head to the the wall in front of me, and follow it clockwise? General Value Func,ons More general ques,ons Closed- loop: arbitrary length sequences We call them Forecasts 5 /20

6 Forecast Components Condi,onal on an op,on: following a policy (straight+clockwise) un,l termina,on (door) I: states of interest (s): termina,on probability : policy Target value (expecta,on): any func,on of the state, cumula,ve c(s): accumulated value before termina,on z(s): final value upon termina,on in s 6 /20

7 Simplified Forecasts Constant components: c(s) = 0 I = all states Defined by only a target set of states T z(s): 1 if s in T, 0 elsewhere (s): 1 if s in T, 1- elsewhere : implicitly defined: maximizes the expected z à Only one free parameter: T à Output: feature vector (s) 7 /20

8 Outline ü Mo,va,on ü Representa,ons Evalua,ng Generaliza,on Ideal vs. es,mated forecast values Canonical forecast ordering Quality measures Results 8 /20

9 Dis,nguish: Forecast Values Forecast defini,on ( ques,on ) From target set T Ideal forecast value (true answer ) Forecast value es,mate (approxima,on) can be learned Focus: quality of representa,on Use ideal forecast values as features We can ignore the learning issues (i.e., we can cheat!) Namely: policy itera,on with transi,on model 9 /20

10 Forecast Genera,on (1) Canonical (breadth- first) exhaus,ve genera,on First layer based on observa,ons Forecasts can build upon other forecasts Unique ordering (lexicographic,e- breaking) 10 /20

11 Forecast Genera,on (2) 1. Ini,ally: observa,ons define target sets T 2. Compute ideal forecast values from T Cheat 1: transi,on model (infinite experience) Cheat 2: knowledge of state 3. Threshold for new candidate T sets 4. (Ignore redundant sets) 5. Go to step 2, un,l no T is le\ 11 /20

12 Evalua,on of Feature Sets Quality measures: 1. Op,mal policy using linear func,on approxima,on (LFA) on features (LSTD+PI) 2. Distance between es,mated external value V (using LFA on features) and true V* (MSE) Generaliza,on: consider random subset of states (e.g. 50%) train the LFA based on this limited experience see how that V generalizes to the remaining states 12 /20

13 ü Mo,va,on ü Representa,ons Outline ü Evalua,ng Generaliza,on Results Two mazes Simplis,c agent 1 binary observa,on (wall sensor) 1 binary ac,on (forward/rotate le\) Comparison to PSRs as baseline 13 /20

14 14 /20 4- Arm- Maze: PSRs

15 15 /20 4- Arm- Maze: Forecasts

16 16 /20 7- Rooms- Maze: PSRs

17 17 /20 7- Room- Maze: Forecasts

18 18 /20 PSR Features

19 19 /20 Forecast Features

20 Summary Forecasts as representa,ons: Temporal abstrac,on (closed- loop) Simple structure Useful features for linear evalua,on and control Good generaliza,on with linear FA Future work 1. Removing the cheats: using learned es,mates instead of ideal forecast values 2. Smarter forecast genera,on than exhaus,ve 20 /20

CS 6140: Machine Learning Spring What We Learned Last Week 2/26/16

CS 6140: Machine Learning Spring What We Learned Last Week 2/26/16 Logis@cs CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa@on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Sign

More information

CSCI 360 Introduc/on to Ar/ficial Intelligence Week 2: Problem Solving and Op/miza/on. Professor Wei-Min Shen Week 8.1 and 8.2

CSCI 360 Introduc/on to Ar/ficial Intelligence Week 2: Problem Solving and Op/miza/on. Professor Wei-Min Shen Week 8.1 and 8.2 CSCI 360 Introduc/on to Ar/ficial Intelligence Week 2: Problem Solving and Op/miza/on Professor Wei-Min Shen Week 8.1 and 8.2 Status Check Projects Project 2 Midterm is coming, please do your homework!

More information

CSCI 360 Introduc/on to Ar/ficial Intelligence Week 2: Problem Solving and Op/miza/on

CSCI 360 Introduc/on to Ar/ficial Intelligence Week 2: Problem Solving and Op/miza/on CSCI 360 Introduc/on to Ar/ficial Intelligence Week 2: Problem Solving and Op/miza/on Professor Wei-Min Shen Week 13.1 and 13.2 1 Status Check Extra credits? Announcement Evalua/on process will start soon

More information

Bias/variance tradeoff, Model assessment and selec+on

Bias/variance tradeoff, Model assessment and selec+on Applied induc+ve learning Bias/variance tradeoff, Model assessment and selec+on Pierre Geurts Department of Electrical Engineering and Computer Science University of Liège October 29, 2012 1 Supervised

More information

Bellman s Curse of Dimensionality

Bellman s Curse of Dimensionality Bellman s Curse of Dimensionality n- dimensional state space Number of states grows exponen

More information

CSE 473: Ar+ficial Intelligence

CSE 473: Ar+ficial Intelligence CSE 473: Ar+ficial Intelligence Hidden Markov Models Luke Ze@lemoyer - University of Washington [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188

More information

CSE 473: Ar+ficial Intelligence. Probability Recap. Markov Models - II. Condi+onal probability. Product rule. Chain rule.

CSE 473: Ar+ficial Intelligence. Probability Recap. Markov Models - II. Condi+onal probability. Product rule. Chain rule. CSE 473: Ar+ficial Intelligence Markov Models - II Daniel S. Weld - - - University of Washington [Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188

More information

Last Lecture Recap UVA CS / Introduc8on to Machine Learning and Data Mining. Lecture 3: Linear Regression

Last Lecture Recap UVA CS / Introduc8on to Machine Learning and Data Mining. Lecture 3: Linear Regression UVA CS 4501-001 / 6501 007 Introduc8on to Machine Learning and Data Mining Lecture 3: Linear Regression Yanjun Qi / Jane University of Virginia Department of Computer Science 1 Last Lecture Recap q Data

More information

STAD68: Machine Learning

STAD68: Machine Learning STAD68: Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! h0p://www.cs.toronto.edu/~rsalakhu/ Lecture 1 Evalua;on 3 Assignments worth 40%. Midterm worth 20%. Final

More information

Outline. Logic. Knowledge bases. Wumpus world characteriza/on. Wumpus World PEAS descrip/on. A simple knowledge- based agent

Outline. Logic. Knowledge bases. Wumpus world characteriza/on. Wumpus World PEAS descrip/on. A simple knowledge- based agent Outline Logic Dr. Melanie Mar/n CS 4480 October 8, 2012 Based on slides from hap://aima.eecs.berkeley.edu/2nd- ed/slides- ppt/ Knowledge- based agents Wumpus world Logic in general - models and entailment

More information

CS 6140: Machine Learning Spring What We Learned Last Week. Survey 2/26/16. VS. Model

CS 6140: Machine Learning Spring What We Learned Last Week. Survey 2/26/16. VS. Model Logis@cs CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa@on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Assignment

More information

CS 6140: Machine Learning Spring 2016

CS 6140: Machine Learning Spring 2016 CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa?on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Logis?cs Assignment

More information

CSE 473: Ar+ficial Intelligence. Example. Par+cle Filters for HMMs. An HMM is defined by: Ini+al distribu+on: Transi+ons: Emissions:

CSE 473: Ar+ficial Intelligence. Example. Par+cle Filters for HMMs. An HMM is defined by: Ini+al distribu+on: Transi+ons: Emissions: CSE 473: Ar+ficial Intelligence Par+cle Filters for HMMs Daniel S. Weld - - - University of Washington [Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All

More information

Sta$s$cal sequence recogni$on

Sta$s$cal sequence recogni$on Sta$s$cal sequence recogni$on Determinis$c sequence recogni$on Last $me, temporal integra$on of local distances via DP Integrates local matches over $me Normalizes $me varia$ons For cts speech, segments

More information

Predicate abstrac,on and interpola,on. Many pictures and examples are borrowed from The So'ware Model Checker BLAST presenta,on.

Predicate abstrac,on and interpola,on. Many pictures and examples are borrowed from The So'ware Model Checker BLAST presenta,on. Predicate abstrac,on and interpola,on Many pictures and examples are borrowed from The So'ware Model Checker BLAST presenta,on. Outline. Predicate abstrac,on the idea in pictures 2. Counter- example guided

More information

Introduc)on to Ar)ficial Intelligence

Introduc)on to Ar)ficial Intelligence Introduc)on to Ar)ficial Intelligence Lecture 13 Approximate Inference CS/CNS/EE 154 Andreas Krause Bayesian networks! Compact representa)on of distribu)ons over large number of variables! (OQen) allows

More information

Least Mean Squares Regression. Machine Learning Fall 2017

Least Mean Squares Regression. Machine Learning Fall 2017 Least Mean Squares Regression Machine Learning Fall 2017 1 Lecture Overview Linear classifiers What func?ons do linear classifiers express? Least Squares Method for Regression 2 Where are we? Linear classifiers

More information

PSPACE, NPSPACE, L, NL, Savitch's Theorem. More new problems that are representa=ve of space bounded complexity classes

PSPACE, NPSPACE, L, NL, Savitch's Theorem. More new problems that are representa=ve of space bounded complexity classes PSPACE, NPSPACE, L, NL, Savitch's Theorem More new problems that are representa=ve of space bounded complexity classes Outline for today How we'll count space usage Space bounded complexity classes New

More information

Deriva'on of The Kalman Filter. Fred DePiero CalPoly State University EE 525 Stochas'c Processes

Deriva'on of The Kalman Filter. Fred DePiero CalPoly State University EE 525 Stochas'c Processes Deriva'on of The Kalman Filter Fred DePiero CalPoly State University EE 525 Stochas'c Processes KF Uses State Predic'ons KF es'mates the state of a system Example Measure: posi'on State: [ posi'on velocity

More information

Machine Learning & Data Mining CS/CNS/EE 155. Lecture 8: Hidden Markov Models

Machine Learning & Data Mining CS/CNS/EE 155. Lecture 8: Hidden Markov Models Machine Learning & Data Mining CS/CNS/EE 155 Lecture 8: Hidden Markov Models 1 x = Fish Sleep y = (N, V) Sequence Predic=on (POS Tagging) x = The Dog Ate My Homework y = (D, N, V, D, N) x = The Fox Jumped

More information

Machine Learning & Data Mining CS/CNS/EE 155. Lecture 11: Hidden Markov Models

Machine Learning & Data Mining CS/CNS/EE 155. Lecture 11: Hidden Markov Models Machine Learning & Data Mining CS/CNS/EE 155 Lecture 11: Hidden Markov Models 1 Kaggle Compe==on Part 1 2 Kaggle Compe==on Part 2 3 Announcements Updated Kaggle Report Due Date: 9pm on Monday Feb 13 th

More information

CSE 473: Ar+ficial Intelligence. Hidden Markov Models. Bayes Nets. Two random variable at each +me step Hidden state, X i Observa+on, E i

CSE 473: Ar+ficial Intelligence. Hidden Markov Models. Bayes Nets. Two random variable at each +me step Hidden state, X i Observa+on, E i CSE 473: Ar+ficial Intelligence Bayes Nets Daniel Weld [Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at hnp://ai.berkeley.edu.]

More information

Mixture Models. Michael Kuhn

Mixture Models. Michael Kuhn Mixture Models Michael Kuhn 2017-8-26 Objec

More information

Lecture 6 Isospin. What is Isospin? Rota4ons in Isospin space Reac4on rates Quarks and Isospin Gell- Mann- Nishijima formula FK

Lecture 6 Isospin. What is Isospin? Rota4ons in Isospin space Reac4on rates Quarks and Isospin Gell- Mann- Nishijima formula FK Lecture 6 Isospin What is Isospin? Rota4ons in Isospin space Reac4on rates Quarks and Isospin Gell- Mann- Nishijima formula FK7003 08 SU() Isospin Isospin introduced based on the observa4on that: m p =

More information

Slides modified from: PATTERN RECOGNITION AND MACHINE LEARNING CHRISTOPHER M. BISHOP

Slides modified from: PATTERN RECOGNITION AND MACHINE LEARNING CHRISTOPHER M. BISHOP Slides modified from: PATTERN RECOGNITION AND MACHINE LEARNING CHRISTOPHER M. BISHOP Predic?ve Distribu?on (1) Predict t for new values of x by integra?ng over w: where The Evidence Approxima?on (1) The

More information

Ensemble of Climate Models

Ensemble of Climate Models Ensemble of Climate Models Claudia Tebaldi Climate Central and Department of Sta7s7cs, UBC Reto Knu>, Reinhard Furrer, Richard Smith, Bruno Sanso Outline Mul7 model ensembles (MMEs) a descrip7on at face

More information

Interes'ng- Phrase Mining for Ad- Hoc Text Analy'cs

Interes'ng- Phrase Mining for Ad- Hoc Text Analy'cs Interes'ng- Phrase Mining for Ad- Hoc Text Analy'cs Klaus Berberich (kberberi@mpi- inf.mpg.de) Joint work with: Srikanta Bedathur, Jens DiIrich, Nikos Mamoulis, and Gerhard Weikum (originally presented

More information

The BCS Model. Sara Changizi. This presenta5on closely follows parts of chapter 6 in Ring & Schuck The nuclear many body problem.

The BCS Model. Sara Changizi. This presenta5on closely follows parts of chapter 6 in Ring & Schuck The nuclear many body problem. The BCS Model Sara Changizi This presenta5on closely follows parts of chapter 6 in Ring & Schuc The nuclear many body problem. Outline Introduc5on to pairing Essen5al experimental facts The BCS model Pure

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 1 Evalua:on

More information

COMP 562: Introduction to Machine Learning

COMP 562: Introduction to Machine Learning COMP 562: Introduction to Machine Learning Lecture 20 : Support Vector Machines, Kernels Mahmoud Mostapha 1 Department of Computer Science University of North Carolina at Chapel Hill mahmoudm@cs.unc.edu

More information

Computer Vision. Pa0ern Recogni4on Concepts Part I. Luis F. Teixeira MAP- i 2012/13

Computer Vision. Pa0ern Recogni4on Concepts Part I. Luis F. Teixeira MAP- i 2012/13 Computer Vision Pa0ern Recogni4on Concepts Part I Luis F. Teixeira MAP- i 2012/13 What is it? Pa0ern Recogni4on Many defini4ons in the literature The assignment of a physical object or event to one of

More information

ECE 8440 Unit 17. Parks- McClellan Algorithm

ECE 8440 Unit 17. Parks- McClellan Algorithm Parks- McClellan Algorithm ECE 8440 Unit 17 The Parks- McClellan Algorithm is a computer method to find the unit sample response h(n for an op=mum FIR filter that sa=sfies the condi=ons of the Alterna=on

More information

Extreme value sta-s-cs of smooth Gaussian random fields in cosmology

Extreme value sta-s-cs of smooth Gaussian random fields in cosmology Extreme value sta-s-cs of smooth Gaussian random fields in cosmology Stéphane Colombi Ins2tut d Astrophysique de Paris with O. Davis, J. Devriendt, S. Prunet, J. Silk The large scale galaxy distribu-on

More information

Par$cle Filters Part I: Theory. Peter Jan van Leeuwen Data- Assimila$on Research Centre DARC University of Reading

Par$cle Filters Part I: Theory. Peter Jan van Leeuwen Data- Assimila$on Research Centre DARC University of Reading Par$cle Filters Part I: Theory Peter Jan van Leeuwen Data- Assimila$on Research Centre DARC University of Reading Reading July 2013 Why Data Assimila$on Predic$on Model improvement: - Parameter es$ma$on

More information

Numerical Methods in Biomedical Engineering

Numerical Methods in Biomedical Engineering Numerical Methods in Biomedical Engineering Lecture s website for updates on lecture materials: h5p://9nyurl.com/m4frahb Individual and group homework Individual and group midterm and final projects (Op?onal)

More information

CSE446: Linear Regression Regulariza5on Bias / Variance Tradeoff Winter 2015

CSE446: Linear Regression Regulariza5on Bias / Variance Tradeoff Winter 2015 CSE446: Linear Regression Regulariza5on Bias / Variance Tradeoff Winter 2015 Luke ZeElemoyer Slides adapted from Carlos Guestrin Predic5on of con5nuous variables Billionaire says: Wait, that s not what

More information

Linear Regression with mul2ple variables. Mul2ple features. Machine Learning

Linear Regression with mul2ple variables. Mul2ple features. Machine Learning Linear Regression with mul2ple variables Mul2ple features Machine Learning Mul4ple features (variables). Size (feet 2 ) Price ($1000) 2104 460 1416 232 1534 315 852 178 Mul4ple features (variables). Size

More information

Lecture 6 Isospin. What is Isospin? Rota4ons in Isospin space Reac4on rates Quarks and Isospin Heavier quarks FK

Lecture 6 Isospin. What is Isospin? Rota4ons in Isospin space Reac4on rates Quarks and Isospin Heavier quarks FK Lecture 6 Isospin What is Isospin? Rota4ons in Isospin space Reac4on rates Quarks and Isospin Heavier quarks FK7003 33 SU() Isospin Isospin introduced based on the observa4on that: m p = 0.9383 GeV and

More information

Logis&c Regression. Robot Image Credit: Viktoriya Sukhanova 123RF.com

Logis&c Regression. Robot Image Credit: Viktoriya Sukhanova 123RF.com Logis&c Regression These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others who made their course materials freely available online. Feel free to reuse or adapt these

More information

Outline. What is Machine Learning? Why Machine Learning? 9/29/08. Machine Learning Approaches to Biological Research: Bioimage Informa>cs and Beyond

Outline. What is Machine Learning? Why Machine Learning? 9/29/08. Machine Learning Approaches to Biological Research: Bioimage Informa>cs and Beyond Outline Machine Learning Approaches to Biological Research: Bioimage Informa>cs and Beyond Robert F. Murphy External Senior Fellow, Freiburg Ins>tute for Advanced Studies Ray and Stephanie Lane Professor

More information

Exponen'al func'ons and exponen'al growth. UBC Math 102

Exponen'al func'ons and exponen'al growth. UBC Math 102 Exponen'al func'ons and exponen'al growth Course Calendar: OSH 4 due by 12:30pm in MX 1111 You are here Coming up (next week) Group version of Quiz 3 distributed by email Group version of Quiz 3 due in

More information

Introduc)on to Ar)ficial Intelligence

Introduc)on to Ar)ficial Intelligence Introduc)on to Ar)ficial Intelligence Lecture 10 Probability CS/CNS/EE 154 Andreas Krause Announcements! Milestone due Nov 3. Please submit code to TAs! Grading: PacMan! Compiles?! Correct? (Will clear

More information

Temporal Models.

Temporal Models. Temporal Models www.cs.wisc.edu/~page/cs760/ Goals for the lecture (with thanks to Irene Ong, Stuart Russell and Peter Norvig, Jakob Rasmussen, Jeremy Weiss, Yujia Bao, Charles Kuang, Peggy Peissig, and

More information

Machine Learning and Data Mining. Linear regression. Prof. Alexander Ihler

Machine Learning and Data Mining. Linear regression. Prof. Alexander Ihler + Machine Learning and Data Mining Linear regression Prof. Alexander Ihler Supervised learning Notation Features x Targets y Predictions ŷ Parameters θ Learning algorithm Program ( Learner ) Change µ Improve

More information

The ultraviolet structure of N=8 supergravity at higher loops

The ultraviolet structure of N=8 supergravity at higher loops The ultraviolet structure of N=8 supergravity at higher loops based on work with Z. Bern, J.J. Carrasco, L. Dixon, H. Johanson Miami 2009 Discuss evidence of nontrivial cancella;ons in N=8 supergravity

More information

Experimental Designs for Planning Efficient Accelerated Life Tests

Experimental Designs for Planning Efficient Accelerated Life Tests Experimental Designs for Planning Efficient Accelerated Life Tests Kangwon Seo and Rong Pan School of Compu@ng, Informa@cs, and Decision Systems Engineering Arizona State University ASTR 2015, Sep 9-11,

More information

Least Square Es?ma?on, Filtering, and Predic?on: ECE 5/639 Sta?s?cal Signal Processing II: Linear Es?ma?on

Least Square Es?ma?on, Filtering, and Predic?on: ECE 5/639 Sta?s?cal Signal Processing II: Linear Es?ma?on Least Square Es?ma?on, Filtering, and Predic?on: Sta?s?cal Signal Processing II: Linear Es?ma?on Eric Wan, Ph.D. Fall 2015 1 Mo?va?ons If the second-order sta?s?cs are known, the op?mum es?mator is given

More information

Parallel Repetition of entangled games on the uniform distribution

Parallel Repetition of entangled games on the uniform distribution Parallel Repetition of entangled games on the uniform distribution André Chailloux, Scarpa Giannicola To cite this version: André Chailloux, Scarpa Giannicola. Parallel Repetition of entangled games on

More information

Predic've Analy'cs for Energy Systems State Es'ma'on

Predic've Analy'cs for Energy Systems State Es'ma'on 1 Predic've Analy'cs for Energy Systems State Es'ma'on Presenter: Team: Yingchen (YC) Zhang Na/onal Renewable Energy Laboratory (NREL) Andrey Bernstein, Rui Yang, Yu Xie, Anthony Florita, Changfu Li, ScoD

More information

Founda'ons of Large- Scale Mul'media Informa'on Management and Retrieval. Lecture #3 Machine Learning. Edward Chang

Founda'ons of Large- Scale Mul'media Informa'on Management and Retrieval. Lecture #3 Machine Learning. Edward Chang Founda'ons of Large- Scale Mul'media Informa'on Management and Retrieval Lecture #3 Machine Learning Edward Y. Chang Edward Chang Founda'ons of LSMM 1 Edward Chang Foundations of LSMM 2 Machine Learning

More information

Unsupervised Learning: K- Means & PCA

Unsupervised Learning: K- Means & PCA Unsupervised Learning: K- Means & PCA Unsupervised Learning Supervised learning used labeled data pairs (x, y) to learn a func>on f : X Y But, what if we don t have labels? No labels = unsupervised learning

More information

CS 4700: Foundations of Artificial Intelligence Ungraded Homework Solutions

CS 4700: Foundations of Artificial Intelligence Ungraded Homework Solutions CS 4700: Foundations of Artificial Intelligence Ungraded Homework Solutions 1. Neural Networks: a. There are 2 2n distinct Boolean functions over n inputs. Thus there are 16 distinct Boolean functions

More information

BITS F464: MACHINE LEARNING

BITS F464: MACHINE LEARNING BITS F464: MACHINE LEARNING Lecture-09: Concept Learning Dr. Kamlesh Tiwari Assistant Professor Department of Computer Science and Information Systems Engineering, BITS Pilani, Rajasthan-333031 INDIA Jan

More information

Other types of errors due to using a finite no. of bits: Round- off error due to rounding of products

Other types of errors due to using a finite no. of bits: Round- off error due to rounding of products ECE 8440 Unit 12 More on finite precision representa.ons (See sec.on 6.7) Already covered: quan.za.on error due to conver.ng an analog signal to a digital signal. 1 Other types of errors due to using a

More information

Reduced Models for Process Simula2on and Op2miza2on

Reduced Models for Process Simula2on and Op2miza2on Reduced Models for Process Simulaon and Opmizaon Yidong Lang, Lorenz T. Biegler and David Miller ESI annual meeng March, 0 Models are mapping Equaon set or Module simulators Input space Reduced model Surrogate

More information

Fundamentals of Data Assimila1on

Fundamentals of Data Assimila1on 014 GSI Community Tutorial NCAR Foothills Campus, Boulder, CO July 14-16, 014 Fundamentals of Data Assimila1on Milija Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University

More information

Parameter Es*ma*on: Cracking Incomplete Data

Parameter Es*ma*on: Cracking Incomplete Data Parameter Es*ma*on: Cracking Incomplete Data Khaled S. Refaat Collaborators: Arthur Choi and Adnan Darwiche Agenda Learning Graphical Models Complete vs. Incomplete Data Exploi*ng Data for Decomposi*on

More information

State Space Representa,ons and Search Algorithms

State Space Representa,ons and Search Algorithms State Space Representa,ons and Search Algorithms CS171, Fall 2016 Introduc,on to Ar,ficial Intelligence Prof. Alexander Ihler Reading: R&N 3.1-3.4 Architectures for Intelligence Search? Determine how to

More information

Graph structure learning for network inference

Graph structure learning for network inference Graph structure learning for network inference Sushmita Roy sroy@biostat.wisc.edu Computa9onal Network Biology Biosta2s2cs & Medical Informa2cs 826 Computer Sciences 838 hbps://compnetbiocourse.discovery.wisc.edu

More information

Streaming - 2. Bloom Filters, Distinct Item counting, Computing moments. credits:www.mmds.org.

Streaming - 2. Bloom Filters, Distinct Item counting, Computing moments. credits:www.mmds.org. Streaming - 2 Bloom Filters, Distinct Item counting, Computing moments credits:www.mmds.org http://www.mmds.org Outline More algorithms for streams: 2 Outline More algorithms for streams: (1) Filtering

More information

Numerical Methods in Physics

Numerical Methods in Physics Numerical Methods in Physics Numerische Methoden in der Physik, 515.421. Instructor: Ass. Prof. Dr. Lilia Boeri Room: PH 03 090 Tel: +43-316- 873 8191 Email Address: l.boeri@tugraz.at Room: TDK Seminarraum

More information

LBT for Procedural and Reac1ve Systems Part 2: Reac1ve Systems Basic Theory

LBT for Procedural and Reac1ve Systems Part 2: Reac1ve Systems Basic Theory LBT for Procedural and Reac1ve Systems Part 2: Reac1ve Systems Basic Theory Karl Meinke, karlm@kth.se School of Computer Science and Communica:on KTH Stockholm 0. Overview of the Lecture 1. Learning Based

More information

Lecture 3: Minimizing Large Sums. Peter Richtárik

Lecture 3: Minimizing Large Sums. Peter Richtárik Lecture 3: Minimizing Large Sums Peter Richtárik Graduate School in Systems, Op@miza@on, Control and Networks Belgium 2015 Mo@va@on: Machine Learning & Empirical Risk Minimiza@on Training Linear Predictors

More information

Basics of Linear Temporal Proper2es

Basics of Linear Temporal Proper2es Basics of Linear Temporal Proper2es Robert B. France State vs ac2on view Ac2on view abstracts out states; focus only on ac2on labels State view: focus only on states and the proposi2ons that are true in

More information

Seman&cs with Dense Vectors. Dorota Glowacka

Seman&cs with Dense Vectors. Dorota Glowacka Semancs with Dense Vectors Dorota Glowacka dorota.glowacka@ed.ac.uk Previous lectures: - how to represent a word as a sparse vector with dimensions corresponding to the words in the vocabulary - the values

More information

Core Theme: Evolu(on accts for unity/diversity of life

Core Theme: Evolu(on accts for unity/diversity of life Negative feedback A Enzyme 1 B Excess D blocks a step D D D C Enzyme 2 Enzyme 3 D (a) Negative feedback W Enzyme 4 Positive feedback + X Enzyme 5 Excess Z stimulates a step Z Z Z Y Enzyme 6 Z (b) Positive

More information

Finding Objects through Stochas4c Shortest Path Problems

Finding Objects through Stochas4c Shortest Path Problems /7/6 Finding Objects through Stochas4c Shortest Path Problems Manuela Veloso Thanks to Felipe Trevizan School of Computer Science Carnegie Mellon University PEL, Fall 206 CoBot: Autonomous Service Robot

More information

Sta$s$cal Significance Tes$ng In Theory and In Prac$ce

Sta$s$cal Significance Tes$ng In Theory and In Prac$ce Sta$s$cal Significance Tes$ng In Theory and In Prac$ce Ben Cartere8e University of Delaware h8p://ir.cis.udel.edu/ictir13tutorial Hypotheses and Experiments Hypothesis: Using an SVM for classifica$on will

More information

CSCI 360 Introduc/on to Ar/ficial Intelligence Week 2: Problem Solving and Op/miza/on. Instructor: Wei-Min Shen

CSCI 360 Introduc/on to Ar/ficial Intelligence Week 2: Problem Solving and Op/miza/on. Instructor: Wei-Min Shen CSCI 360 Introduc/on to Ar/ficial Intelligence Week 2: Problem Solving and Op/miza/on Instructor: Wei-Min Shen Today s Lecture Search Techniques (review & con/nue) Op/miza/on Techniques Home Work 1: descrip/on

More information

Classification. Chris Amato Northeastern University. Some images and slides are used from: Rob Platt, CS188 UC Berkeley, AIMA

Classification. Chris Amato Northeastern University. Some images and slides are used from: Rob Platt, CS188 UC Berkeley, AIMA Classification Chris Amato Northeastern University Some images and slides are used from: Rob Platt, CS188 UC Berkeley, AIMA Supervised learning Given: Training set {(xi, yi) i = 1 N}, given a labeled set

More information

Introduction to Particle Filters for Data Assimilation

Introduction to Particle Filters for Data Assimilation Introduction to Particle Filters for Data Assimilation Mike Dowd Dept of Mathematics & Statistics (and Dept of Oceanography Dalhousie University, Halifax, Canada STATMOS Summer School in Data Assimila5on,

More information

Computer Vision. Pa0ern Recogni4on Concepts. Luis F. Teixeira MAP- i 2014/15

Computer Vision. Pa0ern Recogni4on Concepts. Luis F. Teixeira MAP- i 2014/15 Computer Vision Pa0ern Recogni4on Concepts Luis F. Teixeira MAP- i 2014/15 Outline General pa0ern recogni4on concepts Classifica4on Classifiers Decision Trees Instance- Based Learning Bayesian Learning

More information

Data Prepara)on. Dino Pedreschi. Anna Monreale. Università di Pisa

Data Prepara)on. Dino Pedreschi. Anna Monreale. Università di Pisa Data Prepara)on Anna Monreale Dino Pedreschi Università di Pisa KDD Process Interpretation and Evaluation Data Consolidation Selection and Preprocessing Warehouse Data Mining Prepared Data p(x)=0.02 Patterns

More information

Exact data mining from in- exact data Nick Freris

Exact data mining from in- exact data Nick Freris Exact data mining from in- exact data Nick Freris Qualcomm, San Diego October 10, 2013 Introduc=on (1) Informa=on retrieval is a large industry.. Biology, finance, engineering, marke=ng, vision/graphics,

More information

Evalua&ng Snow- Albedo Feedback in Climate Models

Evalua&ng Snow- Albedo Feedback in Climate Models Evalua&ng Snow- Albedo Feedback in Climate Models Paul Kushner, Dept. of Physics, University of Toronto Collaborators: Chris Fletcher (U. Toronto) and Hongxu Zhao (Environment Canada) Richard Fernandes

More information

Sequential Feature Explanations for Anomaly Detection

Sequential Feature Explanations for Anomaly Detection Sequential Feature Explanations for Anomaly Detection Md Amran Siddiqui, Alan Fern, Thomas G. Die8erich and Weng-Keen Wong School of EECS Oregon State University Anomaly Detection Anomalies : points that

More information

Algorithms for NLP. Classifica(on III. Taylor Berg- Kirkpatrick CMU Slides: Dan Klein UC Berkeley

Algorithms for NLP. Classifica(on III. Taylor Berg- Kirkpatrick CMU Slides: Dan Klein UC Berkeley Algorithms for NLP Classifica(on III Taylor Berg- Kirkpatrick CMU Slides: Dan Klein UC Berkeley Objec(ve Func(ons What do we want from our weights? Depends! So far: minimize (training) errors: This is

More information

Molecular Programming Models. Based on notes by Dave Doty

Molecular Programming Models. Based on notes by Dave Doty Molecular Programming Models Based on notes by Dave Doty Outline Stable predicate decidability Stably computable predicates == semilinear predicates (and stably computable func

More information

Associa'on of U.S. tornado counts with the large- scale environment on monthly 'me- scales

Associa'on of U.S. tornado counts with the large- scale environment on monthly 'me- scales Associa'on of U.S. tornado counts with the large- scale environment on monthly 'me- scales Michael K. Tippe? 1, Adam H. Sobel 2,3 and Suzana J. Camargo 3 1 Interna)onal Research Ins)tute for Climate and

More information

Tsybakov noise adap/ve margin- based ac/ve learning

Tsybakov noise adap/ve margin- based ac/ve learning Tsybakov noise adap/ve margin- based ac/ve learning Aar$ Singh A. Nico Habermann Associate Professor NIPS workshop on Learning Faster from Easy Data II Dec 11, 2015 Passive Learning Ac/ve Learning (X j,?)

More information

Cse537 Ar*fficial Intelligence Short Review 1 for Midterm 2. Professor Anita Wasilewska Computer Science Department Stony Brook University

Cse537 Ar*fficial Intelligence Short Review 1 for Midterm 2. Professor Anita Wasilewska Computer Science Department Stony Brook University Cse537 Ar*fficial Intelligence Short Review 1 for Midterm 2 Professor Anita Wasilewska Computer Science Department Stony Brook University Data Mining Process Ques*ons: Describe and discuss all stages of

More information

Algorithms for NLP. Classifica(on III. Taylor Berg- Kirkpatrick CMU Slides: Dan Klein UC Berkeley

Algorithms for NLP. Classifica(on III. Taylor Berg- Kirkpatrick CMU Slides: Dan Klein UC Berkeley Algorithms for NLP Classifica(on III Taylor Berg- Kirkpatrick CMU Slides: Dan Klein UC Berkeley The Perceptron, Again Start with zero weights Visit training instances one by one Try to classify If correct,

More information

Unit 2. Projec.ons and Subspaces

Unit 2. Projec.ons and Subspaces Unit. Projec.ons and Subspaces Linear Algebra and Op.miza.on MSc Bioinforma.cs for Health Sciences Eduardo Eyras Pompeu Fabra University 8-9 hkp://comprna.upf.edu/courses/master_mat/ Inner product (scalar

More information

An Introduc+on to Sta+s+cs and Machine Learning for Quan+ta+ve Biology. Anirvan Sengupta Dept. of Physics and Astronomy Rutgers University

An Introduc+on to Sta+s+cs and Machine Learning for Quan+ta+ve Biology. Anirvan Sengupta Dept. of Physics and Astronomy Rutgers University An Introduc+on to Sta+s+cs and Machine Learning for Quan+ta+ve Biology Anirvan Sengupta Dept. of Physics and Astronomy Rutgers University Why Do We Care? Necessity in today s labs Principled approach:

More information

Con$nuous Op$miza$on: The "Right" Language for Fast Graph Algorithms? Aleksander Mądry

Con$nuous Op$miza$on: The Right Language for Fast Graph Algorithms? Aleksander Mądry Con$nuous Op$miza$on: The "Right" Language for Fast Graph Algorithms? Aleksander Mądry We have been studying graph algorithms for a while now Tradi$onal view: Graphs are combinatorial objects graph algorithms

More information

Introduc)on to Ar)ficial Intelligence

Introduc)on to Ar)ficial Intelligence Introduc)on to Ar)ficial Intelligence Lecture 9 Logical reasoning CS/CNS/EE 154 Andreas Krause First order logic (FOL)! Proposi)onal logic is about simple facts! There is a breeze at loca)on [1,2]! First

More information

Proofs Sec*ons 1.6, 1.7 and 1.8 of Rosen

Proofs Sec*ons 1.6, 1.7 and 1.8 of Rosen Proofs Sec*ons 1.6, 1.7 and 1.8 of Rosen Spring 2013 CSCE 235 Introduc5on to Discrete Structures Course web- page: cse.unl.edu/~cse235 Ques5ons: Piazza Outline Mo5va5on Terminology Rules of inference:

More information

A Switching Lemma Tutorial. Benjamin Rossman University of Toronto and NII, Tokyo

A Switching Lemma Tutorial. Benjamin Rossman University of Toronto and NII, Tokyo A Switching Lemma Tutorial Benjamin Rossman University of Toronto and NII, Tokyo homage to Paul Beame s excellent A Switching Lemma Primer A Switching Lemma Tutorial* Benjamin Rossman University of Toronto

More information

The Working Set Model for Program Behavior. Peter J. Denning Massachuse=s Ins?tute of Technology, Cambridge, Massachuse=s

The Working Set Model for Program Behavior. Peter J. Denning Massachuse=s Ins?tute of Technology, Cambridge, Massachuse=s The Working Set Model for Program Behavior Peter J. Denning Massachuse=s Ins?tute of Technology, Cambridge, Massachuse=s 1 About the paper Published in 1968, 1st ACM Symposium on Opera?on Systems Principles

More information

Class Notes. Examining Repeated Measures Data on Individuals

Class Notes. Examining Repeated Measures Data on Individuals Ronald Heck Week 12: Class Notes 1 Class Notes Examining Repeated Measures Data on Individuals Generalized linear mixed models (GLMM) also provide a means of incorporang longitudinal designs with categorical

More information

2. Discrete Random Variables Part II: Expecta:on. ECE 302 Spring 2012 Purdue University, School of ECE Prof. Ilya Pollak

2. Discrete Random Variables Part II: Expecta:on. ECE 302 Spring 2012 Purdue University, School of ECE Prof. Ilya Pollak 2. Discrete Random Variables Part II: Expecta:on ECE 302 Spring 2012 Purdue University, School of ECE Prof. Expected value of X: Defini:on Expected value of X: Defini:on E[X] is also called the mean of

More information

Minimum Edit Distance. Defini'on of Minimum Edit Distance

Minimum Edit Distance. Defini'on of Minimum Edit Distance Minimum Edit Distance Defini'on of Minimum Edit Distance How similar are two strings? Spell correc'on The user typed graffe Which is closest? graf gra@ grail giraffe Computa'onal Biology Align two sequences

More information

Social and Economic Networks Matthew O. Jackson

Social and Economic Networks Matthew O. Jackson Social and Economic Networks Matthew O. Jackson Copyright: Matthew O. Jackson 2016 Please do not post or distribute without permission. Networks and Behavior How does network structure impact behavior?

More information

Lecture 2: Foundations of Concept Learning

Lecture 2: Foundations of Concept Learning Lecture 2: Foundations of Concept Learning Cognitive Systems II - Machine Learning WS 2005/2006 Part I: Basic Approaches to Concept Learning Version Space, Candidate Elimination, Inductive Bias Lecture

More information

WRF- Hydro Development and Performance Tes9ng

WRF- Hydro Development and Performance Tes9ng WRF- Hydro Development and Performance Tes9ng Wei Yu, David Gochis, David Yates Research Applica9ons Laboratory Na9onal Center for Atmospheric Research Boulder, CO USA Scien9fic Mo9va9on How does terrain

More information

Op#mal Control of Nonlinear Systems with Temporal Logic Specifica#ons

Op#mal Control of Nonlinear Systems with Temporal Logic Specifica#ons Op#mal Control of Nonlinear Systems with Temporal Logic Specifica#ons Eric M. Wolff 1 Ufuk Topcu 2 and Richard M. Murray 1 1 Caltech and 2 UPenn University of Michigan October 1, 2013 Autonomous Systems

More information

Statistical Learning Learning From Examples

Statistical Learning Learning From Examples Statistical Learning Learning From Examples We want to estimate the working temperature range of an iphone. We could study the physics and chemistry that affect the performance of the phone too hard We

More information

CS 6604: Data Mining Large Networks and Time-series. B. Aditya Prakash Lecture #8: Epidemics: Thresholds

CS 6604: Data Mining Large Networks and Time-series. B. Aditya Prakash Lecture #8: Epidemics: Thresholds CS 6604: Data Mining Large Networks and Time-series B. Aditya Prakash Lecture #8: Epidemics: Thresholds A fundamental ques@on Strong Virus Epidemic? 2 example (sta@c graph) Weak Virus Epidemic? 3 Problem

More information

Least Squares Parameter Es.ma.on

Least Squares Parameter Es.ma.on Least Squares Parameter Es.ma.on Alun L. Lloyd Department of Mathema.cs Biomathema.cs Graduate Program North Carolina State University Aims of this Lecture 1. Model fifng using least squares 2. Quan.fica.on

More information