Bellman s Curse of Dimensionality

Size: px
Start display at page:

Download "Bellman s Curse of Dimensionality"

Transcription

1 Bellman s Curse of Dimensionality n- dimensional state space Number of states grows exponen<ally in n (for fixed number of discre<za<on levels per coordinate) In prac<ce Discre<za<on is considered only computa<onally feasible up to 5 or 6 dimensional state spaces even when using Variable resolu<on discre<za<on Highly op<mized implementa<ons

2 Op<miza<on for Op<mal Control Goal: find a sequence of control inputs (and corresponding sequence of states) that solves: Generally hard to do. In this set of slides we will consider convex problems, which means g is convex, the sets U t and X t are convex, and f is linear. Next set of slides will relax these assump<ons. Note: itera<vely applying LQR is one way to solve this problem but can get a bit tricky when there are constraints on the control inputs and state. In principle (though not in our examples), u could be parameters of a control policy rather than the raw control inputs.

3 Convex Op*miza*on Pieter Abbeel UC Berkeley EECS Many slides and figures adapted from Stephen Boyd [op<onal] Boyd and Vandenberghe, Convex Op<miza<on, Chapters 9 11 [op<onal] Be\s, Prac<cal Methods for Op<mal Control Using Nonlinear Programming

4 Outline Convex op*miza*on problems Unconstrained minimiza<on Gradient Descent Newton s Method Equality constrained minimiza<on Inequality and equality constrained minimiza<on

5 Convex Func<ons A func<on f is convex if and only if 8x 1,x 2 2 Domain(f), 8t 2 [0, 1] : f(tx 1 +(1 t)x 2 ) apple tf(x 1 )+(1 t)f(x 2 ) Image source: wikipedia

6 Convex Func<ons Unique minimum Set of points for which f(x) <= a is convex Source: Thomas Jungblut s Blog

7 Convex Op<miza<on Problems Convex op<miza<on problems are a special class of op<miza<on problems, of the following form: min x2r nf 0(x) s.t. f i (x) apple 0 i =1,...,n Ax = b with f i (x) convex for i = 0, 1,, n A func<on f is convex if and only if 8x 1,x 2 2 Domain(f), 8 2 [0, 1] f( x 1 +(1 )x 2 ) apple f(x 1 )+(1 )f(x 2 )

8 Outline Convex op<miza<on problems Unconstrained minimiza*on Gradient Descent Newton s Method Equality constrained minimiza<on Inequality and equality constrained minimiza<on

9 Unconstrained Minimiza<on x* is a local minimum of (differen<able) f than it has to sa<sfy: In simple cases we can directly solve the system of n equa<ons given by (2) to find candidate local minima, and then verify (3) for these candidates. In general however, solving (2) is a difficult problem. Going forward we will consider this more general segng and cover numerical solu<on methods for (1).

10 Steepest Descent Idea: Start somewhere Repeat: Take a step in the steepest descent direc<on Figure source: Mathworks

11

12 Steepest Descent Algorithm 1. Ini<alize x 2. Repeat 1. Determine the steepest descent direc<on Δx 2. Line search: Choose a step size t > Update: x := x + t Δx. 3. Un<l stopping criterion is sa<sfied

13 What is the Steepest Descent Direc<on? à Steepest Descent = Gradient Descent

14 Stepsize Selec<on: Exact Line Search Used when the cost of solving the minimiza<on problem with one variable is low compared to the cost of compu<ng the search direc<on itself.

15 Stepsize Selec<on: Backtracking Line Search Inexact: step length is chose to approximately minimize f along the ray {x + t Δx t > 0}

16 Stepsize Selec<on: Backtracking Line Search Figure source: Boyd and Vandenberghe

17

18 Steepest Descent (= Gradient Descent) Source: Boyd and Vandenberghe

19 Gradient Descent: Example 1 Figure source: Boyd and Vandenberghe

20 Gradient Descent: Example 2 Figure source: Boyd and Vandenberghe

21 Gradient Descent: Example 3 Figure source: Boyd and Vandenberghe

22 Gradient Descent Convergence Condi<on number = 10 Condi<on number = 1 For quadra<c func<on, convergence speed depends on ra<o of highest second deriva<ve over lowest second deriva<ve ( condi<on number ) In high dimensions, almost guaranteed to have a high (=bad) condi<on number Rescaling coordinates (as could happen by simply expressing quan<<es in different measurement units) results in a different condi<on number

23 Outline Unconstrained minimiza*on Gradient Descent Newton s Method Equality constrained minimiza<on Inequality and equality constrained minimiza<on

24

25 Newton s Method 2 nd order Taylor Approxima<on rather than 1 st order: assuming (which is true for convex f) the minimum of the 2 nd order approxima<on is achieved at: Figure source: Boyd and Vandenberghe

26 Newton s Method Figure source: Boyd and Vandenberghe

27 Affine Invariance Consider the coordinate transforma<on y = A - 1 x (x = Ay) If running Newton s method star<ng from x (0) on f(x) results in x (0), x (1), x (2), Then running Newton s method star<ng from y (0) = A - 1 x (0) on g(y) = f(ay), will result in the sequence y (0) = A - 1 x (0), y (1) = A - 1 x (1), y (2) = A - 1 x (2), Exercise: try to prove this!

28

29 Affine Invariance Proof

30 Example 1 gradient descent with Newton s method with backtracking line search Figure source: Boyd and Vandenberghe

31 Example 2 gradient descent Newton s method Figure source: Boyd and Vandenberghe

32 Larger Version of Example 2 Figure source: Boyd and Vandenberghe

33 Gradient Descent: Example 3 Figure source: Boyd and Vandenberghe

34 Example 3 Gradient descent Newton s method (converges in one step if f convex quadra<c)

35 Quasi- Newton Methods Quasi- Newton methods use an approxima<on of the Hessian Example 1: Only compute diagonal entries of Hessian, set others equal to zero. Note this also simplifies computa<ons done with the Hessian. Example 2: natural gradient see next slide

36

37 Natural Gradient Consider a standard maximum likelihood problem: Gradient: Hessian: r 2 f( )= X i r 2 p(x (i) ; ) p(x (i) ; ) > r log p(x (i) ; ) r log p(x (i) ; ) Natural gradient: only keeps the 2 nd term in the Hessian. Benefits: (1) faster to compute (only gradients needed); (2) guaranteed to be nega<ve definite; (3) found to be superior in some experiments; (4) invariant to re- parametriza<on

38

39 Natural Gradient Property: Natural gradient is invariant to parameteriza<on of the family of probability distribu<ons p( x ; θ) Hence the name. Note this property is stronger than the property of Newton s method, which is invariant to affine re- parameteriza<ons only. Exercise: Try to prove this property!

40 Natural Gradient Invariant to Reparametriza<on Proof Natural gradient for parametriza<on with θ: Let Φ = f(θ), and let i.e., à the natural gradient direc<on is the same independent of the (inver<ble, but otherwise not constrained) reparametriza<on f

41 Outline Unconstrained minimiza<on Gradient Descent Newton s Method Equality constrained minimiza*on Inequality and equality constrained minimiza<on

42 Equality Constrained Minimiza<on Problem to be solved: We will cover three solu<on methods: Elimina<on Newton s method Infeasible start Newton method

43 Method 1: Elimina<on From linear algebra we know that there exist a matrix F (in fact infinitely many) such that: : any solu<on to Ax = b F: spans the null- space of A A way to find an F: compute SVD of A, A = U S V, for A having k nonzero singular values, set F = U(:, k+1:end) So we can solve the equality constrained minimiza<on problem by solving an unconstrained minimiza/on problem over a new variable z: Poten<al cons: (i) need to first find a solu<on to Ax=b, (ii) need to find F, (iii) elimina<on might destroy sparsity in original problem structure

44 Methods 2 and First Consider Op<mality Condi<on Recall problem to be solved: x* with Ax*=b is (local) op<mum if and only if: Equivalently:

45 Methods 2 and First Consider Op<mality Condi<on Recall problem to be solved:

46 Method 2: Newton s Method Problem to be solved: Assume x is feasible, i.e., sa<sfies Ax = b, now use 2 nd order approxima<on of f: Op<mality condi<on for 2 nd order approxima<on:

47 Method 2: Newton s Method With Newton step obtained by solving a linear system of equa<ons: Feasible descent method:

48 Method 3: Infeasible Start Newton Method Problem to be solved: Use 1 st order approxima<on of the op<mality condi<ons at current x: Equivalently:

49 Outline Unconstrained minimiza<on Equality constrained minimiza<on Inequality and equality constrained minimiza*on

50 Equality and Inequality Constrained Minimiza<on Recall the problem to be solved:

51 Equality and Inequality Constrained Minimiza<on Problem to be solved: Approxima<on via logarithmic barrier: Reformulation via indicator function * for t > 0, - (1/t) log(- u) is a smooth approxima<on of I_(u) * approxima<on improves for t à 1 * be\er condi<oned for smaller t à No inequality constraints anymore, but very poorly conditioned objective function

52 Equality and Inequality Constrained Minimiza<on

53 Barrier Method Given: strictly feasible x, t=t (0) > 0, μ > 1, tolerance ε > 0 Repeat 1. Centering Step. Compute x * (t) by solving star<ng from x 2. Update. x := x * (t). 3. Stopping Criterion. Quit if m/t < ε 4. Increase t. t := μt

54 Example 1: Inequality Form LP

55 Example 2: Geometric Program

56 Example 3: Standard LPs

57 Ini<aliza<on Basic phase I method: Ini<alize by first solving: Easy to ini<alize above problem, pick some x such that Ax = b, and then simply set s = max i f i (x) Can stop early- - - whenever s < 0

58 Initaliza<on Sum of infeasibili<es phase I method: Ini<alize by first solving: Easy to ini<alize above problem, pick some x such that Ax = b, and then simply set s i = max(0, f i (x)) For infeasible problems, produces a solu<on that sa<sfies many more inequali<es than basic phase I method

59 Other methods We have covered a primal interior point method one of several op<miza<on approaches Examples of others: Primal- dual interior point methods Primal- dual infeasible interior point methods

60 Op<mal Control (Open Loop) For convex g t and f i, we can now solve: Which gives an open- loop sequence of controls

61 Op<mal Control (Closed Loop) Given: For k=0, 1, 2,, T Solve min x,u TX g t (x t,u t ) t=k s.t. x t+1 = A t x t + B t u t t {k, k +1,...,T 1} f i (x, u) 0, x k = x k i {1,...,m} Execute u k Observe resul<ng state, = Model Predic<ve Control Ini<aliza<on with solu<on from itera<on k- 1 can make solver very fast (and would be done most conveniently with infeasible start Newton method)

62 CVX Disciplined convex programming = convex op<miza<on problems of forms easily programma<cally verified to be convex Convenient high- level expressions Excellent for fast implementa<on Designed by Michael Grant and Stephen Boyd, with input from Yinyu Ye. Current webpage: h\p://cvxr.com/cvx/

63 CVX Matlab Example for Op<mal Control, see course webpage

Nonlinear Optimization for Optimal Control

Nonlinear Optimization for Optimal Control Nonlinear Optimization for Optimal Control Pieter Abbeel UC Berkeley EECS Many slides and figures adapted from Stephen Boyd [optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 11 [optional]

More information

Methodological Foundations of Biomedical Informatics (BMSC-GA 4449) Optimization

Methodological Foundations of Biomedical Informatics (BMSC-GA 4449) Optimization Methodological Foundations of Biomedical Informatics (BMSCGA 4449) Optimization Op#miza#on A set of techniques for finding the values of variables at which the objec#ve func#on amains its cri#cal (minimal

More information

Barrier Method. Javier Peña Convex Optimization /36-725

Barrier Method. Javier Peña Convex Optimization /36-725 Barrier Method Javier Peña Convex Optimization 10-725/36-725 1 Last time: Newton s method For root-finding F (x) = 0 x + = x F (x) 1 F (x) For optimization x f(x) x + = x 2 f(x) 1 f(x) Assume f strongly

More information

Interior Point Algorithms for Constrained Convex Optimization

Interior Point Algorithms for Constrained Convex Optimization Interior Point Algorithms for Constrained Convex Optimization Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Inequality constrained minimization problems

More information

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44 Convex Optimization Newton s method ENSAE: Optimisation 1/44 Unconstrained minimization minimize f(x) f convex, twice continuously differentiable (hence dom f open) we assume optimal value p = inf x f(x)

More information

Least Mean Squares Regression. Machine Learning Fall 2017

Least Mean Squares Regression. Machine Learning Fall 2017 Least Mean Squares Regression Machine Learning Fall 2017 1 Lecture Overview Linear classifiers What func?ons do linear classifiers express? Least Squares Method for Regression 2 Where are we? Linear classifiers

More information

Lecture 15 Newton Method and Self-Concordance. October 23, 2008

Lecture 15 Newton Method and Self-Concordance. October 23, 2008 Newton Method and Self-Concordance October 23, 2008 Outline Lecture 15 Self-concordance Notion Self-concordant Functions Operations Preserving Self-concordance Properties of Self-concordant Functions Implications

More information

Homework 4. Convex Optimization /36-725

Homework 4. Convex Optimization /36-725 Homework 4 Convex Optimization 10-725/36-725 Due Friday November 4 at 5:30pm submitted to Christoph Dann in Gates 8013 (Remember to a submit separate writeup for each problem, with your name at the top)

More information

Stochas(c Dual Ascent Linear Systems, Quasi-Newton Updates and Matrix Inversion

Stochas(c Dual Ascent Linear Systems, Quasi-Newton Updates and Matrix Inversion Stochas(c Dual Ascent Linear Systems, Quasi-Newton Updates and Matrix Inversion Peter Richtárik (joint work with Robert M. Gower) University of Edinburgh Oberwolfach, March 8, 2016 Part I Stochas(c Dual

More information

Line Search Methods for Unconstrained Optimisation

Line Search Methods for Unconstrained Optimisation Line Search Methods for Unconstrained Optimisation Lecture 8, Numerical Linear Algebra and Optimisation Oxford University Computing Laboratory, MT 2007 Dr Raphael Hauser (hauser@comlab.ox.ac.uk) The Generic

More information

Pseudospectral Methods For Op2mal Control. Jus2n Ruths March 27, 2009

Pseudospectral Methods For Op2mal Control. Jus2n Ruths March 27, 2009 Pseudospectral Methods For Op2mal Control Jus2n Ruths March 27, 2009 Introduc2on Pseudospectral methods arose to find solu2ons to Par2al Differen2al Equa2ons Recently adapted for Op2mal Control Key Ideas

More information

Nonlinear Optimization for Optimal Control Part 2. Pieter Abbeel UC Berkeley EECS. From linear to nonlinear Model-predictive control (MPC) POMDPs

Nonlinear Optimization for Optimal Control Part 2. Pieter Abbeel UC Berkeley EECS. From linear to nonlinear Model-predictive control (MPC) POMDPs Nonlinear Optimization for Optimal Control Part 2 Pieter Abbeel UC Berkeley EECS Outline From linear to nonlinear Model-predictive control (MPC) POMDPs Page 1! From Linear to Nonlinear We know how to solve

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

CS 6140: Machine Learning Spring What We Learned Last Week 2/26/16

CS 6140: Machine Learning Spring What We Learned Last Week 2/26/16 Logis@cs CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa@on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Sign

More information

Selected Topics in Optimization. Some slides borrowed from

Selected Topics in Optimization. Some slides borrowed from Selected Topics in Optimization Some slides borrowed from http://www.stat.cmu.edu/~ryantibs/convexopt/ Overview Optimization problems are almost everywhere in statistics and machine learning. Input Model

More information

Primal-Dual Interior-Point Methods. Ryan Tibshirani Convex Optimization /36-725

Primal-Dual Interior-Point Methods. Ryan Tibshirani Convex Optimization /36-725 Primal-Dual Interior-Point Methods Ryan Tibshirani Convex Optimization 10-725/36-725 Given the problem Last time: barrier method min x subject to f(x) h i (x) 0, i = 1,... m Ax = b where f, h i, i = 1,...

More information

Newton s Method. Ryan Tibshirani Convex Optimization /36-725

Newton s Method. Ryan Tibshirani Convex Optimization /36-725 Newton s Method Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: dual correspondences Given a function f : R n R, we define its conjugate f : R n R, Properties and examples: f (y) = max x

More information

Newton s Method. Javier Peña Convex Optimization /36-725

Newton s Method. Javier Peña Convex Optimization /36-725 Newton s Method Javier Peña Convex Optimization 10-725/36-725 1 Last time: dual correspondences Given a function f : R n R, we define its conjugate f : R n R, f ( (y) = max y T x f(x) ) x Properties and

More information

Lecture 16: October 22

Lecture 16: October 22 0-725/36-725: Conve Optimization Fall 208 Lecturer: Ryan Tibshirani Lecture 6: October 22 Scribes: Nic Dalmasso, Alan Mishler, Benja LeRoy Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Convex Optimization. Prof. Nati Srebro. Lecture 12: Infeasible-Start Newton s Method Interior Point Methods

Convex Optimization. Prof. Nati Srebro. Lecture 12: Infeasible-Start Newton s Method Interior Point Methods Convex Optimization Prof. Nati Srebro Lecture 12: Infeasible-Start Newton s Method Interior Point Methods Equality Constrained Optimization f 0 (x) s. t. A R p n, b R p Using access to: 2 nd order oracle

More information

Primal-Dual Interior-Point Methods. Ryan Tibshirani Convex Optimization

Primal-Dual Interior-Point Methods. Ryan Tibshirani Convex Optimization Primal-Dual Interior-Point Methods Ryan Tibshirani Convex Optimization 10-725 Given the problem Last time: barrier method min x subject to f(x) h i (x) 0, i = 1,... m Ax = b where f, h i, i = 1,... m are

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

Written Examination

Written Examination Division of Scientific Computing Department of Information Technology Uppsala University Optimization Written Examination 202-2-20 Time: 4:00-9:00 Allowed Tools: Pocket Calculator, one A4 paper with notes

More information

3E4: Modelling Choice. Introduction to nonlinear programming. Announcements

3E4: Modelling Choice. Introduction to nonlinear programming. Announcements 3E4: Modelling Choice Lecture 7 Introduction to nonlinear programming 1 Announcements Solutions to Lecture 4-6 Homework will be available from http://www.eng.cam.ac.uk/~dr241/3e4 Looking ahead to Lecture

More information

4TE3/6TE3. Algorithms for. Continuous Optimization

4TE3/6TE3. Algorithms for. Continuous Optimization 4TE3/6TE3 Algorithms for Continuous Optimization (Algorithms for Constrained Nonlinear Optimization Problems) Tamás TERLAKY Computing and Software McMaster University Hamilton, November 2005 terlaky@mcmaster.ca

More information

CSCI 1951-G Optimization Methods in Finance Part 09: Interior Point Methods

CSCI 1951-G Optimization Methods in Finance Part 09: Interior Point Methods CSCI 1951-G Optimization Methods in Finance Part 09: Interior Point Methods March 23, 2018 1 / 35 This material is covered in S. Boyd, L. Vandenberge s book Convex Optimization https://web.stanford.edu/~boyd/cvxbook/.

More information

10. Unconstrained minimization

10. Unconstrained minimization Convex Optimization Boyd & Vandenberghe 10. Unconstrained minimization terminology and assumptions gradient descent method steepest descent method Newton s method self-concordant functions implementation

More information

Interior Point Methods. We ll discuss linear programming first, followed by three nonlinear problems. Algorithms for Linear Programming Problems

Interior Point Methods. We ll discuss linear programming first, followed by three nonlinear problems. Algorithms for Linear Programming Problems AMSC 607 / CMSC 764 Advanced Numerical Optimization Fall 2008 UNIT 3: Constrained Optimization PART 4: Introduction to Interior Point Methods Dianne P. O Leary c 2008 Interior Point Methods We ll discuss

More information

11. Equality constrained minimization

11. Equality constrained minimization Convex Optimization Boyd & Vandenberghe 11. Equality constrained minimization equality constrained minimization eliminating equality constraints Newton s method with equality constraints infeasible start

More information

Convex Optimization. Problem set 2. Due Monday April 26th

Convex Optimization. Problem set 2. Due Monday April 26th Convex Optimization Problem set 2 Due Monday April 26th 1 Gradient Decent without Line-search In this problem we will consider gradient descent with predetermined step sizes. That is, instead of determining

More information

Gradient Descent. Ryan Tibshirani Convex Optimization /36-725

Gradient Descent. Ryan Tibshirani Convex Optimization /36-725 Gradient Descent Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: canonical convex programs Linear program (LP): takes the form min x subject to c T x Gx h Ax = b Quadratic program (QP): like

More information

More First-Order Optimization Algorithms

More First-Order Optimization Algorithms More First-Order Optimization Algorithms Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye Chapters 3, 8, 3 The SDM

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

Analytic Center Cutting-Plane Method

Analytic Center Cutting-Plane Method Analytic Center Cutting-Plane Method S. Boyd, L. Vandenberghe, and J. Skaf April 14, 2011 Contents 1 Analytic center cutting-plane method 2 2 Computing the analytic center 3 3 Pruning constraints 5 4 Lower

More information

Convex Optimization and l 1 -minimization

Convex Optimization and l 1 -minimization Convex Optimization and l 1 -minimization Sangwoon Yun Computational Sciences Korea Institute for Advanced Study December 11, 2009 2009 NIMS Thematic Winter School Outline I. Convex Optimization II. l

More information

Computational Finance

Computational Finance Department of Mathematics at University of California, San Diego Computational Finance Optimization Techniques [Lecture 2] Michael Holst January 9, 2017 Contents 1 Optimization Techniques 3 1.1 Examples

More information

Lecture 14: October 17

Lecture 14: October 17 1-725/36-725: Convex Optimization Fall 218 Lecture 14: October 17 Lecturer: Lecturer: Ryan Tibshirani Scribes: Pengsheng Guo, Xian Zhou Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

CS711008Z Algorithm Design and Analysis

CS711008Z Algorithm Design and Analysis CS711008Z Algorithm Design and Analysis Lecture 8 Linear programming: interior point method Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, China 1 / 31 Outline Brief

More information

Primal-Dual Interior-Point Methods for Linear Programming based on Newton s Method

Primal-Dual Interior-Point Methods for Linear Programming based on Newton s Method Primal-Dual Interior-Point Methods for Linear Programming based on Newton s Method Robert M. Freund March, 2004 2004 Massachusetts Institute of Technology. The Problem The logarithmic barrier approach

More information

Gradient Descent for High Dimensional Systems

Gradient Descent for High Dimensional Systems Gradient Descent for High Dimensional Systems Lab versus Lab 2 D Geometry Op>miza>on Poten>al Energy Methods: Implemented Equa3ons for op3mizer 3 2 4 Bond length High Dimensional Op>miza>on Applica3ons:

More information

Lecture 9 Sequential unconstrained minimization

Lecture 9 Sequential unconstrained minimization S. Boyd EE364 Lecture 9 Sequential unconstrained minimization brief history of SUMT & IP methods logarithmic barrier function central path UMT & SUMT complexity analysis feasibility phase generalized inequalities

More information

An Iterative Descent Method

An Iterative Descent Method Conjugate Gradient: An Iterative Descent Method The Plan Review Iterative Descent Conjugate Gradient Review : Iterative Descent Iterative Descent is an unconstrained optimization process x (k+1) = x (k)

More information

Optimization Tutorial 1. Basic Gradient Descent

Optimization Tutorial 1. Basic Gradient Descent E0 270 Machine Learning Jan 16, 2015 Optimization Tutorial 1 Basic Gradient Descent Lecture by Harikrishna Narasimhan Note: This tutorial shall assume background in elementary calculus and linear algebra.

More information

Lecture 5: Gradient Descent. 5.1 Unconstrained minimization problems and Gradient descent

Lecture 5: Gradient Descent. 5.1 Unconstrained minimization problems and Gradient descent 10-725/36-725: Convex Optimization Spring 2015 Lecturer: Ryan Tibshirani Lecture 5: Gradient Descent Scribes: Loc Do,2,3 Disclaimer: These notes have not been subjected to the usual scrutiny reserved for

More information

2.098/6.255/ Optimization Methods Practice True/False Questions

2.098/6.255/ Optimization Methods Practice True/False Questions 2.098/6.255/15.093 Optimization Methods Practice True/False Questions December 11, 2009 Part I For each one of the statements below, state whether it is true or false. Include a 1-3 line supporting sentence

More information

Course Outline. FRTN10 Multivariable Control, Lecture 13. General idea for Lectures Lecture 13 Outline. Example 1 (Doyle Stein, 1979)

Course Outline. FRTN10 Multivariable Control, Lecture 13. General idea for Lectures Lecture 13 Outline. Example 1 (Doyle Stein, 1979) Course Outline FRTN Multivariable Control, Lecture Automatic Control LTH, 6 L-L Specifications, models and loop-shaping by hand L6-L8 Limitations on achievable performance L9-L Controller optimization:

More information

ORIE 6326: Convex Optimization. Quasi-Newton Methods

ORIE 6326: Convex Optimization. Quasi-Newton Methods ORIE 6326: Convex Optimization Quasi-Newton Methods Professor Udell Operations Research and Information Engineering Cornell April 10, 2017 Slides on steepest descent and analysis of Newton s method adapted

More information

CE 191: Civil & Environmental Engineering Systems Analysis. LEC 17 : Final Review

CE 191: Civil & Environmental Engineering Systems Analysis. LEC 17 : Final Review CE 191: Civil & Environmental Engineering Systems Analysis LEC 17 : Final Review Professor Scott Moura Civil & Environmental Engineering University of California, Berkeley Fall 2014 Prof. Moura UC Berkeley

More information

Agenda. Fast proximal gradient methods. 1 Accelerated first-order methods. 2 Auxiliary sequences. 3 Convergence analysis. 4 Numerical examples

Agenda. Fast proximal gradient methods. 1 Accelerated first-order methods. 2 Auxiliary sequences. 3 Convergence analysis. 4 Numerical examples Agenda Fast proximal gradient methods 1 Accelerated first-order methods 2 Auxiliary sequences 3 Convergence analysis 4 Numerical examples 5 Optimality of Nesterov s scheme Last time Proximal gradient method

More information

Lecture 24: August 28

Lecture 24: August 28 10-725: Optimization Fall 2012 Lecture 24: August 28 Lecturer: Geoff Gordon/Ryan Tibshirani Scribes: Jiaji Zhou,Tinghui Zhou,Kawa Cheung Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Interior-Point Methods for Linear Optimization

Interior-Point Methods for Linear Optimization Interior-Point Methods for Linear Optimization Robert M. Freund and Jorge Vera March, 204 c 204 Robert M. Freund and Jorge Vera. All rights reserved. Linear Optimization with a Logarithmic Barrier Function

More information

Reduced Models for Process Simula2on and Op2miza2on

Reduced Models for Process Simula2on and Op2miza2on Reduced Models for Process Simulaon and Opmizaon Yidong Lang, Lorenz T. Biegler and David Miller ESI annual meeng March, 0 Models are mapping Equaon set or Module simulators Input space Reduced model Surrogate

More information

Algorithms for constrained local optimization

Algorithms for constrained local optimization Algorithms for constrained local optimization Fabio Schoen 2008 http://gol.dsi.unifi.it/users/schoen Algorithms for constrained local optimization p. Feasible direction methods Algorithms for constrained

More information

Lecture 14: Newton s Method

Lecture 14: Newton s Method 10-725/36-725: Conve Optimization Fall 2016 Lecturer: Javier Pena Lecture 14: Newton s ethod Scribes: Varun Joshi, Xuan Li Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes

More information

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09 Numerical Optimization 1 Working Horse in Computer Vision Variational Methods Shape Analysis Machine Learning Markov Random Fields Geometry Common denominator: optimization problems 2 Overview of Methods

More information

Descent methods. min x. f(x)

Descent methods. min x. f(x) Gradient Descent Descent methods min x f(x) 5 / 34 Descent methods min x f(x) x k x k+1... x f(x ) = 0 5 / 34 Gradient methods Unconstrained optimization min f(x) x R n. 6 / 34 Gradient methods Unconstrained

More information

Interior Point Methods in Mathematical Programming

Interior Point Methods in Mathematical Programming Interior Point Methods in Mathematical Programming Clóvis C. Gonzaga Federal University of Santa Catarina, Brazil Journées en l honneur de Pierre Huard Paris, novembre 2008 01 00 11 00 000 000 000 000

More information

Why should you care about the solution strategies?

Why should you care about the solution strategies? Optimization Why should you care about the solution strategies? Understanding the optimization approaches behind the algorithms makes you more effectively choose which algorithm to run Understanding the

More information

Tangent lines, cont d. Linear approxima5on and Newton s Method

Tangent lines, cont d. Linear approxima5on and Newton s Method Tangent lines, cont d Linear approxima5on and Newton s Method Last 5me: A challenging tangent line problem, because we had to figure out the point of tangency.?? (A) I get it! (B) I think I see how we

More information

Interior-point methods Optimization Geoff Gordon Ryan Tibshirani

Interior-point methods Optimization Geoff Gordon Ryan Tibshirani Interior-point methods 10-725 Optimization Geoff Gordon Ryan Tibshirani SVM duality Review min v T v/2 + 1 T s s.t. Av yd + s 1 0 s 0 max 1 T α α T Kα/2 s.t. y T α = 0 0 α 1 Gram matrix K Interpretation

More information

NONLINEAR. (Hillier & Lieberman Introduction to Operations Research, 8 th edition)

NONLINEAR. (Hillier & Lieberman Introduction to Operations Research, 8 th edition) NONLINEAR PROGRAMMING (Hillier & Lieberman Introduction to Operations Research, 8 th edition) Nonlinear Programming g Linear programming has a fundamental role in OR. In linear programming all its functions

More information

Machine Learning and Data Mining. Linear regression. Prof. Alexander Ihler

Machine Learning and Data Mining. Linear regression. Prof. Alexander Ihler + Machine Learning and Data Mining Linear regression Prof. Alexander Ihler Supervised learning Notation Features x Targets y Predictions ŷ Parameters θ Learning algorithm Program ( Learner ) Change µ Improve

More information

Duality in Linear Programs. Lecturer: Ryan Tibshirani Convex Optimization /36-725

Duality in Linear Programs. Lecturer: Ryan Tibshirani Convex Optimization /36-725 Duality in Linear Programs Lecturer: Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: proximal gradient descent Consider the problem x g(x) + h(x) with g, h convex, g differentiable, and

More information

Lecture 5: September 15

Lecture 5: September 15 10-725/36-725: Convex Optimization Fall 2015 Lecture 5: September 15 Lecturer: Lecturer: Ryan Tibshirani Scribes: Scribes: Di Jin, Mengdi Wang, Bin Deng Note: LaTeX template courtesy of UC Berkeley EECS

More information

Chemical Equilibrium: A Convex Optimization Problem

Chemical Equilibrium: A Convex Optimization Problem Chemical Equilibrium: A Convex Optimization Problem Linyi Gao June 4, 2014 1 Introduction The equilibrium composition of a mixture of reacting molecules is essential to many physical and chemical systems,

More information

Numerical Methods in Physics

Numerical Methods in Physics Numerical Methods in Physics Numerische Methoden in der Physik, 515.421. Instructor: Ass. Prof. Dr. Lilia Boeri Room: PH 03 090 Tel: +43-316- 873 8191 Email Address: l.boeri@tugraz.at Room: TDK Seminarraum

More information

minimize x subject to (x 2)(x 4) u,

minimize x subject to (x 2)(x 4) u, Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 -function with f () on (, L) and that you have explicit formulae for

More information

Penalty and Barrier Methods. So we again build on our unconstrained algorithms, but in a different way.

Penalty and Barrier Methods. So we again build on our unconstrained algorithms, but in a different way. AMSC 607 / CMSC 878o Advanced Numerical Optimization Fall 2008 UNIT 3: Constrained Optimization PART 3: Penalty and Barrier Methods Dianne P. O Leary c 2008 Reference: N&S Chapter 16 Penalty and Barrier

More information

Convex Optimization. Lecture 12 - Equality Constrained Optimization. Instructor: Yuanzhang Xiao. Fall University of Hawaii at Manoa

Convex Optimization. Lecture 12 - Equality Constrained Optimization. Instructor: Yuanzhang Xiao. Fall University of Hawaii at Manoa Convex Optimization Lecture 12 - Equality Constrained Optimization Instructor: Yuanzhang Xiao University of Hawaii at Manoa Fall 2017 1 / 19 Today s Lecture 1 Basic Concepts 2 for Equality Constrained

More information

Unconstrained minimization of smooth functions

Unconstrained minimization of smooth functions Unconstrained minimization of smooth functions We want to solve min x R N f(x), where f is convex. In this section, we will assume that f is differentiable (so its gradient exists at every point), and

More information

Penalty and Barrier Methods General classical constrained minimization problem minimize f(x) subject to g(x) 0 h(x) =0 Penalty methods are motivated by the desire to use unconstrained optimization techniques

More information

Primal/Dual Decomposition Methods

Primal/Dual Decomposition Methods Primal/Dual Decomposition Methods Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2018-19, HKUST, Hong Kong Outline of Lecture Subgradients

More information

A Second-Order Path-Following Algorithm for Unconstrained Convex Optimization

A Second-Order Path-Following Algorithm for Unconstrained Convex Optimization A Second-Order Path-Following Algorithm for Unconstrained Convex Optimization Yinyu Ye Department is Management Science & Engineering and Institute of Computational & Mathematical Engineering Stanford

More information

Last Lecture Recap UVA CS / Introduc8on to Machine Learning and Data Mining. Lecture 3: Linear Regression

Last Lecture Recap UVA CS / Introduc8on to Machine Learning and Data Mining. Lecture 3: Linear Regression UVA CS 4501-001 / 6501 007 Introduc8on to Machine Learning and Data Mining Lecture 3: Linear Regression Yanjun Qi / Jane University of Virginia Department of Computer Science 1 Last Lecture Recap q Data

More information

Numerical optimization

Numerical optimization Numerical optimization Lecture 4 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 2 Longest Slowest Shortest Minimal Maximal

More information

Interior Point Methods for Mathematical Programming

Interior Point Methods for Mathematical Programming Interior Point Methods for Mathematical Programming Clóvis C. Gonzaga Federal University of Santa Catarina, Florianópolis, Brazil EURO - 2013 Roma Our heroes Cauchy Newton Lagrange Early results Unconstrained

More information

Convex Optimization Overview (cnt d)

Convex Optimization Overview (cnt d) Convex Optimization Overview (cnt d) Chuong B. Do October 6, 007 1 Recap During last week s section, we began our study of convex optimization, the study of mathematical optimization problems of the form,

More information

10 Numerical methods for constrained problems

10 Numerical methods for constrained problems 10 Numerical methods for constrained problems min s.t. f(x) h(x) = 0 (l), g(x) 0 (m), x X The algorithms can be roughly divided the following way: ˆ primal methods: find descent direction keeping inside

More information

Conditional Gradient (Frank-Wolfe) Method

Conditional Gradient (Frank-Wolfe) Method Conditional Gradient (Frank-Wolfe) Method Lecturer: Aarti Singh Co-instructor: Pradeep Ravikumar Convex Optimization 10-725/36-725 1 Outline Today: Conditional gradient method Convergence analysis Properties

More information

Constrained Optimization

Constrained Optimization 1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange

More information

ECE 8440 Unit 17. Parks- McClellan Algorithm

ECE 8440 Unit 17. Parks- McClellan Algorithm Parks- McClellan Algorithm ECE 8440 Unit 17 The Parks- McClellan Algorithm is a computer method to find the unit sample response h(n for an op=mum FIR filter that sa=sfies the condi=ons of the Alterna=on

More information

Numerical optimization. Numerical optimization. Longest Shortest where Maximal Minimal. Fastest. Largest. Optimization problems

Numerical optimization. Numerical optimization. Longest Shortest where Maximal Minimal. Fastest. Largest. Optimization problems 1 Numerical optimization Alexander & Michael Bronstein, 2006-2009 Michael Bronstein, 2010 tosca.cs.technion.ac.il/book Numerical optimization 048921 Advanced topics in vision Processing and Analysis of

More information

Multidisciplinary System Design Optimization (MSDO)

Multidisciplinary System Design Optimization (MSDO) Multidisciplinary System Design Optimization (MSDO) Numerical Optimization II Lecture 8 Karen Willcox 1 Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Today s Topics Sequential

More information

5 Handling Constraints

5 Handling Constraints 5 Handling Constraints Engineering design optimization problems are very rarely unconstrained. Moreover, the constraints that appear in these problems are typically nonlinear. This motivates our interest

More information

Design and Analysis of Algorithms Lecture Notes on Convex Optimization CS 6820, Fall Nov 2 Dec 2016

Design and Analysis of Algorithms Lecture Notes on Convex Optimization CS 6820, Fall Nov 2 Dec 2016 Design and Analysis of Algorithms Lecture Notes on Convex Optimization CS 6820, Fall 206 2 Nov 2 Dec 206 Let D be a convex subset of R n. A function f : D R is convex if it satisfies f(tx + ( t)y) tf(x)

More information

Algorithms for NLP. Classifica(on III. Taylor Berg- Kirkpatrick CMU Slides: Dan Klein UC Berkeley

Algorithms for NLP. Classifica(on III. Taylor Berg- Kirkpatrick CMU Slides: Dan Klein UC Berkeley Algorithms for NLP Classifica(on III Taylor Berg- Kirkpatrick CMU Slides: Dan Klein UC Berkeley The Perceptron, Again Start with zero weights Visit training instances one by one Try to classify If correct,

More information

Gradient descent. Barnabas Poczos & Ryan Tibshirani Convex Optimization /36-725

Gradient descent. Barnabas Poczos & Ryan Tibshirani Convex Optimization /36-725 Gradient descent Barnabas Poczos & Ryan Tibshirani Convex Optimization 10-725/36-725 1 Gradient descent First consider unconstrained minimization of f : R n R, convex and differentiable. We want to solve

More information

Unconstrained optimization

Unconstrained optimization Chapter 4 Unconstrained optimization An unconstrained optimization problem takes the form min x Rnf(x) (4.1) for a target functional (also called objective function) f : R n R. In this chapter and throughout

More information

Modeling radiocarbon in the Earth System. Radiocarbon summer school 2012

Modeling radiocarbon in the Earth System. Radiocarbon summer school 2012 Modeling radiocarbon in the Earth System Radiocarbon summer school 2012 Outline Brief introduc9on to mathema9cal modeling Single pool models Mul9ple pool models Model implementa9on Parameter es9ma9on What

More information

ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints

ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints Instructor: Prof. Kevin Ross Scribe: Nitish John October 18, 2011 1 The Basic Goal The main idea is to transform a given constrained

More information

Unconstrained minimization: assumptions

Unconstrained minimization: assumptions Unconstrained minimization I terminology and assumptions I gradient descent method I steepest descent method I Newton s method I self-concordant functions I implementation IOE 611: Nonlinear Programming,

More information

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Optimization Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Unconstrained optimization Outline 1 Unconstrained optimization 2 Constrained

More information

Lecture 14 Barrier method

Lecture 14 Barrier method L. Vandenberghe EE236A (Fall 2013-14) Lecture 14 Barrier method centering problem Newton decrement local convergence of Newton method short-step barrier method global convergence of Newton method predictor-corrector

More information

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Lagrange Duality Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Lagrangian Dual function Dual

More information

6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE. Three Alternatives/Remedies for Gradient Projection

6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE. Three Alternatives/Remedies for Gradient Projection 6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE Three Alternatives/Remedies for Gradient Projection Two-Metric Projection Methods Manifold Suboptimization Methods

More information

Lecture 3: Minimizing Large Sums. Peter Richtárik

Lecture 3: Minimizing Large Sums. Peter Richtárik Lecture 3: Minimizing Large Sums Peter Richtárik Graduate School in Systems, Op@miza@on, Control and Networks Belgium 2015 Mo@va@on: Machine Learning & Empirical Risk Minimiza@on Training Linear Predictors

More information

1. Gradient method. gradient method, first-order methods. quadratic bounds on convex functions. analysis of gradient method

1. Gradient method. gradient method, first-order methods. quadratic bounds on convex functions. analysis of gradient method L. Vandenberghe EE236C (Spring 2016) 1. Gradient method gradient method, first-order methods quadratic bounds on convex functions analysis of gradient method 1-1 Approximate course outline First-order

More information

CSE 473: Ar+ficial Intelligence. Probability Recap. Markov Models - II. Condi+onal probability. Product rule. Chain rule.

CSE 473: Ar+ficial Intelligence. Probability Recap. Markov Models - II. Condi+onal probability. Product rule. Chain rule. CSE 473: Ar+ficial Intelligence Markov Models - II Daniel S. Weld - - - University of Washington [Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188

More information

Modern Optimization Techniques

Modern Optimization Techniques Modern Optimization Techniques 0. Overview Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany 1 / 44 Syllabus Mon.

More information

CHAPTER 2: QUADRATIC PROGRAMMING

CHAPTER 2: QUADRATIC PROGRAMMING CHAPTER 2: QUADRATIC PROGRAMMING Overview Quadratic programming (QP) problems are characterized by objective functions that are quadratic in the design variables, and linear constraints. In this sense,

More information