Introduction to Particle Filters for Data Assimilation

Size: px
Start display at page:

Download "Introduction to Particle Filters for Data Assimilation"

Transcription

1 Introduction to Particle Filters for Data Assimilation Mike Dowd Dept of Mathematics & Statistics (and Dept of Oceanography Dalhousie University, Halifax, Canada STATMOS Summer School in Data Assimila5on, Boulder, Colorado, May

2 Problem Statement Noisy 'me series observa'ons on the system state y 1:T = (y 1,..., y T a discrete 'me stochas'c dynamic model describing the 'me evolu'on of the system state x t = θx t 1 + n t e.g. Bivariate AR(1 process We want to es'mate the system state (and some'mes parameters

3 Noisy Observations of System State Observations state time

4 Stochastic Dynamics governing System State 10 Realizations of System State state time

5 Estimation of System State by Particle Filters Particle Filter Estimate of the State state time

6 Target: Evolution of the Probability Distribution Of the State through Time 'me state

7 A General Framework for DA Hierarchical Bayesian Model p(x 1:T,θ y 1:T p(y 1:T x 1:T,θ p(x 1:T θ p(θ target (posterior measurement dynamics prior Special Cases in DA Parameter es'ma'on (no model error Filtering solu'on for state * Smoothing solu'on for state Joint state & parameter es'ma'on Inference on dynamic model structure

8 Data Assimilation: A Statistical Framework State Space Model: x t = d(x t 1,θ,e t y t = h(x t,φ,ν t or x t ~ p(x t,θ x t 1 y t x t ~ p(y t,φ x t The general goal is to make inferences about the state x t and some'mes the sta'c parameters* θ and ϕ**. We use explicit priors on process noise & observa'on errors (i.e. parametric distribu'ons for e t and v t. Assume y t condi'onally independent given x t, and that e t and v t are independent. For DA, we want to do space- 'me problems: space is incorporated in x t è Solu'ons involve sequen'al Monte Carlo based for nonlinear and nongaussian state space models * Dynamic parameters are part of the state ** drop φ hereater, and defer θ t = 1,,T

9 Problem Classes We want to es'mate the system state at 'me t, or given the observa'ons up to 'me s, or y 1:S = (y 1, y 2,.., y S x t A Filtering (Nowcast B Forecasting C Smoothing (Hindcast s s s s=t è Filtering s>t è Predic'on s<t è Smoothing Time data available no data available estimation time

10 Sequential Estimation Single stage transition of system from time t-1 to time t prediction x t = d(x t 1,θ,e t measurement y t nowcast p(x t 1,θ y 1:t 1 forecast nowcast p(x t,θ y 1:t 1 p(x t,θ y 1:t time = t-1 time = t time - We ll drop parameters θ for now

11 Probabilistic Solution for Filtering A single stage transition of the system for time t-1 to t involves: Prediction: p(x t y 1:t 1 = p(x t x t 1 p(x t 1 y 1:t 1 dx t 1 Measurement update: p(x t y 1:t = p(y t x t p(x t y 1:t 1 p(y 1:t è General Filtering Solution: p(x t y 1:t p( y t x t p(x t x t 1 p(x t 1 y 1:t 1 dx t 1 do for t=1,, T, given p(x 0 and y 1:t = (y 1, y 2,.., y T

12 Sampling Based Estimation Let {x (i t t,w (i t }, i = 1,..., n be a random sample* from p(x t y 1:t drawn from the target distribu'on (the filter density (i where: x t t w t (i are the support points are the normalized weights The filter density can then be approximated as p(x t y 1:t n i=1 w (i t δ (x t t x (i t t *referred to an ensemble, made up of a collec'on of par'cles (which are sample members

13 Sampling Based Estimation (a unweighted ensemble, n= (b weighted ensemble, n=25 probability 0.2 probability x (c unweighted ensemble, n= x (d weighted ensemble, n= probability 0.2 probability x x

14 Sequential Importance Sampling (SIS (i At time t-1 we have: i {x t 1 t 1,w (i t 1 }, draws from p(x t 1 y 1:t 1 i y t, an observation If a candidate x (i t t is drawn from a proposal q(x t t then w (i t p(x (i t t y t (i y t q(x t t or w (i (i t w t 1 p(y t x (i t t p(x (i (i t t x t 1 t 1 q(x (i t t A draw from p(x t y 1:t is then available as {x (i t t,w (i t } see Arulampalam et al. 2002

15 SIS Remarks SIS solves the filtering problems for the nonlinear, non- Gaussian state space model via an algorithm for sequen'al online es'ma'on of the system state relying on a proposal and weight update. A common simplifica'on is to let the proposal be the the prior (the predic've density q(x t t = p(x t x t 1 leading to: w (i (i t w t 1 p(y t x (i t 1 The main prac'cal problem with SIS is weight collapse wherein ater a few 'me steps, all the weights become concentrated on a few par'cles. How to fix?

16 Sequential Importance Resampling (SIR The major breakthrough in sequential Monte Carlo methods (Gordon et al was to incorporate a resampling step to obviate weight collapse. (i i Specifically, for each time t, {x t t 1,w (i t } is a sample from p(x t y t 1 i We can resample (with replacement the x (i t t with a probability proportional to w t (i (i.e. a weighted bootstrap i This yields a modified sample {x (i t t }, wherein particles were both killed and replicated, and the weights are now equal, i.e. w t (i = 1 i. Remaining Issue: sample impoverishment - some particles replicated often in the unweighted sample {x (i t t }. Less severe than weight collapse (but of course related.

17 Basic Particle Filter Algorithm Given: (1 dynamical model, (2 observa'ons, (3 ini'al condi'ons for t = 1 to T (i (a Prediction: {x t 1 t 1 (i } {x t t 1 } as (i x t t 1 (i = d(x t 1 t 1,e (i t for i = 1,...,n (i (b Measurement: {x t t 1 } {x (i t t } as end (for t w (i (i t p(y t x t t 1 for i = 1,...,n (i (i resample with replacement {x t t 1 } using weights w t yields {x (i t t }

18 Particle Filter Schematic

19 Interpretation: Particle History state 'me

20 R-code for a Basic Particle Filter! for (t in 2:T! predic'on step {! from t- 1 to t! xf=t(apply(xa,1,dynamicmodel!! extract measurement yobs=matrix(y[t,],1,ncol(y! at 'me t! w=apply(matrix(xf[,1],np,1,1,dmvnorm,x=yobs,sigma=r!! assign weights m=sample(1:np,size=np,prob=w,replace=t;! xa=xf[m,]!! }! weighted resampling

21 Element 1. Prediction Step { (i x } t 1 t 1 { (i x } t t 1 draw from p(x t 1 y 1:t 1 filter density at time t-1 draw from p(x t y 1:t 1 predictive density at time t Role: acts as proposal distribution for particle filter (i x t t 1 (i = d(x t 1 t 1,e (i t for i = 1,...,n Remarks: - computa'onally expensive to generate large samples for big GFD models - hard to effec'vely populate a large dimension state space with par'cles

22 Element 2. Measurement Update { (i x } t t 1 draw from p(x t y 1:t 1 predictive density at time t-1 { (i x } t t draw from p(x t y 1:t filter density at time t uses p(x t t y 1:t p(y t x t t 1 p(x t t 1 (Bayes Formula Approaches: (i i PF/SIR: weighted resample of x t t 1 y t { (i,w } (i t x t t { } Metropolis Hastings MCMC Ensemble Kalman filter (approximate plus many others (auxiliary, unscented,. that modify proposal distributions

23 Sequential Metropolis-Hastings Construct (independence chain to yield sample from target filter distribu5on. for k = 1 to K 1. Generate candidate from predictive density: * draw x t t 1 2. Evaluate acceptance probability from predictive density p(x t y 1:t 1 α = min 1, p(y x * t t t 1 (k p(y t x t t 3. Let x * t t enter the posterior sample {x t t (k otherwise retain x t t end (for k yields (i } with probability α, { (i x t t }, a sample from p(x t y 1:t flexible, configurable and efficient (+ a parallel with SIR can alleviate sample impoverishment (resample- move

24 Limitations Theory: convergence to target marginal distribu'on holds under weak assump'ons (e.g. Kunsch 2005 p(x t y 1:t Prac7cal Problem: The standard par'cle filtering (SIR when used in DA suffers from sample impoverishment (recall path degeneracy Typically, the predic'on ensemble far away from the observed state (due to small ensemble size, and high dimensional state space. è likelihood is poorly represented and es'ma'on compromised. What modifica5ons are made to improve par5cle filters?

25 Some Fixes Add Ji;er : overdisperse the sample of predic've density (inflate process error Make a Gaussian approxima5on, or transforma5on/anamorphosis: Can Use Kalman filter upda'ng equa'on Approximate the Likelihood func5on: change its func'onal form, or inflate or alter measurement error. Error Subspace: confine stochas'city in parameters only. Dimension reduc'on. Use Fixed lag smoother, Batch processing incorporate observa'ons from mul'ple 'mes into observa'on update. Clever Proposal Distribu5ons and look- ahead filters: move beyond using prior (predic've density as proposal.

26 What about Parameter Estimation? 1. State Augmentation: append parameters to the state x t = x t θ t Can use particle filter machinery to solve (Kitagawa Also, see multiple iterative filtering (Ionides Likelihood Methods: Use sample based likelihoods T [y 1:T θ] = L(θ y 1:T = [y t x t,θ][x t y 1:t 1,θ]dx t t=1 T t=1 n 1 (i p(y t x t t 1 n i=1

27 Summary 1. State space model is sta's'cal framework for considering dynamic models and measurements 2. Importance sampling provides theore'cal basis for par'cle filters 3. Sequen'al importance resampling (SIR yields a straighforward and workable algorithm for the filtering problem 4. For the realis'c problems in data assimila'on, par'cle filters must be modified either via approxima'ons, or clever use of proposal distribu'ons.

28 Some Key References Jazwinski AH Stochas'c Processes and Filtering Theory. Academic Press: New York, 376pp. Gordon NJ, Salmond DJ, Smith AFM Novel approach to nonlinear/non- Gaussian Bayesian state es'ma'on. IEE Proceedings- F 140(2: Kitagawa G Monte Carlo filter and smoother for non- Gaussian nonlinear state space models. Journal of Computa'onal and Graphical Sta's'cs 5: Kitagawa G A self- organizing state space model. Journal of the American Sta's'cal Associa'on. 93(443: Arulampalam MS, Maskell S, Gordon N, Clapp T, A tutorial on par'cle filters for online nonlinear non- Gaussian Bayesian tracking. IEEE Transac'ons on Signal Processing 50(2: Kunsch HR Recursive Monte Carlo filters: algorithms and theore'cal analysis. The Annals of Sta's'cs. 33(5: Godsill SJ, Doucet A, West M Monte Carlo Smoothing for Nonlinear Time Series. Journal of the American Sta's'cal Associa'on. 99(465: Ionides EL, Breto C, King AA Inference for nonlinear dynamical systems. Proceedings of the Na'onal Academy of Sciences 103:

Par$cle Filters Part I: Theory. Peter Jan van Leeuwen Data- Assimila$on Research Centre DARC University of Reading

Par$cle Filters Part I: Theory. Peter Jan van Leeuwen Data- Assimila$on Research Centre DARC University of Reading Par$cle Filters Part I: Theory Peter Jan van Leeuwen Data- Assimila$on Research Centre DARC University of Reading Reading July 2013 Why Data Assimila$on Predic$on Model improvement: - Parameter es$ma$on

More information

Miscellaneous Thoughts on Ocean Data Assimilation

Miscellaneous Thoughts on Ocean Data Assimilation Miscellaneous Thoughts on Ocean Data Assimilation Mike Dowd Dept of Mathematics & Statistics (and Dept of Oceanography) Dalhousie University, Halifax, Canada STATMOS Summer School in Data Assimila5on,

More information

Sensor Fusion: Particle Filter

Sensor Fusion: Particle Filter Sensor Fusion: Particle Filter By: Gordana Stojceska stojcesk@in.tum.de Outline Motivation Applications Fundamentals Tracking People Advantages and disadvantages Summary June 05 JASS '05, St.Petersburg,

More information

Nonlinear ensemble data assimila/on in high- dimensional spaces. Peter Jan van Leeuwen Javier Amezcua, Mengbin Zhu, Melanie Ades

Nonlinear ensemble data assimila/on in high- dimensional spaces. Peter Jan van Leeuwen Javier Amezcua, Mengbin Zhu, Melanie Ades Nonlinear ensemble data assimila/on in high- dimensional spaces Peter Jan van Leeuwen Javier Amezcua, Mengbin Zhu, Melanie Ades Data assimila/on: general formula/on Bayes theorem: The solu/on is a pdf!

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

An introduction to Sequential Monte Carlo

An introduction to Sequential Monte Carlo An introduction to Sequential Monte Carlo Thang Bui Jes Frellsen Department of Engineering University of Cambridge Research and Communication Club 6 February 2014 1 Sequential Monte Carlo (SMC) methods

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

Inferring biological dynamics Iterated filtering (IF)

Inferring biological dynamics Iterated filtering (IF) Inferring biological dynamics 101 3. Iterated filtering (IF) IF originated in 2006 [6]. For plug-and-play likelihood-based inference on POMP models, there are not many alternatives. Directly estimating

More information

L09. PARTICLE FILTERING. NA568 Mobile Robotics: Methods & Algorithms

L09. PARTICLE FILTERING. NA568 Mobile Robotics: Methods & Algorithms L09. PARTICLE FILTERING NA568 Mobile Robotics: Methods & Algorithms Particle Filters Different approach to state estimation Instead of parametric description of state (and uncertainty), use a set of state

More information

AN EFFICIENT TWO-STAGE SAMPLING METHOD IN PARTICLE FILTER. Qi Cheng and Pascal Bondon. CNRS UMR 8506, Université Paris XI, France.

AN EFFICIENT TWO-STAGE SAMPLING METHOD IN PARTICLE FILTER. Qi Cheng and Pascal Bondon. CNRS UMR 8506, Université Paris XI, France. AN EFFICIENT TWO-STAGE SAMPLING METHOD IN PARTICLE FILTER Qi Cheng and Pascal Bondon CNRS UMR 8506, Université Paris XI, France. August 27, 2011 Abstract We present a modified bootstrap filter to draw

More information

Fundamentals of Data Assimila1on

Fundamentals of Data Assimila1on 2015 GSI Community Tutorial NCAR Foothills Campus, Boulder, CO August 11-14, 2015 Fundamentals of Data Assimila1on Milija Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University

More information

CS 6140: Machine Learning Spring What We Learned Last Week. Survey 2/26/16. VS. Model

CS 6140: Machine Learning Spring What We Learned Last Week. Survey 2/26/16. VS. Model Logis@cs CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa@on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Assignment

More information

Fundamentals of Data Assimila1on

Fundamentals of Data Assimila1on 014 GSI Community Tutorial NCAR Foothills Campus, Boulder, CO July 14-16, 014 Fundamentals of Data Assimila1on Milija Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University

More information

CS 6140: Machine Learning Spring 2016

CS 6140: Machine Learning Spring 2016 CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa?on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Logis?cs Assignment

More information

Lecture 8: Bayesian Estimation of Parameters in State Space Models

Lecture 8: Bayesian Estimation of Parameters in State Space Models in State Space Models March 30, 2016 Contents 1 Bayesian estimation of parameters in state space models 2 Computational methods for parameter estimation 3 Practical parameter estimation in state space

More information

RAO-BLACKWELLISED PARTICLE FILTERS: EXAMPLES OF APPLICATIONS

RAO-BLACKWELLISED PARTICLE FILTERS: EXAMPLES OF APPLICATIONS RAO-BLACKWELLISED PARTICLE FILTERS: EXAMPLES OF APPLICATIONS Frédéric Mustière e-mail: mustiere@site.uottawa.ca Miodrag Bolić e-mail: mbolic@site.uottawa.ca Martin Bouchard e-mail: bouchard@site.uottawa.ca

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA Contents in latter part Linear Dynamical Systems What is different from HMM? Kalman filter Its strength and limitation Particle Filter

More information

Sequential Monte Carlo Methods for Bayesian Computation

Sequential Monte Carlo Methods for Bayesian Computation Sequential Monte Carlo Methods for Bayesian Computation A. Doucet Kyoto Sept. 2012 A. Doucet (MLSS Sept. 2012) Sept. 2012 1 / 136 Motivating Example 1: Generic Bayesian Model Let X be a vector parameter

More information

Sequential Monte Carlo and Particle Filtering. Frank Wood Gatsby, November 2007

Sequential Monte Carlo and Particle Filtering. Frank Wood Gatsby, November 2007 Sequential Monte Carlo and Particle Filtering Frank Wood Gatsby, November 2007 Importance Sampling Recall: Let s say that we want to compute some expectation (integral) E p [f] = p(x)f(x)dx and we remember

More information

Ensemble Data Assimila.on and Uncertainty Quan.fica.on

Ensemble Data Assimila.on and Uncertainty Quan.fica.on Ensemble Data Assimila.on and Uncertainty Quan.fica.on Jeffrey Anderson, Alicia Karspeck, Tim Hoar, Nancy Collins, Kevin Raeder, Steve Yeager Na.onal Center for Atmospheric Research Ocean Sciences Mee.ng

More information

Ensemble Data Assimila.on for Climate System Component Models

Ensemble Data Assimila.on for Climate System Component Models Ensemble Data Assimila.on for Climate System Component Models Jeffrey Anderson Na.onal Center for Atmospheric Research In collabora.on with: Alicia Karspeck, Kevin Raeder, Tim Hoar, Nancy Collins IMA 11

More information

An Introduction to Particle Filtering

An Introduction to Particle Filtering An Introduction to Particle Filtering Author: Lisa Turner Supervisor: Dr. Christopher Sherlock 10th May 2013 Abstract This report introduces the ideas behind particle filters, looking at the Kalman filter

More information

Particle filters, the optimal proposal and high-dimensional systems

Particle filters, the optimal proposal and high-dimensional systems Particle filters, the optimal proposal and high-dimensional systems Chris Snyder National Center for Atmospheric Research Boulder, Colorado 837, United States chriss@ucar.edu 1 Introduction Particle filters

More information

Particle Filters. Outline

Particle Filters. Outline Particle Filters M. Sami Fadali Professor of EE University of Nevada Outline Monte Carlo integration. Particle filter. Importance sampling. Degeneracy Resampling Example. 1 2 Monte Carlo Integration Numerical

More information

Mini-course 07: Kalman and Particle Filters Particle Filters Fundamentals, algorithms and applications

Mini-course 07: Kalman and Particle Filters Particle Filters Fundamentals, algorithms and applications Mini-course 07: Kalman and Particle Filters Particle Filters Fundamentals, algorithms and applications Henrique Fonseca & Cesar Pacheco Wellington Betencurte 1 & Julio Dutra 2 Federal University of Espírito

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

DART Tutorial Part II: How should observa'ons impact an unobserved state variable? Mul'variate assimila'on.

DART Tutorial Part II: How should observa'ons impact an unobserved state variable? Mul'variate assimila'on. DART Tutorial Part II: How should observa'ons impact an unobserved state variable? Mul'variate assimila'on. UCAR The Na'onal Center for Atmospheric Research is sponsored by the Na'onal Science Founda'on.

More information

Bayesian statistical data assimilation for ecosystem models using Markov Chain Monte Carlo

Bayesian statistical data assimilation for ecosystem models using Markov Chain Monte Carlo Available online at www.sciencedirect.com Journal of Marine Systems 68 (2007) 439 456 www.elsevier.com/locate/jmarsys Bayesian statistical data assimilation for ecosystem models using Markov Chain Monte

More information

Blind Equalization via Particle Filtering

Blind Equalization via Particle Filtering Blind Equalization via Particle Filtering Yuki Yoshida, Kazunori Hayashi, Hideaki Sakai Department of System Science, Graduate School of Informatics, Kyoto University Historical Remarks A sequential Monte

More information

Markov Chain Monte Carlo Methods for Stochastic Optimization

Markov Chain Monte Carlo Methods for Stochastic Optimization Markov Chain Monte Carlo Methods for Stochastic Optimization John R. Birge The University of Chicago Booth School of Business Joint work with Nicholas Polson, Chicago Booth. JRBirge U of Toronto, MIE,

More information

Smoothers: Types and Benchmarks

Smoothers: Types and Benchmarks Smoothers: Types and Benchmarks Patrick N. Raanes Oxford University, NERSC 8th International EnKF Workshop May 27, 2013 Chris Farmer, Irene Moroz Laurent Bertino NERSC Geir Evensen Abstract Talk builds

More information

Particle Filtering Approaches for Dynamic Stochastic Optimization

Particle Filtering Approaches for Dynamic Stochastic Optimization Particle Filtering Approaches for Dynamic Stochastic Optimization John R. Birge The University of Chicago Booth School of Business Joint work with Nicholas Polson, Chicago Booth. JRBirge I-Sim Workshop,

More information

A Monte Carlo Sequential Estimation for Point Process Optimum Filtering

A Monte Carlo Sequential Estimation for Point Process Optimum Filtering 2006 International Joint Conference on Neural Networks Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada July 16-21, 2006 A Monte Carlo Sequential Estimation for Point Process Optimum Filtering

More information

Particle Filtering a brief introductory tutorial. Frank Wood Gatsby, August 2007

Particle Filtering a brief introductory tutorial. Frank Wood Gatsby, August 2007 Particle Filtering a brief introductory tutorial Frank Wood Gatsby, August 2007 Problem: Target Tracking A ballistic projectile has been launched in our direction and may or may not land near enough to

More information

A nested sampling particle filter for nonlinear data assimilation

A nested sampling particle filter for nonlinear data assimilation Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. : 14, July 2 A DOI:.2/qj.224 A nested sampling particle filter for nonlinear data assimilation Ahmed H. Elsheikh a,b *, Ibrahim

More information

Bayesian Monte Carlo Filtering for Stochastic Volatility Models

Bayesian Monte Carlo Filtering for Stochastic Volatility Models Bayesian Monte Carlo Filtering for Stochastic Volatility Models Roberto Casarin CEREMADE University Paris IX (Dauphine) and Dept. of Economics University Ca Foscari, Venice Abstract Modelling of the financial

More information

Markov Chain Monte Carlo Methods for Stochastic

Markov Chain Monte Carlo Methods for Stochastic Markov Chain Monte Carlo Methods for Stochastic Optimization i John R. Birge The University of Chicago Booth School of Business Joint work with Nicholas Polson, Chicago Booth. JRBirge U Florida, Nov 2013

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

State Estimation using Moving Horizon Estimation and Particle Filtering

State Estimation using Moving Horizon Estimation and Particle Filtering State Estimation using Moving Horizon Estimation and Particle Filtering James B. Rawlings Department of Chemical and Biological Engineering UW Math Probability Seminar Spring 2009 Rawlings MHE & PF 1 /

More information

Learning Static Parameters in Stochastic Processes

Learning Static Parameters in Stochastic Processes Learning Static Parameters in Stochastic Processes Bharath Ramsundar December 14, 2012 1 Introduction Consider a Markovian stochastic process X T evolving (perhaps nonlinearly) over time variable T. We

More information

Human Pose Tracking I: Basics. David Fleet University of Toronto

Human Pose Tracking I: Basics. David Fleet University of Toronto Human Pose Tracking I: Basics David Fleet University of Toronto CIFAR Summer School, 2009 Looking at People Challenges: Complex pose / motion People have many degrees of freedom, comprising an articulated

More information

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

DART Tutorial Sec'on 9: More on Dealing with Error: Infla'on

DART Tutorial Sec'on 9: More on Dealing with Error: Infla'on DART Tutorial Sec'on 9: More on Dealing with Error: Infla'on UCAR The Na'onal Center for Atmospheric Research is sponsored by the Na'onal Science Founda'on. Any opinions, findings and conclusions or recommenda'ons

More information

A new unscented Kalman filter with higher order moment-matching

A new unscented Kalman filter with higher order moment-matching A new unscented Kalman filter with higher order moment-matching KSENIA PONOMAREVA, PARESH DATE AND ZIDONG WANG Department of Mathematical Sciences, Brunel University, Uxbridge, UB8 3PH, UK. Abstract This

More information

DART Tutorial Sec'on 5: Comprehensive Filtering Theory: Non-Iden'ty Observa'ons and the Joint Phase Space

DART Tutorial Sec'on 5: Comprehensive Filtering Theory: Non-Iden'ty Observa'ons and the Joint Phase Space DART Tutorial Sec'on 5: Comprehensive Filtering Theory: Non-Iden'ty Observa'ons and the Joint Phase Space UCAR The Na'onal Center for Atmospheric Research is sponsored by the Na'onal Science Founda'on.

More information

Content.

Content. Content Fundamentals of Bayesian Techniques (E. Sucar) Bayesian Filters (O. Aycard) Definition & interests Implementations Hidden Markov models Discrete Bayesian Filters or Markov localization Kalman filters

More information

DART Tutorial Sec'on 1: Filtering For a One Variable System

DART Tutorial Sec'on 1: Filtering For a One Variable System DART Tutorial Sec'on 1: Filtering For a One Variable System UCAR The Na'onal Center for Atmospheric Research is sponsored by the Na'onal Science Founda'on. Any opinions, findings and conclusions or recommenda'ons

More information

Particle Filtering for Data-Driven Simulation and Optimization

Particle Filtering for Data-Driven Simulation and Optimization Particle Filtering for Data-Driven Simulation and Optimization John R. Birge The University of Chicago Booth School of Business Includes joint work with Nicholas Polson. JRBirge INFORMS Phoenix, October

More information

Latent Dirichlet Alloca/on

Latent Dirichlet Alloca/on Latent Dirichlet Alloca/on Blei, Ng and Jordan ( 2002 ) Presented by Deepak Santhanam What is Latent Dirichlet Alloca/on? Genera/ve Model for collec/ons of discrete data Data generated by parameters which

More information

Monte Carlo Approximation of Monte Carlo Filters

Monte Carlo Approximation of Monte Carlo Filters Monte Carlo Approximation of Monte Carlo Filters Adam M. Johansen et al. Collaborators Include: Arnaud Doucet, Axel Finke, Anthony Lee, Nick Whiteley 7th January 2014 Context & Outline Filtering in State-Space

More information

Advanced Computational Methods in Statistics: Lecture 5 Sequential Monte Carlo/Particle Filtering

Advanced Computational Methods in Statistics: Lecture 5 Sequential Monte Carlo/Particle Filtering Advanced Computational Methods in Statistics: Lecture 5 Sequential Monte Carlo/Particle Filtering Axel Gandy Department of Mathematics Imperial College London http://www2.imperial.ac.uk/~agandy London

More information

Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model. David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC

Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model. David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC Background Data Assimilation Iterative process Forecast Analysis Background

More information

Density Propagation for Continuous Temporal Chains Generative and Discriminative Models

Density Propagation for Continuous Temporal Chains Generative and Discriminative Models $ Technical Report, University of Toronto, CSRG-501, October 2004 Density Propagation for Continuous Temporal Chains Generative and Discriminative Models Cristian Sminchisescu and Allan Jepson Department

More information

Evolution Strategies Based Particle Filters for Fault Detection

Evolution Strategies Based Particle Filters for Fault Detection Evolution Strategies Based Particle Filters for Fault Detection Katsuji Uosaki, Member, IEEE, and Toshiharu Hatanaka, Member, IEEE Abstract Recent massive increase of the computational power has allowed

More information

Lecture 7: Optimal Smoothing

Lecture 7: Optimal Smoothing Department of Biomedical Engineering and Computational Science Aalto University March 17, 2011 Contents 1 What is Optimal Smoothing? 2 Bayesian Optimal Smoothing Equations 3 Rauch-Tung-Striebel Smoother

More information

EVALUATING SYMMETRIC INFORMATION GAP BETWEEN DYNAMICAL SYSTEMS USING PARTICLE FILTER

EVALUATING SYMMETRIC INFORMATION GAP BETWEEN DYNAMICAL SYSTEMS USING PARTICLE FILTER EVALUATING SYMMETRIC INFORMATION GAP BETWEEN DYNAMICAL SYSTEMS USING PARTICLE FILTER Zhen Zhen 1, Jun Young Lee 2, and Abdus Saboor 3 1 Mingde College, Guizhou University, China zhenz2000@21cn.com 2 Department

More information

CSE 473: Ar+ficial Intelligence. Probability Recap. Markov Models - II. Condi+onal probability. Product rule. Chain rule.

CSE 473: Ar+ficial Intelligence. Probability Recap. Markov Models - II. Condi+onal probability. Product rule. Chain rule. CSE 473: Ar+ficial Intelligence Markov Models - II Daniel S. Weld - - - University of Washington [Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188

More information

Efficient Monitoring for Planetary Rovers

Efficient Monitoring for Planetary Rovers International Symposium on Artificial Intelligence and Robotics in Space (isairas), May, 2003 Efficient Monitoring for Planetary Rovers Vandi Verma vandi@ri.cmu.edu Geoff Gordon ggordon@cs.cmu.edu Carnegie

More information

Lecture 6: Bayesian Inference in SDE Models

Lecture 6: Bayesian Inference in SDE Models Lecture 6: Bayesian Inference in SDE Models Bayesian Filtering and Smoothing Point of View Simo Särkkä Aalto University Simo Särkkä (Aalto) Lecture 6: Bayesian Inference in SDEs 1 / 45 Contents 1 SDEs

More information

Particle Learning and Smoothing

Particle Learning and Smoothing Particle Learning and Smoothing Carlos Carvalho, Michael Johannes, Hedibert Lopes and Nicholas Polson This version: September 2009 First draft: December 2007 Abstract In this paper we develop particle

More information

Available online at ScienceDirect. IFAC PapersOnLine (2018)

Available online at   ScienceDirect. IFAC PapersOnLine (2018) Available online at www.sciencedirect.com ScienceDirect IFAC PapersOnLine 51-15 (218) 67 675 Improving the particle filter in high dimensions using conjugate artificial process noise Anna Wigren Lawrence

More information

The Hierarchical Particle Filter

The Hierarchical Particle Filter and Arnaud Doucet http://go.warwick.ac.uk/amjohansen/talks MCMSki V Lenzerheide 7th January 2016 Context & Outline Filtering in State-Space Models: SIR Particle Filters [GSS93] Block-Sampling Particle

More information

Master Degree in Data Science. Particle Filtering for Nonlinear State Space Models. Hans-Peter Höllwirth. Director: Dr. Christian Brownlees

Master Degree in Data Science. Particle Filtering for Nonlinear State Space Models. Hans-Peter Höllwirth. Director: Dr. Christian Brownlees Master Degree in Data Science Particle Filtering for Nonlinear State Space Models Hans-Peter Höllwirth Director: Dr. Christian Brownlees June 2017 ABSTRACT IN ENGLISH : This paper studies a novel particle

More information

The Unscented Particle Filter

The Unscented Particle Filter The Unscented Particle Filter Rudolph van der Merwe (OGI) Nando de Freitas (UC Bereley) Arnaud Doucet (Cambridge University) Eric Wan (OGI) Outline Optimal Estimation & Filtering Optimal Recursive Bayesian

More information

Short tutorial on data assimilation

Short tutorial on data assimilation Mitglied der Helmholtz-Gemeinschaft Short tutorial on data assimilation 23 June 2015 Wolfgang Kurtz & Harrie-Jan Hendricks Franssen Institute of Bio- and Geosciences IBG-3 (Agrosphere), Forschungszentrum

More information

Tracking. Readings: Chapter 17 of Forsyth and Ponce. Matlab Tutorials: motiontutorial.m. 2503: Tracking c D.J. Fleet & A.D. Jepson, 2009 Page: 1

Tracking. Readings: Chapter 17 of Forsyth and Ponce. Matlab Tutorials: motiontutorial.m. 2503: Tracking c D.J. Fleet & A.D. Jepson, 2009 Page: 1 Goal: Tracking Fundamentals of model-based tracking with emphasis on probabilistic formulations. Examples include the Kalman filter for linear-gaussian problems, and maximum likelihood and particle filters

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Monte Carlo Methods. Leon Gu CSD, CMU

Monte Carlo Methods. Leon Gu CSD, CMU Monte Carlo Methods Leon Gu CSD, CMU Approximate Inference EM: y-observed variables; x-hidden variables; θ-parameters; E-step: q(x) = p(x y, θ t 1 ) M-step: θ t = arg max E q(x) [log p(y, x θ)] θ Monte

More information

CSE 473: Ar+ficial Intelligence. Hidden Markov Models. Bayes Nets. Two random variable at each +me step Hidden state, X i Observa+on, E i

CSE 473: Ar+ficial Intelligence. Hidden Markov Models. Bayes Nets. Two random variable at each +me step Hidden state, X i Observa+on, E i CSE 473: Ar+ficial Intelligence Bayes Nets Daniel Weld [Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at hnp://ai.berkeley.edu.]

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Markov chain Monte Carlo methods for visual tracking

Markov chain Monte Carlo methods for visual tracking Markov chain Monte Carlo methods for visual tracking Ray Luo rluo@cory.eecs.berkeley.edu Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA 94720

More information

The Kalman Filter ImPr Talk

The Kalman Filter ImPr Talk The Kalman Filter ImPr Talk Ged Ridgway Centre for Medical Image Computing November, 2006 Outline What is the Kalman Filter? State Space Models Kalman Filter Overview Bayesian Updating of Estimates Kalman

More information

Exercises Tutorial at ICASSP 2016 Learning Nonlinear Dynamical Models Using Particle Filters

Exercises Tutorial at ICASSP 2016 Learning Nonlinear Dynamical Models Using Particle Filters Exercises Tutorial at ICASSP 216 Learning Nonlinear Dynamical Models Using Particle Filters Andreas Svensson, Johan Dahlin and Thomas B. Schön March 18, 216 Good luck! 1 [Bootstrap particle filter for

More information

Controlled sequential Monte Carlo

Controlled sequential Monte Carlo Controlled sequential Monte Carlo Jeremy Heng, Department of Statistics, Harvard University Joint work with Adrian Bishop (UTS, CSIRO), George Deligiannidis & Arnaud Doucet (Oxford) Bayesian Computation

More information

Dynamic System Identification using HDMR-Bayesian Technique

Dynamic System Identification using HDMR-Bayesian Technique Dynamic System Identification using HDMR-Bayesian Technique *Shereena O A 1) and Dr. B N Rao 2) 1), 2) Department of Civil Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India 1) ce14d020@smail.iitm.ac.in

More information

An Brief Overview of Particle Filtering

An Brief Overview of Particle Filtering 1 An Brief Overview of Particle Filtering Adam M. Johansen a.m.johansen@warwick.ac.uk www2.warwick.ac.uk/fac/sci/statistics/staff/academic/johansen/talks/ May 11th, 2010 Warwick University Centre for Systems

More information

CSE 473: Ar+ficial Intelligence. Example. Par+cle Filters for HMMs. An HMM is defined by: Ini+al distribu+on: Transi+ons: Emissions:

CSE 473: Ar+ficial Intelligence. Example. Par+cle Filters for HMMs. An HMM is defined by: Ini+al distribu+on: Transi+ons: Emissions: CSE 473: Ar+ficial Intelligence Par+cle Filters for HMMs Daniel S. Weld - - - University of Washington [Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All

More information

RESEARCH ARTICLE. Online quantization in nonlinear filtering

RESEARCH ARTICLE. Online quantization in nonlinear filtering Journal of Statistical Computation & Simulation Vol. 00, No. 00, Month 200x, 3 RESEARCH ARTICLE Online quantization in nonlinear filtering A. Feuer and G. C. Goodwin Received 00 Month 200x; in final form

More information

An efficient stochastic approximation EM algorithm using conditional particle filters

An efficient stochastic approximation EM algorithm using conditional particle filters An efficient stochastic approximation EM algorithm using conditional particle filters Fredrik Lindsten Linköping University Post Print N.B.: When citing this work, cite the original article. Original Publication:

More information

Nonlinear and/or Non-normal Filtering. Jesús Fernández-Villaverde University of Pennsylvania

Nonlinear and/or Non-normal Filtering. Jesús Fernández-Villaverde University of Pennsylvania Nonlinear and/or Non-normal Filtering Jesús Fernández-Villaverde University of Pennsylvania 1 Motivation Nonlinear and/or non-gaussian filtering, smoothing, and forecasting (NLGF) problems are pervasive

More information

DART Tutorial Part IV: Other Updates for an Observed Variable

DART Tutorial Part IV: Other Updates for an Observed Variable DART Tutorial Part IV: Other Updates for an Observed Variable UCAR The Na'onal Center for Atmospheric Research is sponsored by the Na'onal Science Founda'on. Any opinions, findings and conclusions or recommenda'ons

More information

A new Hierarchical Bayes approach to ensemble-variational data assimilation

A new Hierarchical Bayes approach to ensemble-variational data assimilation A new Hierarchical Bayes approach to ensemble-variational data assimilation Michael Tsyrulnikov and Alexander Rakitko HydroMetCenter of Russia College Park, 20 Oct 2014 Michael Tsyrulnikov and Alexander

More information

arxiv: v1 [cs.ro] 1 May 2015

arxiv: v1 [cs.ro] 1 May 2015 215 IEEE International Conference on Robotics and Automation (ICRA) May 26-3, 215. Seattle, USA The Coordinate Particle Filter - A novel Particle Filter for High Dimensional Systems Manuel Wüthrich 1,

More information

Organization. I MCMC discussion. I project talks. I Lecture.

Organization. I MCMC discussion. I project talks. I Lecture. Organization I MCMC discussion I project talks. I Lecture. Content I Uncertainty Propagation Overview I Forward-Backward with an Ensemble I Model Reduction (Intro) Uncertainty Propagation in Causal Systems

More information

Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods

Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods Jonas Hallgren 1 1 Department of Mathematics KTH Royal Institute of Technology Stockholm, Sweden BFS 2012 June

More information

MCMC and Gibbs Sampling. Kayhan Batmanghelich

MCMC and Gibbs Sampling. Kayhan Batmanghelich MCMC and Gibbs Sampling Kayhan Batmanghelich 1 Approaches to inference l Exact inference algorithms l l l The elimination algorithm Message-passing algorithm (sum-product, belief propagation) The junction

More information

Variable Resolution Particle Filter

Variable Resolution Particle Filter In Proceedings of the International Joint Conference on Artificial intelligence (IJCAI) August 2003. 1 Variable Resolution Particle Filter Vandi Verma, Sebastian Thrun and Reid Simmons Carnegie Mellon

More information

Package RcppSMC. March 18, 2018

Package RcppSMC. March 18, 2018 Type Package Title Rcpp Bindings for Sequential Monte Carlo Version 0.2.1 Date 2018-03-18 Package RcppSMC March 18, 2018 Author Dirk Eddelbuettel, Adam M. Johansen and Leah F. South Maintainer Dirk Eddelbuettel

More information

Answers and expectations

Answers and expectations Answers and expectations For a function f(x) and distribution P(x), the expectation of f with respect to P is The expectation is the average of f, when x is drawn from the probability distribution P E

More information

SEQUENTIAL MONTE CARLO METHODS FOR THE CALIBRATION OF STOCHASTIC RAINFALL-RUNOFF MODELS

SEQUENTIAL MONTE CARLO METHODS FOR THE CALIBRATION OF STOCHASTIC RAINFALL-RUNOFF MODELS XIX International Conference on Water Resources CMWR 2012 University of Illinois at Urbana-Champain June 17-22,2012 SEQUENTIAL MONTE CARLO METHODS FOR THE CALIBRATION OF STOCHASTIC RAINFALL-RUNOFF MODELS

More information

Using the Kalman Filter to Estimate the State of a Maneuvering Aircraft

Using the Kalman Filter to Estimate the State of a Maneuvering Aircraft 1 Using the Kalman Filter to Estimate the State of a Maneuvering Aircraft K. Meier and A. Desai Abstract Using sensors that only measure the bearing angle and range of an aircraft, a Kalman filter is implemented

More information

Least Squares Parameter Es.ma.on

Least Squares Parameter Es.ma.on Least Squares Parameter Es.ma.on Alun L. Lloyd Department of Mathema.cs Biomathema.cs Graduate Program North Carolina State University Aims of this Lecture 1. Model fifng using least squares 2. Quan.fica.on

More information

A PARTICLE FILTERING FRAMEWORK FOR RANDOMIZED OPTIMIZATION ALGORITHMS. Enlu Zhou Michael C. Fu Steven I. Marcus

A PARTICLE FILTERING FRAMEWORK FOR RANDOMIZED OPTIMIZATION ALGORITHMS. Enlu Zhou Michael C. Fu Steven I. Marcus Proceedings of the 2008 Winter Simulation Conference S. J. Mason, R. R. Hill, L. Moench, O. Rose, eds. A PARTICLE FILTERIG FRAMEWORK FOR RADOMIZED OPTIMIZATIO ALGORITHMS Enlu Zhou Michael C. Fu Steven

More information

Seminar: Data Assimilation

Seminar: Data Assimilation Seminar: Data Assimilation Jonas Latz, Elisabeth Ullmann Chair of Numerical Mathematics (M2) Technical University of Munich Jonas Latz, Elisabeth Ullmann (TUM) Data Assimilation 1 / 28 Prerequisites Bachelor:

More information

A Brief Tutorial On Recursive Estimation With Examples From Intelligent Vehicle Applications (Part IV): Sampling Based Methods And The Particle Filter

A Brief Tutorial On Recursive Estimation With Examples From Intelligent Vehicle Applications (Part IV): Sampling Based Methods And The Particle Filter A Brief Tutorial On Recursive Estimation With Examples From Intelligent Vehicle Applications (Part IV): Sampling Based Methods And The Particle Filter Hao Li To cite this version: Hao Li. A Brief Tutorial

More information

NONLINEAR STATISTICAL SIGNAL PROCESSING: A PARTI- CLE FILTERING APPROACH

NONLINEAR STATISTICAL SIGNAL PROCESSING: A PARTI- CLE FILTERING APPROACH NONLINEAR STATISTICAL SIGNAL PROCESSING: A PARTI- CLE FILTERING APPROACH J. V. Candy (tsoftware@aol.com) University of California, Lawrence Livermore National Lab. & Santa Barbara Livermore CA 94551 USA

More information

Sequential Bayesian Inference for Dynamic State Space. Model Parameters

Sequential Bayesian Inference for Dynamic State Space. Model Parameters Sequential Bayesian Inference for Dynamic State Space Model Parameters Arnab Bhattacharya and Simon Wilson 1. INTRODUCTION Dynamic state-space models [24], consisting of a latent Markov process X 0,X 1,...

More information

Linear and nonlinear filtering for state space models. Master course notes. UdelaR 2010

Linear and nonlinear filtering for state space models. Master course notes. UdelaR 2010 Linear and nonlinear filtering for state space models Master course notes UdelaR 2010 Thierry CHONAVEL thierry.chonavel@telecom-bretagne.eu December 2010 Contents 1 Introduction 3 2 Kalman filter and non

More information

Quan&fying Uncertainty. Sai Ravela Massachuse7s Ins&tute of Technology

Quan&fying Uncertainty. Sai Ravela Massachuse7s Ins&tute of Technology Quan&fying Uncertainty Sai Ravela Massachuse7s Ins&tute of Technology 1 the many sources of uncertainty! 2 Two days ago 3 Quan&fying Indefinite Delay 4 Finally 5 Quan&fying Indefinite Delay P(X=delay M=

More information

Hastings-within-Gibbs Algorithm: Introduction and Application on Hierarchical Model

Hastings-within-Gibbs Algorithm: Introduction and Application on Hierarchical Model UNIVERSITY OF TEXAS AT SAN ANTONIO Hastings-within-Gibbs Algorithm: Introduction and Application on Hierarchical Model Liang Jing April 2010 1 1 ABSTRACT In this paper, common MCMC algorithms are introduced

More information