LBT for Procedural and Reac1ve Systems Part 2: Reac1ve Systems Basic Theory

Size: px
Start display at page:

Download "LBT for Procedural and Reac1ve Systems Part 2: Reac1ve Systems Basic Theory"

Transcription

1 LBT for Procedural and Reac1ve Systems Part 2: Reac1ve Systems Basic Theory Karl Meinke, School of Computer Science and Communica:on KTH Stockholm

2 0. Overview of the Lecture 1. Learning Based Tes:ng for Reac:ve Systems 2. DFA learning with Angluin s L* algorithm 3. Complexity of learning DFA based on: D. Angluin, Learning regular sets from queries and counterexamples, Informa:on and Computa:on, 75:87-106, K. Meinke and M. Sindhu, Incremental Learning- Based tes2ng for Reac2ve Systems, in: Proc. TAP 2011 K. Meinke and F. Niu, Learning- Based Tes2ng for Reac2ve Systems using Term Rewri2ng Technology Proc. ICTSS 2011 M. Czerny, Learning- based so\ware tes:ng: Evalua:on of Angluin s L* algorithm and adapta:ons in prac:ce, Bachelor Thesis, KIT, 2014.

3 2. Learning-Based Testing (LBT) Meinke & Sindhu 2011, Proc. TAP 2011 SUT- Req pass/fail Model checker Input SUT Output Oracle SUT- Model Learner Feedback aka. Model based testing without a model

4 3. Framework for Study: Reac2ve Systems Generally control- oriented tes:ng 1. Requirements language = proposi:onal linear temporal logic (PLTL) 2. Model = FSM, Moore machine 3. Model checker = BDD/SAT- based checkers 4. Learning = regular inference algorithms

5 DFA (Moore) Representation DFA A= ( Q, Σ, q 0, F Q, δ : Q X Σ Q ) 0 1 q 0 q 1 0 System under Learning SUL 1 q L(A) = regular language accepted by A

6 DFA Learning with Observa:on Tables P A Σ * is a finite prefix- closed set of prefixes S A Σ * is a finite suffix- closed set of suffixes T A : P A (P A. Σ) X S A {1, 0,?} is the observa2on table Write T A (p) for a row T A (p,s 1 ),, T A (p,s n )

7 0 1 q 0 q 1 0 OBSERVATION TABLE 1 q ε 0 1 ε ? prefixes suffixes

8 Basic Principle of DFA learning Accessor strings prefixes p that reach each dis:nct state Dis2nguishing strings suffixes s that separate dis:nct states INFERENCE PRINCIPLE If T A (p, s) T A (p, s) then p and p cannot reach the same state in A; s is a dis2nguishing string for p, p

9 Closed & Consistent Tables T A is closed iff, for each p P A.Σ there exists p P A st. T A (p) = T A (p ) T A is consistent iff, for each p, p P A if T A (p) = T A (p ) then for all a Σ, T A (p.a) = T A (p.a )

10 Algebraic Proper:es Being closed is an algebraic closure condi2on Being consistent is an algebraic congruence condi2on The automaton construc:on is a quo2ent algebra construc2on Learning DFA as string rewri2ng systems K. Meinke, CGE: a Sequen2al Learning Algorithm for Mealy Automata, in Proc. ICGI 2010 K. Meinke and F. Niu, Learning- Based Tes2ng for Reac2ve Systems using Term Rewri2ng Technology in Proc. ICTSS 2011

11 Equivalence Oracles Termina:on requires an equivalence oracle If A and SUL are behaviourally equivalent, i.e. L(A) = L(SUL) then equivoracle(a, SUL) = true Otherwise equivoracle(a, SUL) = v Σ * where A(v) SUL(v) LBT uses stochas2c equivalence checking

12 Complexity Observa:ons Stochas:c equivalence checking is more powerful than random test cases Why? Theorem: ac2ve learning of DFA is much more efficient than passive learning : polynomial :me [Angluin 1987] vs. NP- hard [Gold 1978]. Using stochas:c equivalence checking we can PAC learn DFA in polynomial :me (c.f. Kearns and Vazirani 1994).

13 DFA function LStar(DFA: SUL) P A Σ * P A. Σ Σ * S A Σ * T A : P A (P A. Σ ) X S A {accept, reject,?} // table begin A = getinitialhypothesis() while(equivoracle(a, SUL)!= true)) do A =getnexthypothesis(equivoracle(a, SUL)) end return A

14 DFA function getnexthypothesis(counterexample Σ * ) begin P A = P A PrefixClosure{counterExample} P A. Σ = P A Σ - P A S A = S A SuffixClosure{counterExample} // fill in any new table entries here while (P A, S A, T A ) is not closed or consistent do if!consistent(p A,S A,T A ) makeconsistent() if!closed(p A,S A,T A ) makeclosed() end

15 DFA function getinitialhypothesis() begin P A = // emptyset P A. Σ = S A = return getnexthypothesis(ε) end

16 DFA function makeconsistent() begin end find p, p P A, a Σ, s S A st. T A (p) = T A (p ) and T A (p.a,s)!= T A (p.a,s) add a.s to S A // suffix extension extend T A to P A (P A.Σ) X S A using active membership queries

17 DFA function makeclosed() begin find p P A, a Σ st. T A (p.a)!= T A (p ) for all p P A P A = P A {p.a} // prefix extension P A.Σ = P A.Σ {p} Σ end extend T A to P A (P A.Σ) X S A using membership queries

18 DFA function DFASynthesis() begin Q = {u : u P A, v<u, T A (u) T A (v) } q 0 = ε F = {u : u Q, T A (u, ε)= 1} foreach u Q do foreach a Σ do δ(u, a) = v Q st. T A (u.a)=t A (v) return A=(Q, Σ, q 0, F, δ) end

19 0 1 q 0 q q Let s L* learn this DFA

20 ε ε Closed: no Consistent: yes ε ε Closed: yes Consistent: yes 0 1 H 0 q 0 q 1 0,1

21 equivoracle(h 0, SUL) = 110 = counterexample ε ε counterexample Not consistent because T A (ε) = T A (11) = 1 but T A (1) T A (111) since 0 1 Also T A (0) T A (110) since 0 1 Closed: yes Consistent: no

22 equivoracle(h 0, SUL) = 110 = counterexample ε ε ε 0 1 ε Closed: yes Consistent: no Closed: yes Consistent: yes H 1 = FINISHED!

23 Theore:cal Complexity Membership queries = O(m Σ Q 2 ) where m is the maximum length of any counterexample (Angluin 87). Assume oracle returns shortest counterexample then Q m, so Membership queries = O( Σ Q 3 )

24 Essentially quadratic Essentially linear

25

26 5. Conclusions L* is pedagogically easy to learn some of its principles are universal looks promising on paper emphasis on complete learning LBT needs incremental learning Open Ques:ons How complex are real SUTs? Can try to benchmark other learning algorithms in same framework

A practical introduction to active automata learning

A practical introduction to active automata learning A practical introduction to active automata learning Bernhard Steffen, Falk Howar, Maik Merten TU Dortmund SFM2011 Maik Merten, learning technology 1 Overview Motivation Introduction to active automata

More information

Learning k-edge Deterministic Finite Automata in the Framework of Active Learning

Learning k-edge Deterministic Finite Automata in the Framework of Active Learning Learning k-edge Deterministic Finite Automata in the Framework of Active Learning Anuchit Jitpattanakul* Department of Mathematics, Faculty of Applied Science, King Mong s University of Technology North

More information

Learning Regular Sets

Learning Regular Sets Learning Regular Sets Author: Dana Angluin Presented by: M. Andreína Francisco Department of Computer Science Uppsala University February 3, 2014 Minimally Adequate Teachers A Minimally Adequate Teacher

More information

Learning cover context-free grammars from structural data

Learning cover context-free grammars from structural data Learning cover context-free grammars from structural data Mircea Marin Gabriel Istrate West University of Timişoara, Romania 11th International Colloquium on Theoretical Aspects of Computing ICTAC 2014

More information

Automated Compositional Analysis for Checking Component Substitutability

Automated Compositional Analysis for Checking Component Substitutability Automated Compositional Analysis for Checking Component Substitutability Nishant Sinha December 2007 Electrical and Computer Engineering Department Carnegie Mellon University Pittsburgh, PA 15213 Thesis

More information

Advanced Automata Theory 11 Regular Languages and Learning Theory

Advanced Automata Theory 11 Regular Languages and Learning Theory Advanced Automata Theory 11 Regular Languages and Learning Theory Frank Stephan Department of Computer Science Department of Mathematics National University of Singapore fstephan@comp.nus.edu.sg Advanced

More information

Incremental Learning and Testing of Reactive Systems MUDDASSAR AZAM SINDHU

Incremental Learning and Testing of Reactive Systems MUDDASSAR AZAM SINDHU Incremental Learning and Testing of Reactive Systems MUDDASSAR AZAM SINDHU Licentiate Thesis Stockholm, Sweden 2011 TRITA-CSC-A 2011:14 ISSN 1653-5723 ISRN KTH/CSC/A 11/14-SE ISBN 978-91-7501-062-5 KTH

More information

A practical introduction to active automata learning

A practical introduction to active automata learning A practical introduction to active automata learning Bernhard Steffen, Falk Howar, Maik Merten TU Dortmund SFM2011 Maik Merten, learning technology 1 Overview Motivation Introduction to active automata

More information

Theoretical Computer Science

Theoretical Computer Science Theoretical Computer Science 448 (2012) 41 46 Contents lists available at SciVerse ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs Polynomial characteristic sets

More information

Using Multiplicity Automata to Identify Transducer Relations from Membership and Equivalence Queries

Using Multiplicity Automata to Identify Transducer Relations from Membership and Equivalence Queries Using Multiplicity Automata to Identify Transducer Relations from Membership and Equivalence Queries Jose Oncina Dept. Lenguajes y Sistemas Informáticos - Universidad de Alicante oncina@dlsi.ua.es September

More information

Learning of Bi-ω Languages from Factors

Learning of Bi-ω Languages from Factors JMLR: Workshop and Conference Proceedings 21:139 144, 2012 The 11th ICGI Learning of Bi-ω Languages from Factors M. Jayasrirani mjayasrirani@yahoo.co.in Arignar Anna Government Arts College, Walajapet

More information

CSE 311 Lecture 23: Finite State Machines. Emina Torlak and Kevin Zatloukal

CSE 311 Lecture 23: Finite State Machines. Emina Torlak and Kevin Zatloukal CSE 3 Lecture 3: Finite State Machines Emina Torlak and Kevin Zatloukal Topics Finite state machines (FSMs) Definition and examples. Finite state machines with output Definition and examples. Finite state

More information

Learning Regular ω-languages

Learning Regular ω-languages Learning Regular ω-languages 1 2 Overview Motivation Background (ω-automata) 2014 Previous work on learning regular ω-languages Why is it difficult to extend L* [Angluin] to ω- languages? L* works due

More information

CSE 311: Foundations of Computing. Lecture 23: Finite State Machine Minimization & NFAs

CSE 311: Foundations of Computing. Lecture 23: Finite State Machine Minimization & NFAs CSE : Foundations of Computing Lecture : Finite State Machine Minimization & NFAs State Minimization Many different FSMs (DFAs) for the same problem Take a given FSM and try to reduce its state set by

More information

Regular Inference for State Machines with Parameters

Regular Inference for State Machines with Parameters Regular Inference for State Machines with Parameters Therese Berg 1, Bengt Jonsson 1, Harald Raffelt 2 1 Department of Computer Systems, Uppsala University, Sweden {thereseb, bengt}@it.uu.se 2 Chair of

More information

Compositional Reasoning

Compositional Reasoning EECS 219C: Computer-Aided Verification Compositional Reasoning and Learning for Model Generation Sanjit A. Seshia EECS, UC Berkeley Acknowledgments: Avrim Blum Compositional Reasoning S. A. Seshia 2 1

More information

Bernhard Steffen, Falk Howar, Malte Isberner TU Dortmund /CMU. B. Steffen Summer School CPS

Bernhard Steffen, Falk Howar, Malte Isberner TU Dortmund /CMU. B. Steffen Summer School CPS Active Automata Learning: From DFA to Interface Programs and Beyond or From Languages to Program Executions or (more technically) The Power of Counterexample Analysis Bernhard Steffen, Falk Howar, Malte

More information

COM364 Automata Theory Lecture Note 2 - Nondeterminism

COM364 Automata Theory Lecture Note 2 - Nondeterminism COM364 Automata Theory Lecture Note 2 - Nondeterminism Kurtuluş Küllü March 2018 The FA we saw until now were deterministic FA (DFA) in the sense that for each state and input symbol there was exactly

More information

Synthesis and Inductive Learning Part 3

Synthesis and Inductive Learning Part 3 Synthesis and Inductive Learning Part 3 Sanjit A. Seshia EECS Department UC Berkeley Acknowledgments: Susmit Jha, Alexandre Donze, Edward Lee NSF ExCAPE Summer School June 23-25, 2015 Questions of Interest

More information

Enhancing Active Automata Learning by a User Log Based Metric

Enhancing Active Automata Learning by a User Log Based Metric Master Thesis Computing Science Radboud University Enhancing Active Automata Learning by a User Log Based Metric Author Petra van den Bos First Supervisor prof. dr. Frits W. Vaandrager Second Supervisor

More information

Learning Regular ω-languages

Learning Regular ω-languages Learning Regular ω-languages The Goal Device an algorithm for learning an unknown regular ω-language L 3 The Goal Device an algorithm for learning an unknown regular ω-language L set of infinite words

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2018 http://cseweb.ucsd.edu/classes/sp18/cse105-ab/ Today's learning goals Sipser Ch 5.1, 5.3 Define and explain core examples of computational problems, including

More information

Model Learning as a Satisfiability Modulo Theories Problem

Model Learning as a Satisfiability Modulo Theories Problem Model Learning as a Satisfiability Modulo Theories Problem Rick Smetsers, Paul Fiterău-Broştean, and Frits Vaandrager Institute for Computing and Information Sciences Radboud University, Nijmegen, The

More information

CS 154, Lecture 2: Finite Automata, Closure Properties Nondeterminism,

CS 154, Lecture 2: Finite Automata, Closure Properties Nondeterminism, CS 54, Lecture 2: Finite Automata, Closure Properties Nondeterminism, Why so Many Models? Streaming Algorithms 0 42 Deterministic Finite Automata Anatomy of Deterministic Finite Automata transition: for

More information

Computability Theory

Computability Theory CS:4330 Theory of Computation Spring 2018 Computability Theory Decidable Languages Haniel Barbosa Readings for this lecture Chapter 4 of [Sipser 1996], 3rd edition. Section 4.1. Decidable Languages We

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2017 http://cseweb.ucsd.edu/classes/sp17/cse105-ab/ Today's learning goals Summarize key concepts, ideas, themes from CSE 105. Approach your final exam studying with

More information

Lecture 20: conp and Friends, Oracles in Complexity Theory

Lecture 20: conp and Friends, Oracles in Complexity Theory 6.045 Lecture 20: conp and Friends, Oracles in Complexity Theory 1 Definition: conp = { L L NP } What does a conp computation look like? In NP algorithms, we can use a guess instruction in pseudocode:

More information

Automata Theory. Lecture on Discussion Course of CS120. Runzhe SJTU ACM CLASS

Automata Theory. Lecture on Discussion Course of CS120. Runzhe SJTU ACM CLASS Automata Theory Lecture on Discussion Course of CS2 This Lecture is about Mathematical Models of Computation. Why Should I Care? - Ways of thinking. - Theory can drive practice. - Don t be an Instrumentalist.

More information

Learning to Verify Branching Time Properties

Learning to Verify Branching Time Properties Learning to Verify Branching Time Properties Abhay Vardhan and Mahesh Viswanathan Dept. of Computer Science, Univ. of Illinois at Urbana-Champaign, USA Abstract. We present a new model checking algorithm

More information

Le rning Regular. A Languages via Alt rn ting. A E Autom ta

Le rning Regular. A Languages via Alt rn ting. A E Autom ta 1 Le rning Regular A Languages via Alt rn ting A E Autom ta A YALE MIT PENN IJCAI 15, Buenos Aires 2 4 The Problem Learn an unknown regular language L using MQ and EQ data mining neural networks geometry

More information

CSE 105 THEORY OF COMPUTATION. Spring 2018 review class

CSE 105 THEORY OF COMPUTATION. Spring 2018 review class CSE 105 THEORY OF COMPUTATION Spring 2018 review class Today's learning goals Summarize key concepts, ideas, themes from CSE 105. Approach your final exam studying with confidence. Identify areas to focus

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Lecture 14 Ana Bove May 14th 2018 Recap: Context-free Grammars Simplification of grammars: Elimination of ǫ-productions; Elimination of

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 5-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY NON-DETERMINISM and REGULAR OPERATIONS THURSDAY JAN 6 UNION THEOREM The union of two regular languages is also a regular language Regular Languages Are

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2016 http://cseweb.ucsd.edu/classes/sp16/cse105-ab/ Today's learning goals Sipser Ch 2 Define push down automata Trace the computation of a push down automaton Design

More information

Peled, Vardi, & Yannakakis: Black Box Checking

Peled, Vardi, & Yannakakis: Black Box Checking Peled, Vardi, & Yannakakis: Black Box Checking Martin Leucker leucker@it.uu.se Department of Computer Systems,, Sweden Plan Preliminaries State identification and verification Conformance Testing Extended

More information

Learning Residual Finite-State Automata Using Observation Tables

Learning Residual Finite-State Automata Using Observation Tables Learning Residual Finite-State Automata Using Observation Tables Anna Kasprzik kasprzik@informatik.uni-trier.de September 16, 2009 Keywords: Algorithmic learning theory, grammatical inference, observation

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2017

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2017 Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2017 Lecture 4 Ana Bove March 24th 2017 Structural induction; Concepts of automata theory. Overview of today s lecture: Recap: Formal Proofs

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Lecture 4 Ana Bove March 23rd 2018 Recap: Formal Proofs How formal should a proof be? Depends on its purpose...... but should be convincing......

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION "Winter" 2018 http://cseweb.ucsd.edu/classes/wi18/cse105-ab/ Today's learning goals Sipser Section 1.1 Design an automaton that recognizes a given language. Specify each of

More information

Theory of Computation

Theory of Computation Thomas Zeugmann Hokkaido University Laboratory for Algorithmics http://www-alg.ist.hokudai.ac.jp/ thomas/toc/ Lecture 3: Finite State Automata Motivation In the previous lecture we learned how to formalize

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2016 http://cseweb.ucsd.edu/classes/sp16/cse105-ab/ Today's learning goals Sipser Ch 4.1, 5.1 Define reductions from one problem to another. Use reductions to prove

More information

Learning Context Free Grammars with the Syntactic Concept Lattice

Learning Context Free Grammars with the Syntactic Concept Lattice Learning Context Free Grammars with the Syntactic Concept Lattice Alexander Clark Department of Computer Science Royal Holloway, University of London alexc@cs.rhul.ac.uk ICGI, September 2010 Outline Introduction

More information

CS 154. Finite Automata, Nondeterminism, Regular Expressions

CS 154. Finite Automata, Nondeterminism, Regular Expressions CS 54 Finite Automata, Nondeterminism, Regular Expressions Read string left to right The DFA accepts a string if the process ends in a double circle A DFA is a 5-tuple M = (Q, Σ, δ, q, F) Q is the set

More information

CSCI 1010 Models of Computa3on. Lecture 11 Proving Languages NP-Complete

CSCI 1010 Models of Computa3on. Lecture 11 Proving Languages NP-Complete CSCI 1010 Models of Computa3on Lecture 11 Proving Languages NP-Complete Overview P-3me reduc3ons Composi3on of P-3me reduc3ons Reduc3on from CIRCUIT SAT to SAT SAT is NP-complete. 3-SAT is NP-complete.

More information

Learning Languages from Bounded Resources: The Case of the DFA and the Balls of Strings

Learning Languages from Bounded Resources: The Case of the DFA and the Balls of Strings Learning Languages from Bounded Resources: The Case of the DFA and the Balls of Strings Colin de la Higuera and Jean-Christophe Janodet and Frédéric Tantini Universities of Lyon, 18 r. Pr. Lauras, F-42000

More information

A Tutorial on Computational Learning Theory Presented at Genetic Programming 1997 Stanford University, July 1997

A Tutorial on Computational Learning Theory Presented at Genetic Programming 1997 Stanford University, July 1997 A Tutorial on Computational Learning Theory Presented at Genetic Programming 1997 Stanford University, July 1997 Vasant Honavar Artificial Intelligence Research Laboratory Department of Computer Science

More information

Let us first give some intuitive idea about a state of a system and state transitions before describing finite automata.

Let us first give some intuitive idea about a state of a system and state transitions before describing finite automata. Finite Automata Automata (singular: automation) are a particularly simple, but useful, model of computation. They were initially proposed as a simple model for the behavior of neurons. The concept of a

More information

Languages. A language is a set of strings. String: A sequence of letters. Examples: cat, dog, house, Defined over an alphabet:

Languages. A language is a set of strings. String: A sequence of letters. Examples: cat, dog, house, Defined over an alphabet: Languages 1 Languages A language is a set of strings String: A sequence of letters Examples: cat, dog, house, Defined over an alphaet: a,, c,, z 2 Alphaets and Strings We will use small alphaets: Strings

More information

uring Reducibility Dept. of Computer Sc. & Engg., IIT Kharagpur 1 Turing Reducibility

uring Reducibility Dept. of Computer Sc. & Engg., IIT Kharagpur 1 Turing Reducibility uring Reducibility Dept. of Computer Sc. & Engg., IIT Kharagpur 1 Turing Reducibility uring Reducibility Dept. of Computer Sc. & Engg., IIT Kharagpur 2 FINITE We have already seen that the language FINITE

More information

Learnability of Probabilistic Automata via Oracles

Learnability of Probabilistic Automata via Oracles Learnability of Probabilistic Automata via Oracles Omri Guttman, S.V.N. Vishwanathan, and Robert C. Williamson Statistical Machine Learning Program National ICT Australia RSISE, Australian National University

More information

Computability and Complexity

Computability and Complexity Computability and Complexity Lecture 5 Reductions Undecidable problems from language theory Linear bounded automata given by Jiri Srba Lecture 5 Computability and Complexity 1/14 Reduction Informal Definition

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministic Finite Automata Not A DFA Does not have exactly one transition from every state on every symbol: Two transitions from q 0 on a No transition from q 1 (on either a or b) Though not a DFA,

More information

An Active Learning Approach For Inferring Discrete Event Automata

An Active Learning Approach For Inferring Discrete Event Automata An Active Learning Approach For Inferring Discrete Event Automata Mohammad Mahdi Karimi PhD. Candidate, ECE Supervisor: Dr Ali Karimoddini Summer 2015 1 Content 1. Discrete Event Systems Definitions Applications

More information

Complexity of Equivalence and Learning for Multiplicity Tree Automata

Complexity of Equivalence and Learning for Multiplicity Tree Automata Journal of Machine Learning Research 16 (2015) 2465-2500 Submitted 11/14; Revised 6/15; Published 12/15 Complexity of Equivalence and Learning for Multiplicity Tree Automata Ines Marušić James Worrell

More information

UNIT-VIII COMPUTABILITY THEORY

UNIT-VIII COMPUTABILITY THEORY CONTEXT SENSITIVE LANGUAGE UNIT-VIII COMPUTABILITY THEORY A Context Sensitive Grammar is a 4-tuple, G = (N, Σ P, S) where: N Set of non terminal symbols Σ Set of terminal symbols S Start symbol of the

More information

CS154, Lecture 13: P vs NP

CS154, Lecture 13: P vs NP CS154, Lecture 13: P vs NP The EXTENDED Church-Turing Thesis Everyone s Intuitive Notion of Efficient Algorithms Polynomial-Time Turing Machines More generally: TM can simulate every reasonable model of

More information

1 From previous lectures

1 From previous lectures CS 810: Introduction to Complexity Theory 9/18/2003 Lecture 11: P/poly, Sparse Sets, and Mahaney s Theorem Instructor: Jin-Yi Cai Scribe: Aparna Das, Scott Diehl, Giordano Fusco 1 From previous lectures

More information

Learning Regular Languages over Large Alphabets

Learning Regular Languages over Large Alphabets Learning Regular Languages over Large Alphabets Oded Maler and Irini Eleftheria Mens CNRS-VERIMAG University of Grenoble France Abstract. This work is concerned with regular languages defined over large

More information

Finite-State Machines (Automata) lecture 12

Finite-State Machines (Automata) lecture 12 Finite-State Machines (Automata) lecture 12 cl a simple form of computation used widely one way to find patterns 1 A current D B A B C D B C D A C next 2 Application Fields Industry real-time control,

More information

CS 301. Lecture 17 Church Turing thesis. Stephen Checkoway. March 19, 2018

CS 301. Lecture 17 Church Turing thesis. Stephen Checkoway. March 19, 2018 CS 301 Lecture 17 Church Turing thesis Stephen Checkoway March 19, 2018 1 / 17 An abridged modern history of formalizing algorithms An algorithm is a finite, unambiguous sequence of steps for solving a

More information

CS154, Lecture 10: Rice s Theorem, Oracle Machines

CS154, Lecture 10: Rice s Theorem, Oracle Machines CS154, Lecture 10: Rice s Theorem, Oracle Machines Moral: Analyzing Programs is Really, Really Hard But can we more easily tell when some program analysis problem is undecidable? Problem 1 Undecidable

More information

CS154, Lecture 13: P vs NP

CS154, Lecture 13: P vs NP CS154, Lecture 13: P vs NP The EXTENDED Church-Turing Thesis Everyone s Intuitive Notion of Efficient Algorithms Polynomial-Time Turing Machines More generally: TM can simulate every reasonable model of

More information

Learning One-Variable Pattern Languages Very Efficiently on Average, in Parallel, and by Asking Queries

Learning One-Variable Pattern Languages Very Efficiently on Average, in Parallel, and by Asking Queries Learning One-Variable Pattern Languages Very Efficiently on Average, in Parallel, and by Asking Queries Thomas Erlebach 1, Peter Rossmanith 1, Hans Stadtherr 1, Angelika Steger 1 and Thomas Zeugmann 1

More information

Deterministic Finite Automata. Non deterministic finite automata. Non-Deterministic Finite Automata (NFA) Non-Deterministic Finite Automata (NFA)

Deterministic Finite Automata. Non deterministic finite automata. Non-Deterministic Finite Automata (NFA) Non-Deterministic Finite Automata (NFA) Deterministic Finite Automata Non deterministic finite automata Automata we ve been dealing with have been deterministic For every state and every alphabet symbol there is exactly one move that the machine

More information

Lecture 3: Nondeterministic Finite Automata

Lecture 3: Nondeterministic Finite Automata Lecture 3: Nondeterministic Finite Automata September 5, 206 CS 00 Theory of Computation As a recap of last lecture, recall that a deterministic finite automaton (DFA) consists of (Q, Σ, δ, q 0, F ) where

More information

Quantum Computing Lecture 8. Quantum Automata and Complexity

Quantum Computing Lecture 8. Quantum Automata and Complexity Quantum Computing Lecture 8 Quantum Automata and Complexity Maris Ozols Computational models and complexity Shor s algorithm solves, in polynomial time, a problem for which no classical polynomial time

More information

Learning Weighted Automata

Learning Weighted Automata Learning Weighted Automata Borja Balle 1 and Mehryar Mohri 2,3 1 School of Computer Science, McGill University, Montréal, Canada 2 Courant Institute of Mathematical Sciences, New York, NY 3 Google Research,

More information

Methods for the specification and verification of business processes MPB (6 cfu, 295AA)

Methods for the specification and verification of business processes MPB (6 cfu, 295AA) Methods for the specification and verification of business processes MPB (6 cfu, 295AA) Roberto Bruni http://www.di.unipi.it/~bruni 07 - Introduction to nets 1 Object Overview of the basic concepts of

More information

Learning Unary Automata

Learning Unary Automata Learning Unary Automata Presented at the Seventh Workshop on Descriptional Complexity of Formal Systems DCFS, Como, Italy, June 30 - July 2, 2005 Gregor Gramlich gramlich@thi.informatik.uni-frankfurt.de

More information

Business Processes Modelling MPB (6 cfu, 295AA)

Business Processes Modelling MPB (6 cfu, 295AA) Business Processes Modelling MPB (6 cfu, 295AA) Roberto Bruni http://www.di.unipi.it/~bruni 07 - Introduction to nets!1 Object Overview of the basic concepts of Petri nets Free Choice Nets (book, optional

More information

CS 154 Introduction to Automata and Complexity Theory

CS 154 Introduction to Automata and Complexity Theory CS 154 Introduction to Automata and Complexity Theory cs154.stanford.edu 1 INSTRUCTORS & TAs Ryan Williams Cody Murray Lera Nikolaenko Sunny Rajan 2 Textbook 3 Homework / Problem Sets Homework will be

More information

More on Regular Languages and Non-Regular Languages

More on Regular Languages and Non-Regular Languages More on Regular Languages and Non-Regular Languages CSCE A35 Decision Properties of Regular Languages Given a (representation, e.g., RE, FA, of a) regular language L, what can we tell about L? Since there

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 15-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY Chomsky Normal Form and TURING MACHINES TUESDAY Feb 4 CHOMSKY NORMAL FORM A context-free grammar is in Chomsky normal form if every rule is of the form:

More information

Angluin-Style Learning of NFA

Angluin-Style Learning of NFA Angluin-Style Learning of NFA Benedikt Bollig LSV, ENS Cachan, CNRS bollig@lsv.ens-cachan.fr Peter Habermehl LIAFA, U. Paris Diderot (Paris 7) Peter.Habermehl@liafa.jussieu.fr Carsten Kern MOVES, RWTH

More information

Author: Vivek Kulkarni ( )

Author: Vivek Kulkarni ( ) Author: Vivek Kulkarni ( vivek_kulkarni@yahoo.com ) Chapter-2: Finite State Machines Solutions for Review Questions @ Oxford University Press 2013. All rights reserved. 1 Q.1 Construct Mealy and Moore

More information

Lecture 19: Finish NP-Completeness, conp and Friends

Lecture 19: Finish NP-Completeness, conp and Friends 6.045 Lecture 19: Finish NP-Completeness, conp and Friends 1 Polynomial Time Reducibility f : Σ* Σ* is a polynomial time computable function if there is a poly-time Turing machine M that on every input

More information

Click to edit. Master title. style

Click to edit. Master title. style Query Learning of Derived ω-tree Languages in Polynomial Time Dana Angluin, Tımos Antonopoulos & Dana 1 Query Learning a set of possile concepts Question Answer tc Learner Teacher Tries to identify a target

More information

Outline. Logic. Knowledge bases. Wumpus world characteriza/on. Wumpus World PEAS descrip/on. A simple knowledge- based agent

Outline. Logic. Knowledge bases. Wumpus world characteriza/on. Wumpus World PEAS descrip/on. A simple knowledge- based agent Outline Logic Dr. Melanie Mar/n CS 4480 October 8, 2012 Based on slides from hap://aima.eecs.berkeley.edu/2nd- ed/slides- ppt/ Knowledge- based agents Wumpus world Logic in general - models and entailment

More information

Learning Large-Alphabet and Analog Circuits with Value Injection Queries

Learning Large-Alphabet and Analog Circuits with Value Injection Queries Learning Large-Alphabet and Analog Circuits with Value Injection Queries Dana Angluin 1 James Aspnes 1, Jiang Chen 2, Lev Reyzin 1,, 1 Computer Science Department, Yale University {angluin,aspnes}@cs.yale.edu,

More information

Decidability and Undecidability

Decidability and Undecidability Decidability and Undecidability Major Ideas from Last Time Every TM can be converted into a string representation of itself. The encoding of M is denoted M. The universal Turing machine U TM accepts an

More information

Before we show how languages can be proven not regular, first, how would we show a language is regular?

Before we show how languages can be proven not regular, first, how would we show a language is regular? CS35 Proving Languages not to be Regular Before we show how languages can be proven not regular, first, how would we show a language is regular? Although regular languages and automata are quite powerful

More information

HKN CS/ECE 374 Midterm 1 Review. Nathan Bleier and Mahir Morshed

HKN CS/ECE 374 Midterm 1 Review. Nathan Bleier and Mahir Morshed HKN CS/ECE 374 Midterm 1 Review Nathan Bleier and Mahir Morshed For the most part, all about strings! String induction (to some extent) Regular languages Regular expressions (regexps) Deterministic finite

More information

CSE 311: Foundations of Computing I Autumn 2014 Practice Final: Section X. Closed book, closed notes, no cell phones, no calculators.

CSE 311: Foundations of Computing I Autumn 2014 Practice Final: Section X. Closed book, closed notes, no cell phones, no calculators. CSE 311: Foundations of Computing I Autumn 014 Practice Final: Section X YY ZZ Name: UW ID: Instructions: Closed book, closed notes, no cell phones, no calculators. You have 110 minutes to complete the

More information

Alan Bundy. Automated Reasoning LTL Model Checking

Alan Bundy. Automated Reasoning LTL Model Checking Automated Reasoning LTL Model Checking Alan Bundy Lecture 9, page 1 Introduction So far we have looked at theorem proving Powerful, especially where good sets of rewrite rules or decision procedures have

More information

Learning register automata: from languages to program structures

Learning register automata: from languages to program structures Mach Learn (2014) 96:65 98 DOI 10.1007/s10994-013-5419-7 Learning register automata: from languages to program structures Malte Isberner Falk Howar Bernhard Steffen Received: 9 December 2012 / Accepted:

More information

The efficiency of identifying timed automata and the power of clocks

The efficiency of identifying timed automata and the power of clocks The efficiency of identifying timed automata and the power of clocks Sicco Verwer a,b,1,, Mathijs de Weerdt b, Cees Witteveen b a Eindhoven University of Technology, Department of Mathematics and Computer

More information

Closure Properties of Regular Languages. Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism

Closure Properties of Regular Languages. Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism Closure Properties of Regular Languages Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism Closure Properties Recall a closure property is a statement

More information

Methods for the specification and verification of business processes MPB (6 cfu, 295AA)

Methods for the specification and verification of business processes MPB (6 cfu, 295AA) Methods for the specification and verification of business processes MPB (6 cfu, 295AA) Roberto Bruni http://www.di.unipi.it/~bruni 07 - Introduction to nets 1 Object Overview of the basic concepts of

More information

Complexity Theory. Knowledge Representation and Reasoning. November 2, 2005

Complexity Theory. Knowledge Representation and Reasoning. November 2, 2005 Complexity Theory Knowledge Representation and Reasoning November 2, 2005 (Knowledge Representation and Reasoning) Complexity Theory November 2, 2005 1 / 22 Outline Motivation Reminder: Basic Notions Algorithms

More information

CDM Closure Properties

CDM Closure Properties CDM Closure Properties Klaus Sutner Carnegie Mellon Universality 15-closure 2017/12/15 23:19 1 Nondeterministic Machines 2 Determinization 3 Closure Properties Where Are We? 3 We have a definition of regular

More information

Regular Expressions and Language Properties

Regular Expressions and Language Properties Regular Expressions and Language Properties Mridul Aanjaneya Stanford University July 3, 2012 Mridul Aanjaneya Automata Theory 1/ 47 Tentative Schedule HW #1: Out (07/03), Due (07/11) HW #2: Out (07/10),

More information

Differen'al Privacy with Bounded Priors: Reconciling U+lity and Privacy in Genome- Wide Associa+on Studies

Differen'al Privacy with Bounded Priors: Reconciling U+lity and Privacy in Genome- Wide Associa+on Studies Differen'al Privacy with Bounded Priors: Reconciling U+lity and Privacy in Genome- Wide Associa+on Studies Florian Tramèr, Zhicong Huang, Erman Ayday, Jean- Pierre Hubaux ACM CCS 205 Denver, Colorado,

More information

CS 154, Lecture 3: DFA NFA, Regular Expressions

CS 154, Lecture 3: DFA NFA, Regular Expressions CS 154, Lecture 3: DFA NFA, Regular Expressions Homework 1 is coming out Deterministic Finite Automata Computation with finite memory Non-Deterministic Finite Automata Computation with finite memory and

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION "Winter" 2018 http://cseweb.ucsd.edu/classes/wi18/cse105-ab/ Today's learning goals Sipser Section 1.1 Determine if a language is regular Apply closure properties to conclude

More information

MA/CSSE 474 Theory of Computation

MA/CSSE 474 Theory of Computation MA/CSSE 474 Theory of Computation CFL Hierarchy CFL Decision Problems Your Questions? Previous class days' material Reading Assignments HW 12 or 13 problems Anything else I have included some slides online

More information

16.1 Countability. CS125 Lecture 16 Fall 2014

16.1 Countability. CS125 Lecture 16 Fall 2014 CS125 Lecture 16 Fall 2014 16.1 Countability Proving the non-existence of algorithms for computational problems can be very difficult. Indeed, we do not know how to prove P NP. So a natural question is

More information

Chomsky Normal Form and TURING MACHINES. TUESDAY Feb 4

Chomsky Normal Form and TURING MACHINES. TUESDAY Feb 4 Chomsky Normal Form and TURING MACHINES TUESDAY Feb 4 CHOMSKY NORMAL FORM A context-free grammar is in Chomsky normal form if every rule is of the form: A BC A a S ε B and C aren t start variables a is

More information

Finite Automata Part Two

Finite Automata Part Two Finite Automata Part Two DFAs A DFA is a Deterministic Finite Automaton A DFA is defined relative to some alphabet Σ. For each state in the DFA, there must be exactly one transition defined for each symbol

More information

Leveraging Weighted Automata in Compositional Reasoning about Concurrent Probabilistic Systems

Leveraging Weighted Automata in Compositional Reasoning about Concurrent Probabilistic Systems Leveraging Weighted Automata in Compositional Reasoning about Concurrent Probabilistic Systems Fei He,2,3 Xiaowei Gao,2,3 Bow-Yaw Wang Lijun Zhang 5 Tsinghua National Laboratory for Information Science

More information

Learning indexed families of recursive languages from positive data: a survey

Learning indexed families of recursive languages from positive data: a survey Learning indexed families of recursive languages from positive data: a survey Steffen Lange a, Thomas Zeugmann b, and Sandra Zilles c,1, a Fachbereich Informatik, Hochschule Darmstadt, Haardtring 100,

More information