A practical introduction to active automata learning

Size: px
Start display at page:

Download "A practical introduction to active automata learning"

Transcription

1 A practical introduction to active automata learning Bernhard Steffen, Falk Howar, Maik Merten TU Dortmund SFM2011 Maik Merten, learning technology 1

2 Overview Motivation Introduction to active automata learning Practical aspects in active automata learning Conclusions

3 Mealy machines Mealy machine M=(S,,,, ) S finite set of states finite input-alphabet finite output-alphabet : (S x ) S transition-function : (S x ) output-function Words * for (s S, a, w *) :(S x *) S, (s, )=s, (s,aw) = ( (s,a),w) : (S x *) *, (s, )=, (s,aw) = (s,a). ( (s,a),w)

4 Active automata learning a L? MQ-Oracle Σ={a,b} no b b a a a a b b Learner no, bb L! a a,b b? EQ-Oracle

5 Angluin's alg. for Mealy machines ε D a b distingushing set state cover set S Initialize Distinguishing Set D with alphabet of inputs a b one transition extensions SA

6 Angluin's alg. for Mealy machines ε a b 0 0 Unknown system: a b

7 Angluin's alg. for Mealy machines a b ε 0 0 Unclosure: Rows in lower part that are not in upper part a 1 1 b 1 1

8 Angluin's alg. for Mealy machines a b ε 0 0 a 1 1 Unclosure: Rows in lower part that are not in upper part b 1 1 aa 1 1 ab 1 1

9 Angluin's alg. for Mealy machines a b ε 0 0 a 1 1 b 1 1 aa 1 1 ab 1 1 Conjecture: Unique rows in S become states Rows in S and SA become transitions

10 Angluin's alg. for Mealy machines a b ε 0 0 a 1 1 Counterexample: bbb / 010 b 1 1 aa 1 1 ab 1 1

11 Angluin's alg. for Mealy machines a b ε 0 0 a 1 1 b 1 1 bb 0 0 bbb 0 0 aa 1 1 ab 1 1 ba 0 0 Counterexample: bbb / 010 Insert all prefixes of the counterexample to upper part Extend SA accordingly

12 Angluin's alg. for Mealy machines a b ε 0 0 a 1 1 b 1 1 bb 0 0 bbb 0 0 aa 1 1 ab 1 1 ba 0 0 Inconsistency: Equal rows in upper part have different extensions 00

13 Angluin's alg. for Mealy machines a b ε 0 0 a 1 1 b 1 1 bb 0 0 bbb 0 0 aa 1 1 ab 1 1 ba 0 0 Inconsistency: Equal rows in upper part have different extensions 00 00

14 Angluin's alg. for Mealy machines a b ε 0 0 a 1 1 b 1 1 bb 0 0 bbb 0 0 aa 1 1 ab 1 1 ba 0 0 Inconsistency: Equal rows in upper part have different extensions b and bbb differ, e.g., for suffix b => ε and bb will differ for suffix bb

15 Angluin's alg. for Mealy machines a b bb ε a b bb bbb aa ab ba Inconsistencies lead to new columns New Conjecture

16 Angluin's alg. for Mealy machines Target System Learned System

17 Summarized Observations (1) Systematic completition of the observation table New states arise as targets of transitions or from counter examples of the equivalence queries. Technically: prefixes are added to S Closure procedure extends SA Consistency is enforced by enlarging the Distinguishing Set D

18 Summarized Observations (2) Invariance Lemma: All hypothesis models are totally defined: each input is considered at each state, input deterministic: there is only one transition per input at each state, transition covered: each transition lies on a path of the original system, state minimal: two different states in a hypothesis model always have a separating future á la Nerode).

19 Myhill Nerode Nerode relation: For language L define relation R L (for u,u Σ*) u R L u for all v Σ*: (uv L uv L) Myhill-Nerode Theorem: Minimal number of states of an accepting deterministic automaton equals the number of equivalence classes of R L

20 Summarized Observations (4) This (Nerode s theorem) directly yields: Corollary: Hypothesis automata have at most as many states as the smallest deterministic equivalent automaton. We will denote the number of states by n.

21 Summarized Observations (4) Lemma: The number of states of the hypothesis model increases in response to a counterexample. Theorem: Angluin s algorithm terminates after at most n equivalence queries with the smallest deterministic system representing the behaviour of the system to be learned.

22 Further Developments 22

23 Practical challenges Interface description etc. interfacing real systems: - alphabet generation - abstraction - data equivalence queries Behavioral models <presence type= /> Available reset <iq type= result /> Test-driver membership queries OK

24 Learning setup in Practice <presence type= /> Available <iq type= result /> TestDriver Static Alphabet Abstraction OK LearnLib Bern hard

25 A cegar teacher <presence type= /> Available(type=avail ) <iq type= result /> TestDriver OK LearnLib Learning relative to a given Representation System Available Available(type=avail ) Available Available(type=unavail ) Non-det. during EQ Test Cegar teacher

26 Counter Examples and Witnesses c 1 c 2 c 3 c 4 c 5 c 6 γ(α(c 1 )) γ(α(c 2 )) γ(α(c 3 )) γ(α(c 4 )) γ(α(c 5 )) γ(α(c 6 )) Bern hard

27 Counter Examples and Witnesses c 5 c 6 γ(α(c 1 )) γ(α(c 2 )) γ(α(c 3 )) c 4 γ(α(c 4 )) c 5 c 6 Bern hard

28 Counter Examples and Witnesses c 5 c 6 c 4 γ(α(c 1 )) γ(α(c 2 )) γ(α(c 3 )) d p γ(α(c 4 )) c 5 c 6 Bern hard Separating Pattern p c 4 d state representation future

29 Alphabet Abstraction Refinement Σ C Σ C \ α old (c) c γ(α(p)) x d F γ(α(p)) c d F α old (c) γ old (α old (c)) Bernhard Steffen VMCAI Austin, Texas

30 Case Study Biometric Passport [Aarts et. al, 2010] 262 Concrete symbols, 256 x readfile(i). - 1 initial abstract symbols - 8 alphabet refinements, to split readfile - 9 final abstract symbols read file(i) aggregated according to the required Authentication Bern hard

31 Further Developments Learning Side-Effects 31

32 Register automata (RA) action with formal parameters - parallel assignment Register (X): x 1. username x 2. password - + guard

33 Experimental results

34 Overview Motivation Introduction to active automata learning Practical aspects in active automata learning Conclusions

35 Learning non-functional properties New test-driver architecture Allows learning of non-functional properties Bundling of queries allows application of performance testing methods Performance Reliability Latency

36 Non-functional properties: First results

37 Profiling example: creating conferences

38 Practical results I Learning the OCS 38

39 User model: paper workflow

40

41 Hierarchy

42 Submit Report Event Condition Action

43 Semantics of "phase expires"- edges (2)

44 Many participants

45 Putting it all together ocs Jboss DB Tomcat JEE JMS ECA Workflows

46 Regular extrapolation

47 Optimized learning setup

48 Conclusions Active Automata Learning in practice: has many facets: Abstraction Instrumentation Reuse/Optimization It establishes a new system perspective Systems as evolving beasts : to be observed continuously difficult to control with Functional and Non-Function Properties Behavioural perspective to control system evolution

A practical introduction to active automata learning

A practical introduction to active automata learning A practical introduction to active automata learning Bernhard Steffen, Falk Howar, Maik Merten TU Dortmund SFM2011 Maik Merten, learning technology 1 Overview Motivation Introduction to active automata

More information

Bernhard Steffen, Falk Howar, Malte Isberner TU Dortmund /CMU. B. Steffen Summer School CPS

Bernhard Steffen, Falk Howar, Malte Isberner TU Dortmund /CMU. B. Steffen Summer School CPS Active Automata Learning: From DFA to Interface Programs and Beyond or From Languages to Program Executions or (more technically) The Power of Counterexample Analysis Bernhard Steffen, Falk Howar, Malte

More information

Learning Regular Sets

Learning Regular Sets Learning Regular Sets Author: Dana Angluin Presented by: M. Andreína Francisco Department of Computer Science Uppsala University February 3, 2014 Minimally Adequate Teachers A Minimally Adequate Teacher

More information

Advanced Automata Theory 11 Regular Languages and Learning Theory

Advanced Automata Theory 11 Regular Languages and Learning Theory Advanced Automata Theory 11 Regular Languages and Learning Theory Frank Stephan Department of Computer Science Department of Mathematics National University of Singapore fstephan@comp.nus.edu.sg Advanced

More information

Le rning Regular. A Languages via Alt rn ting. A E Autom ta

Le rning Regular. A Languages via Alt rn ting. A E Autom ta 1 Le rning Regular A Languages via Alt rn ting A E Autom ta A YALE MIT PENN IJCAI 15, Buenos Aires 2 4 The Problem Learn an unknown regular language L using MQ and EQ data mining neural networks geometry

More information

Learning Regular Languages over Large Alphabets

Learning Regular Languages over Large Alphabets Learning Regular Languages over Large Alphabets Oded Maler and Irini Eleftheria Mens CNRS-VERIMAG University of Grenoble France Abstract. This work is concerned with regular languages defined over large

More information

Correctness and termination of Tomte components for active register automata learning. Judith van Stegeren

Correctness and termination of Tomte components for active register automata learning. Judith van Stegeren Correctness and termination of Tomte components for active register automata learning Judith van Stegeren December 11, 2015 Master Thesis Computer Science Radboud University Nijmegen Institute for Computing

More information

A Succinct Canonical Register Automaton Model

A Succinct Canonical Register Automaton Model A Succinct Canonical Register Automaton Model Sofia Cassel a, Falk Howar b, Bengt Jonsson a, Maik Merten b, Bernhard Steffen b a Dept. of Information Technology, Uppsala University, Sweden b Chair of Programming

More information

An Abstract Framework for Counterexample Analysis in Active Automata Learning

An Abstract Framework for Counterexample Analysis in Active Automata Learning JMLR: Workshop and Conference Proceedings 34:79 93, 2014 Proceedings of the 12th ICGI An Abstract Framework for Counterexample Analysis in Active Automata Learning Malte Isberner malte.isberner@tu-dortmund.de

More information

Inferring Semantic Interfaces of Data Structures

Inferring Semantic Interfaces of Data Structures Inferring Semantic Interfaces of Data Structures Falk Howar 1, Malte Isberner 1, Bernhard Steffen 1 Oliver Bauer 1, and Bengt Jonsson 2 1 Technical University Dortmund, Chair for Programming Systems, Dortmund,

More information

Peled, Vardi, & Yannakakis: Black Box Checking

Peled, Vardi, & Yannakakis: Black Box Checking Peled, Vardi, & Yannakakis: Black Box Checking Martin Leucker leucker@it.uu.se Department of Computer Systems,, Sweden Plan Preliminaries State identification and verification Conformance Testing Extended

More information

Enhancing Active Automata Learning by a User Log Based Metric

Enhancing Active Automata Learning by a User Log Based Metric Master Thesis Computing Science Radboud University Enhancing Active Automata Learning by a User Log Based Metric Author Petra van den Bos First Supervisor prof. dr. Frits W. Vaandrager Second Supervisor

More information

Click to edit. Master title. style

Click to edit. Master title. style Query Learning of Derived ω-tree Languages in Polynomial Time Dana Angluin, Tımos Antonopoulos & Dana 1 Query Learning a set of possile concepts Question Answer tc Learner Teacher Tries to identify a target

More information

Learning Register Automata with Fresh Value Generation

Learning Register Automata with Fresh Value Generation Learning Register Automata with Fresh Value Generation Fides Aarts, Paul Fiterău-Broştean, Harco Kuppens, and Frits Vaandrager Institute for Computing and Information Sciences, Radboud University Nijmegen

More information

Automata Learning Through Counterexample Guided Abstraction Refinement

Automata Learning Through Counterexample Guided Abstraction Refinement Automata Learning Through Counterexample Guided Abstraction Refinement Fides Aarts 1, Faranak Heidarian 1, Harco Kuppens 1, Petur Olsen 2, and Frits Vaandrager 1 1 Institute for Computing and Information

More information

(b) If G=({S}, {a}, {S SS}, S) find the language generated by G. [8+8] 2. Convert the following grammar to Greibach Normal Form G = ({A1, A2, A3},

(b) If G=({S}, {a}, {S SS}, S) find the language generated by G. [8+8] 2. Convert the following grammar to Greibach Normal Form G = ({A1, A2, A3}, Code No: 07A50501 R07 Set No. 2 III B.Tech I Semester Examinations,MAY 2011 FORMAL LANGUAGES AND AUTOMATA THEORY Computer Science And Engineering Time: 3 hours Max Marks: 80 Answer any FIVE Questions All

More information

Extending Automata Learning to Extended Finite State Machines

Extending Automata Learning to Extended Finite State Machines Extending Automata Learning to Extended Finite State Machines Sofia Cassel 1, Falk Howar 2, Bengt Jonsson 3, and Bernhard Steffen 4 1 Scania CV AB, Södertälje, Sweden sofia.cassel@scania.com 2 Dortmund

More information

Learning Symbolic Automata

Learning Symbolic Automata Learning Symbolic Automata Samuel Drews and Loris D Antoni University of Wisconsin Madison Abstract. Symbolic automata allow transitions to carry predicates over rich alphabet theories, such as linear

More information

Learning I/O Automata

Learning I/O Automata Learning I/O Automata Fides Aarts and Frits Vaandrager Institute for Computing and Information Sciences, Radboud University Nijmegen P.O. Box 9010, 6500 GL Nijmegen, the Netherlands Abstract. Links are

More information

Learning Regular Languages over Large Alphabets

Learning Regular Languages over Large Alphabets Learning Regular Languages over Large Alphabets Oded Maler and Irini-Eleftheria Mens CNRS-VERIMAG University of Grenoble France Abstract. This work is concerned with regular languages defined over large

More information

Regular Inference for State Machines with Parameters

Regular Inference for State Machines with Parameters Regular Inference for State Machines with Parameters Therese Berg 1, Bengt Jonsson 1, Harald Raffelt 2 1 Department of Computer Systems, Uppsala University, Sweden {thereseb, bengt}@it.uu.se 2 Chair of

More information

Learning register automata: from languages to program structures

Learning register automata: from languages to program structures Mach Learn (2014) 96:65 98 DOI 10.1007/s10994-013-5419-7 Learning register automata: from languages to program structures Malte Isberner Falk Howar Bernhard Steffen Received: 9 December 2012 / Accepted:

More information

Obtaining the syntactic monoid via duality

Obtaining the syntactic monoid via duality Radboud University Nijmegen MLNL Groningen May 19th, 2011 Formal languages An alphabet is a non-empty finite set of symbols. If Σ is an alphabet, then Σ denotes the set of all words over Σ. The set Σ forms

More information

Automata Learning with on-the-fly Direct Hypothesis Construction

Automata Learning with on-the-fly Direct Hypothesis Construction Automata Learning with on-the-fly Direct Hypothesis Construction Maik Merten 1, Falk Howar 1, Bernhard Steffen 1, and Tiziana Margaria 2 1 Technical University Dortmund, Chair for Programming Systems,

More information

What we have done so far

What we have done so far What we have done so far DFAs and regular languages NFAs and their equivalence to DFAs Regular expressions. Regular expressions capture exactly regular languages: Construct a NFA from a regular expression.

More information

An Active Learning Approach For Inferring Discrete Event Automata

An Active Learning Approach For Inferring Discrete Event Automata An Active Learning Approach For Inferring Discrete Event Automata Mohammad Mahdi Karimi PhD. Candidate, ECE Supervisor: Dr Ali Karimoddini Summer 2015 1 Content 1. Discrete Event Systems Definitions Applications

More information

Model Learning as a Satisfiability Modulo Theories Problem

Model Learning as a Satisfiability Modulo Theories Problem Model Learning as a Satisfiability Modulo Theories Problem Rick Smetsers, Paul Fiterău-Broştean, and Frits Vaandrager Institute for Computing and Information Sciences Radboud University, Nijmegen, The

More information

Learning Regular ω-languages

Learning Regular ω-languages Learning Regular ω-languages 1 2 Overview Motivation Background (ω-automata) 2014 Previous work on learning regular ω-languages Why is it difficult to extend L* [Angluin] to ω- languages? L* works due

More information

LBT for Procedural and Reac1ve Systems Part 2: Reac1ve Systems Basic Theory

LBT for Procedural and Reac1ve Systems Part 2: Reac1ve Systems Basic Theory LBT for Procedural and Reac1ve Systems Part 2: Reac1ve Systems Basic Theory Karl Meinke, karlm@kth.se School of Computer Science and Communica:on KTH Stockholm 0. Overview of the Lecture 1. Learning Based

More information

Using Multiplicity Automata to Identify Transducer Relations from Membership and Equivalence Queries

Using Multiplicity Automata to Identify Transducer Relations from Membership and Equivalence Queries Using Multiplicity Automata to Identify Transducer Relations from Membership and Equivalence Queries Jose Oncina Dept. Lenguajes y Sistemas Informáticos - Universidad de Alicante oncina@dlsi.ua.es September

More information

Learning Regular ω-languages

Learning Regular ω-languages Learning Regular ω-languages The Goal Device an algorithm for learning an unknown regular ω-language L 3 The Goal Device an algorithm for learning an unknown regular ω-language L set of infinite words

More information

A Theory of History Dependent Abstractions for Learning Interface Automata

A Theory of History Dependent Abstractions for Learning Interface Automata A Theory of History Dependent Abstractions for Learning Interface Automata Fides Aarts, Faranak Heidarian, and Frits Vaandrager Institute for Computing and Information Sciences, Radboud University Nijmegen

More information

A Theory of History Dependent Abstractions for Learning Interface Automata

A Theory of History Dependent Abstractions for Learning Interface Automata A Theory of History Dependent Abstractions for Learning Interface Automata Fides Aarts, Faranak Heidarian, and Frits Vaandrager Institute for Computing and Information Sciences, Radboud University Nijmegen

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a preprint version which may differ from the publisher's version. For additional information about this

More information

The theory of regular cost functions.

The theory of regular cost functions. The theory of regular cost functions. Denis Kuperberg PhD under supervision of Thomas Colcombet Hebrew University of Jerusalem ERC Workshop on Quantitative Formal Methods Jerusalem, 10-05-2013 1 / 30 Introduction

More information

Computational Models - Lecture 4

Computational Models - Lecture 4 Computational Models - Lecture 4 Regular languages: The Myhill-Nerode Theorem Context-free Grammars Chomsky Normal Form Pumping Lemma for context free languages Non context-free languages: Examples Push

More information

Pranav Garg 1 Christof Löding 2 P. Madhusudan 1 Daniel Neider 2

Pranav Garg 1 Christof Löding 2 P. Madhusudan 1 Daniel Neider 2 Form Methods Syst Des (2015) 47:120 157 DOI 10.1007/s10703-015-0231-6 Quantified data automata for linear data structures: a register automaton model with applications to learning invariants of programs

More information

A Fresh Approach to Learning Register Automata

A Fresh Approach to Learning Register Automata A Fresh Approach to Learning Register Automata Benedikt Bollig 1, Peter Habermehl 2, Martin Leucker 3, and Benjamin Monmege 1 1 LSV, ENS Cachan, CNRS & Inria, France 2 Univ Paris Diderot, Sorbonne Paris

More information

Theory of Computation

Theory of Computation Fall 2002 (YEN) Theory of Computation Midterm Exam. Name:... I.D.#:... 1. (30 pts) True or false (mark O for true ; X for false ). (Score=Max{0, Right- 1 2 Wrong}.) (1) X... If L 1 is regular and L 2 L

More information

HKN CS/ECE 374 Midterm 1 Review. Nathan Bleier and Mahir Morshed

HKN CS/ECE 374 Midterm 1 Review. Nathan Bleier and Mahir Morshed HKN CS/ECE 374 Midterm 1 Review Nathan Bleier and Mahir Morshed For the most part, all about strings! String induction (to some extent) Regular languages Regular expressions (regexps) Deterministic finite

More information

Automated Compositional Analysis for Checking Component Substitutability

Automated Compositional Analysis for Checking Component Substitutability Automated Compositional Analysis for Checking Component Substitutability Nishant Sinha December 2007 Electrical and Computer Engineering Department Carnegie Mellon University Pittsburgh, PA 15213 Thesis

More information

Computational Models - Lecture 3

Computational Models - Lecture 3 Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. p. 1 Computational Models - Lecture 3 Equivalence of regular expressions and regular languages (lukewarm leftover

More information

COSE212: Programming Languages. Lecture 1 Inductive Definitions (1)

COSE212: Programming Languages. Lecture 1 Inductive Definitions (1) COSE212: Programming Languages Lecture 1 Inductive Definitions (1) Hakjoo Oh 2017 Fall Hakjoo Oh COSE212 2017 Fall, Lecture 1 September 4, 2017 1 / 9 Inductive Definitions Inductive definition (induction)

More information

Büchi Automata and their closure properties. - Ajith S and Ankit Kumar

Büchi Automata and their closure properties. - Ajith S and Ankit Kumar Büchi Automata and their closure properties - Ajith S and Ankit Kumar Motivation Conventional programs accept input, compute, output result, then terminate Reactive program : not expected to terminate

More information

Learning Mealy Machines with Timers

Learning Mealy Machines with Timers Learning Mealy Machines with Timers Bengt Jonsson Department of Information Technology, Uppsala University Abstract We introduce a new model of Mealy machines with timers (MMTs), which is able to describe

More information

Topics in Timed Automata

Topics in Timed Automata 1/32 Topics in Timed Automata B. Srivathsan RWTH-Aachen Software modeling and Verification group 2/32 Timed Automata A theory of timed automata R. Alur and D. Dill, TCS 94 2/32 Timed Automata Language

More information

COSE212: Programming Languages. Lecture 1 Inductive Definitions (1)

COSE212: Programming Languages. Lecture 1 Inductive Definitions (1) COSE212: Programming Languages Lecture 1 Inductive Definitions (1) Hakjoo Oh 2018 Fall Hakjoo Oh COSE212 2018 Fall, Lecture 1 September 5, 2018 1 / 10 Inductive Definitions Inductive definition (induction)

More information

What is this course about?

What is this course about? What is this course about? Examining the power of an abstract machine What can this box of tricks do? What is this course about? Examining the power of an abstract machine Domains of discourse: automata

More information

Theory of Computation

Theory of Computation Thomas Zeugmann Hokkaido University Laboratory for Algorithmics http://www-alg.ist.hokudai.ac.jp/ thomas/toc/ Lecture 3: Finite State Automata Motivation In the previous lecture we learned how to formalize

More information

Learning k-edge Deterministic Finite Automata in the Framework of Active Learning

Learning k-edge Deterministic Finite Automata in the Framework of Active Learning Learning k-edge Deterministic Finite Automata in the Framework of Active Learning Anuchit Jitpattanakul* Department of Mathematics, Faculty of Applied Science, King Mong s University of Technology North

More information

CS243, Logic and Computation Nondeterministic finite automata

CS243, Logic and Computation Nondeterministic finite automata CS243, Prof. Alvarez NONDETERMINISTIC FINITE AUTOMATA (NFA) Prof. Sergio A. Alvarez http://www.cs.bc.edu/ alvarez/ Maloney Hall, room 569 alvarez@cs.bc.edu Computer Science Department voice: (67) 552-4333

More information

Alan Bundy. Automated Reasoning LTL Model Checking

Alan Bundy. Automated Reasoning LTL Model Checking Automated Reasoning LTL Model Checking Alan Bundy Lecture 9, page 1 Introduction So far we have looked at theorem proving Powerful, especially where good sets of rewrite rules or decision procedures have

More information

Theory of Languages and Automata

Theory of Languages and Automata Theory of Languages and Automata Chapter 1- Regular Languages & Finite State Automaton Sharif University of Technology Finite State Automaton We begin with the simplest model of Computation, called finite

More information

Formal Definition of a Finite Automaton. August 26, 2013

Formal Definition of a Finite Automaton. August 26, 2013 August 26, 2013 Why a formal definition? A formal definition is precise: - It resolves any uncertainties about what is allowed in a finite automaton such as the number of accept states and number of transitions

More information

Part 4 out of 5 DFA NFA REX. Automata & languages. A primer on the Theory of Computation. Last week, we showed the equivalence of DFA, NFA and REX

Part 4 out of 5 DFA NFA REX. Automata & languages. A primer on the Theory of Computation. Last week, we showed the equivalence of DFA, NFA and REX Automata & languages A primer on the Theory of Computation Laurent Vanbever www.vanbever.eu Part 4 out of 5 ETH Zürich (D-ITET) October, 12 2017 Last week, we showed the equivalence of DFA, NFA and REX

More information

1. Draw a parse tree for the following derivation: S C A C C A b b b b A b b b b B b b b b a A a a b b b b a b a a b b 2. Show on your parse tree u,

1. Draw a parse tree for the following derivation: S C A C C A b b b b A b b b b B b b b b a A a a b b b b a b a a b b 2. Show on your parse tree u, 1. Draw a parse tree for the following derivation: S C A C C A b b b b A b b b b B b b b b a A a a b b b b a b a a b b 2. Show on your parse tree u, v, x, y, z as per the pumping theorem. 3. Prove that

More information

CS 154 Introduction to Automata and Complexity Theory

CS 154 Introduction to Automata and Complexity Theory CS 154 Introduction to Automata and Complexity Theory cs154.stanford.edu 1 INSTRUCTORS & TAs Ryan Williams Cody Murray Lera Nikolaenko Sunny Rajan 2 Textbook 3 Homework / Problem Sets Homework will be

More information

Learning of Bi-ω Languages from Factors

Learning of Bi-ω Languages from Factors JMLR: Workshop and Conference Proceedings 21:139 144, 2012 The 11th ICGI Learning of Bi-ω Languages from Factors M. Jayasrirani mjayasrirani@yahoo.co.in Arignar Anna Government Arts College, Walajapet

More information

Grammars (part II) Prof. Dan A. Simovici UMB

Grammars (part II) Prof. Dan A. Simovici UMB rammars (part II) Prof. Dan A. Simovici UMB 1 / 1 Outline 2 / 1 Length-Increasing vs. Context-Sensitive rammars Theorem The class L 1 equals the class of length-increasing languages. 3 / 1 Length-Increasing

More information

Back in Black: Towards Formal, Black Box Analysis of Sanitizers and Filters

Back in Black: Towards Formal, Black Box Analysis of Sanitizers and Filters Back in Black: Towards Formal, Black Box Analysis of Sanitizers and Filters George Argyros Columbia University argyros@cs.columbia.edu Ioannis Stais University of Athens i.stais@di.uoa.gr Aggelos Kiayias

More information

Sri vidya college of engineering and technology

Sri vidya college of engineering and technology Unit I FINITE AUTOMATA 1. Define hypothesis. The formal proof can be using deductive proof and inductive proof. The deductive proof consists of sequence of statements given with logical reasoning in order

More information

Computational Models - Lecture 3 1

Computational Models - Lecture 3 1 Computational Models - Lecture 3 1 Handout Mode Iftach Haitner and Yishay Mansour. Tel Aviv University. March 13/18, 2013 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice

More information

Finite Automata and Regular Languages

Finite Automata and Regular Languages Finite Automata and Regular Languages Topics to be covered in Chapters 1-4 include: deterministic vs. nondeterministic FA, regular expressions, one-way vs. two-way FA, minimization, pumping lemma for regular

More information

3515ICT: Theory of Computation. Regular languages

3515ICT: Theory of Computation. Regular languages 3515ICT: Theory of Computation Regular languages Notation and concepts concerning alphabets, strings and languages, and identification of languages with problems (H, 1.5). Regular expressions (H, 3.1,

More information

CMSC 330: Organization of Programming Languages. Regular Expressions and Finite Automata

CMSC 330: Organization of Programming Languages. Regular Expressions and Finite Automata CMSC 330: Organization of Programming Languages Regular Expressions and Finite Automata CMSC330 Spring 2018 1 How do regular expressions work? What we ve learned What regular expressions are What they

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Organization of Programming Languages Regular Expressions and Finite Automata CMSC 330 Spring 2017 1 How do regular expressions work? What we ve learned What regular expressions are What they

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Lecture 4 Ana Bove March 23rd 2018 Recap: Formal Proofs How formal should a proof be? Depends on its purpose...... but should be convincing......

More information

Compositional Reasoning

Compositional Reasoning EECS 219C: Computer-Aided Verification Compositional Reasoning and Learning for Model Generation Sanjit A. Seshia EECS, UC Berkeley Acknowledgments: Avrim Blum Compositional Reasoning S. A. Seshia 2 1

More information

Nonregular Languages

Nonregular Languages Nonregular Languages Recap from Last Time Theorem: The following are all equivalent: L is a regular language. There is a DFA D such that L( D) = L. There is an NFA N such that L( N) = L. There is a regular

More information

Learning Residual Finite-State Automata Using Observation Tables

Learning Residual Finite-State Automata Using Observation Tables Learning Residual Finite-State Automata Using Observation Tables Anna Kasprzik kasprzik@informatik.uni-trier.de September 16, 2009 Keywords: Algorithmic learning theory, grammatical inference, observation

More information

Chapter 2: Finite Automata

Chapter 2: Finite Automata Chapter 2: Finite Automata 2.1 States, State Diagrams, and Transitions Finite automaton is the simplest acceptor or recognizer for language specification. It is also the simplest model of a computer. A

More information

COM364 Automata Theory Lecture Note 2 - Nondeterminism

COM364 Automata Theory Lecture Note 2 - Nondeterminism COM364 Automata Theory Lecture Note 2 - Nondeterminism Kurtuluş Küllü March 2018 The FA we saw until now were deterministic FA (DFA) in the sense that for each state and input symbol there was exactly

More information

What You Must Remember When Processing Data Words

What You Must Remember When Processing Data Words What You Must Remember When Processing Data Words Michael Benedikt, Clemens Ley, and Gabriele Puppis Oxford University Computing Laboratory, Park Rd, Oxford OX13QD UK Abstract. We provide a Myhill-Nerode-like

More information

Introduction to Formal Languages, Automata and Computability p.1/51

Introduction to Formal Languages, Automata and Computability p.1/51 Introduction to Formal Languages, Automata and Computability Finite State Automata K. Krithivasan and R. Rama Introduction to Formal Languages, Automata and Computability p.1/51 Introduction As another

More information

Leveraging Weighted Automata in Compositional Reasoning about Concurrent Probabilistic Systems

Leveraging Weighted Automata in Compositional Reasoning about Concurrent Probabilistic Systems Leveraging Weighted Automata in Compositional Reasoning about Concurrent Probabilistic Systems Fei He,2,3 Xiaowei Gao,2,3 Bow-Yaw Wang Lijun Zhang 5 Tsinghua National Laboratory for Information Science

More information

Computational Models - Lecture 4 1

Computational Models - Lecture 4 1 Computational Models - Lecture 4 1 Handout Mode Iftach Haitner. Tel Aviv University. November 21, 2016 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice Herlihy, Brown University.

More information

Minimization of Weighted Automata

Minimization of Weighted Automata Minimization of Weighted Automata Andreas Maletti Universitat Rovira i Virgili Tarragona, Spain Wrocław May 19, 2010 Minimization of Weighted Automata Andreas Maletti 1 In Collaboration with ZOLTÁN ÉSIK,

More information

Lecture 3: Nondeterministic Finite Automata

Lecture 3: Nondeterministic Finite Automata Lecture 3: Nondeterministic Finite Automata September 5, 206 CS 00 Theory of Computation As a recap of last lecture, recall that a deterministic finite automaton (DFA) consists of (Q, Σ, δ, q 0, F ) where

More information

COMP-330 Theory of Computation. Fall Prof. Claude Crépeau. Lecture 1 : Introduction

COMP-330 Theory of Computation. Fall Prof. Claude Crépeau. Lecture 1 : Introduction COMP-330 Theory of Computation Fall 2017 -- Prof. Claude Crépeau Lecture 1 : Introduction COMP 330 Fall 2017: Lectures Schedule 1-2. Introduction 1.5. Some basic mathematics 2-3. Deterministic finite automata

More information

Theoretical Computer Science

Theoretical Computer Science Theoretical Computer Science 448 (2012) 41 46 Contents lists available at SciVerse ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs Polynomial characteristic sets

More information

Angluin-Style Learning of NFA

Angluin-Style Learning of NFA Angluin-Style Learning of NFA Benedikt Bollig LSV, ENS Cachan, CNRS bollig@lsv.ens-cachan.fr Peter Habermehl LIAFA, U. Paris Diderot (Paris 7) Peter.Habermehl@liafa.jussieu.fr Carsten Kern MOVES, RWTH

More information

Chapter 5. Finite Automata

Chapter 5. Finite Automata Chapter 5 Finite Automata 5.1 Finite State Automata Capable of recognizing numerous symbol patterns, the class of regular languages Suitable for pattern-recognition type applications, such as the lexical

More information

Push-down Automata = FA + Stack

Push-down Automata = FA + Stack Push-down Automata = FA + Stack PDA Definition A push-down automaton M is a tuple M = (Q,, Γ, δ, q0, F) where Q is a finite set of states is the input alphabet (of terminal symbols, terminals) Γ is the

More information

Query-based Learning of XPath Expressions

Query-based Learning of XPath Expressions Query-based Learning of XPath Expressions Julien Carme, Michal Ceresna, and Max Goebel Database and Artificial Intelligence Group Vienna University of Technology Abstract. XML is data format for storing

More information

The Pumping Lemma. for all n 0, u 1 v n u 2 L (i.e. u 1 u 2 L, u 1 vu 2 L [but we knew that anyway], u 1 vvu 2 L, u 1 vvvu 2 L, etc.

The Pumping Lemma. for all n 0, u 1 v n u 2 L (i.e. u 1 u 2 L, u 1 vu 2 L [but we knew that anyway], u 1 vvu 2 L, u 1 vvvu 2 L, etc. The Pumping Lemma For every regular language L, there is a number l 1 satisfying the pumping lemma property: All w L with w l can be expressed as a concatenation of three strings, w = u 1 vu 2, where u

More information

Theory of Computation 4 Non-Deterministic Finite Automata

Theory of Computation 4 Non-Deterministic Finite Automata Theory of Computation 4 Non-Deterministic Finite Automata Frank Stephan Department of Computer Science Department of Mathematics National University of Singapore fstephan@comp.nus.edu.sg Theory of Computation

More information

Introduction to Kleene Algebra Lecture 9 CS786 Spring 2004 February 23, 2004

Introduction to Kleene Algebra Lecture 9 CS786 Spring 2004 February 23, 2004 Introduction to Kleene Algebra Lecture 9 CS786 Spring 2004 February 23, 2004 Completeness Here we continue the program begun in the previous lecture to show the completeness of Kleene algebra for the equational

More information

CEGAR:Counterexample-Guided Abstraction Refinement

CEGAR:Counterexample-Guided Abstraction Refinement CEGAR: Counterexample-guided Abstraction Refinement Sayan Mitra ECE/CS 584: Embedded System Verification November 13, 2012 Outline Finite State Systems: Abstraction Refinement CEGAR Validation Refinment

More information

Learnability of Probabilistic Automata via Oracles

Learnability of Probabilistic Automata via Oracles Learnability of Probabilistic Automata via Oracles Omri Guttman, S.V.N. Vishwanathan, and Robert C. Williamson Statistical Machine Learning Program National ICT Australia RSISE, Australian National University

More information

Hybrid systems and computer science a short tutorial

Hybrid systems and computer science a short tutorial Hybrid systems and computer science a short tutorial Eugene Asarin Université Paris 7 - LIAFA SFM 04 - RT, Bertinoro p. 1/4 Introductory equations Hybrid Systems = Discrete+Continuous SFM 04 - RT, Bertinoro

More information

Learning cover context-free grammars from structural data

Learning cover context-free grammars from structural data Learning cover context-free grammars from structural data Mircea Marin Gabriel Istrate West University of Timişoara, Romania 11th International Colloquium on Theoretical Aspects of Computing ICTAC 2014

More information

Formal Languages. We ll use the English language as a running example.

Formal Languages. We ll use the English language as a running example. Formal Languages We ll use the English language as a running example. Definitions. A string is a finite set of symbols, where each symbol belongs to an alphabet denoted by. Examples. The set of all strings

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2017

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2017 Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2017 Lecture 4 Ana Bove March 24th 2017 Structural induction; Concepts of automata theory. Overview of today s lecture: Recap: Formal Proofs

More information

Valence automata over E-unitary inverse semigroups

Valence automata over E-unitary inverse semigroups Valence automata over E-unitary inverse semigroups Erzsi Dombi 30 May 2018 Outline Motivation Notation and introduction Valence automata Bicyclic and polycyclic monoids Motivation Chomsky-Schützenberger

More information

INF Introduction and Regular Languages. Daniel Lupp. 18th January University of Oslo. Department of Informatics. Universitetet i Oslo

INF Introduction and Regular Languages. Daniel Lupp. 18th January University of Oslo. Department of Informatics. Universitetet i Oslo INF28 1. Introduction and Regular Languages Daniel Lupp Universitetet i Oslo 18th January 218 Department of Informatics University of Oslo INF28 Lecture :: 18th January 1 / 33 Details on the Course consists

More information

Lipschitz Robustness of Finite-state Transducers

Lipschitz Robustness of Finite-state Transducers Lipschitz Robustness of Finite-state Transducers Roopsha Samanta IST Austria Joint work with Tom Henzinger and Jan Otop December 16, 2014 Roopsha Samanta Lipschitz Robustness of Finite-state Transducers

More information

Deterministic Finite Automata

Deterministic Finite Automata Deterministic Finite Automata COMP2600 Formal Methods for Software Engineering Katya Lebedeva Australian National University Semester 2, 2016 Slides by Ranald Clouston and Katya Lebedeva. COMP 2600 Deterministic

More information

Automata: a short introduction

Automata: a short introduction ILIAS, University of Luxembourg Discrete Mathematics II May 2012 What is a computer? Real computers are complicated; We abstract up to an essential model of computation; We begin with the simplest possible

More information

Problem Session 5 (CFGs) Talk about the building blocks of CFGs: S 0S 1S ε - everything. S 0S0 1S1 A - waw R. S 0S0 0S1 1S0 1S1 A - xay, where x = y.

Problem Session 5 (CFGs) Talk about the building blocks of CFGs: S 0S 1S ε - everything. S 0S0 1S1 A - waw R. S 0S0 0S1 1S0 1S1 A - xay, where x = y. CSE2001, Fall 2006 1 Problem Session 5 (CFGs) Talk about the building blocks of CFGs: S 0S 1S ε - everything. S 0S0 1S1 A - waw R. S 0S0 0S1 1S0 1S1 A - xay, where x = y. S 00S1 A - xay, where x = 2 y.

More information

Lecture 4: More on Regexps, Non-Regular Languages

Lecture 4: More on Regexps, Non-Regular Languages 6.045 Lecture 4: More on Regexps, Non-Regular Languages 6.045 Announcements: - Pset 1 is on piazza (as of last night) - If you don t have piazza access but are registered for 6.045, send email to TAs with

More information