CS 6604: Data Mining Large Networks and Time-series. B. Aditya Prakash Lecture #8: Epidemics: Thresholds

Size: px
Start display at page:

Download "CS 6604: Data Mining Large Networks and Time-series. B. Aditya Prakash Lecture #8: Epidemics: Thresholds"

Transcription

1 CS 6604: Data Mining Large Networks and Time-series B. Aditya Prakash Lecture #8: Epidemics: Thresholds

2 A fundamental Strong Virus Epidemic? 2

3 example graph) Weak Virus Epidemic? 3

4 Problem Statement # Infected above (epidemic) below Find, a condi4on under which virus will die out exponen4ally quickly regardless of ini4al infec4on condi4on Separate the regimes? 4

5 Threshold version) Problem Statement Given: Graph G, and Virus specs (apack prob. etc.) Find: A condiuon for virus exuncuon/invasion 5

6 Threshold: Why important? AcceleraUng simulauons ForecasUng ( What-if scenarios) Design of contagion and/or topology A great handle to manipulate the spreading ImmunizaUon Maximize collaborauon.. 6

7 Outline Q: What is the epidemic threshold? Background Result and IntuiUon (StaUc Graphs) Proof Ideas (StaUc Graphs) Bonus: Dynamic Graphs 7

8 SIR model: life immunity (mumps) Each node in the graph is in one of three states SuscepUble (i.e. healthy) Infected Removed (i.e. can t get infected again) Prob. β Prob. δ t = 1 t = 2 t = 3 8

9 Related Work q q q q q q q R. M. Anderson and R. M. May. InfecUous Diseases of Humans. Oxford University Press, A. Barrat, M. Barthélemy, and A. Vespignani. Dynamical Processes on Complex Networks. Cambridge University Press, F. M. Bass. A new product growth for model consumer durables. Management Science, 15(5): , D. ChakrabarU, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos. Epidemic thresholds in real networks. ACM TISSEC, 10(4), D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, A. Ganesh, L. Massoulie, and D. Towsley. The effect of network topology in spread of epidemics. IEEE INFOCOM, Y. Hayashi, M. Minoura, and J. Matsukubo. Recoverable prevalence in growing scale-free networks and the effecuve immunizauon. arxiv:cond-at/ v2, Aug q H. W. Hethcote. The mathemaucs of infecuous diseases. SIAM Review, 42, q H. W. Hethcote and J. A. Yorke. Gonorrhea transmission dynamics and control. Springer Lecture Notes in BiomathemaUcs, 46, q q q q q q J. O. Kephart and S. R. White. Directed-graph epidemiological models of computer viruses. IEEE Computer Society Symposium on Research in Security and Privacy, J. O. Kephart and S. R. White. Measuring and modeling computer virus prevalence. IEEE Computer Society Symposium on Research in Security and Privacy, R. Pastor-Santorras and A. Vespignani. Epidemic spreading in scale-free networks. Physical Review LePers 86, 14, All are about either: Structured topologies (cliques, block-diagonals, hierarchies, random) Specific virus propaga@on models Sta@c graphs 9

10 Outline Q: What is the epidemic threshold? Background Result and Graphs) Proof Ideas (StaUc Graphs) Bonus: Dynamic Graphs 10

11 How should the answer look like? Answer should depend on: Graph Virus PropagaUon Model (VPM) But how?? β + δ d avg Graph average degree? max. degree? diameter? VPM which parameters? How to combine linear? quadrauc? exponenual? diameter? ( avg max 2 2 β d avg δd ) / d?.. 11

12 Graphs: Main Result [Prakash+, 2011] Informally, For, Ø any arbitrary topology (adjacency matrix A) Ø any virus propagation model (VPM) in standard literature the epidemic threshold depends only 1. on the λ, first eigenvalue of A, and 2. some constant C VPM, determined by the virus propagation model λ C VPM No epidemic if λ * C VPM < 1 12

13 Our thresholds for some models s = effec4ve strength s < 1 : below threshold Models Effec@ve Strength (s) Threshold (@pping point) SIS, SIR, SIRS, SEIR s = λ. SIV, SEIV s = λ. SI 1I2V1 V2 (H.I.V.) s = λ. β δ βγ δ β1v v2 ( γ +θ ) 2 + β ε 2 ( ε + v ) 1 s = 1 13

14 Our result: for λ Official Let A be the adjacency matrix. Then λ is the root with the largest magnitude of the characteristic polynomial of A [det(a xi)]. Un-official Intui@on J λ ~ # paths in the graph k A λ k. u u Doesn t give much intuiuon! A k(i, j) = # of paths i à j of length k 14

15 Largest Eigenvalue (λ) beper connecuvity higher λ λ 2 λ = N λ = N-1 λ 2 λ= λ= 999 N = 1000 N nodes 15

16 Examples: SIR (mumps) of Footprint Strength (a) Infection profile (b) Take-off plot PORTLAND graph 31 million CS 6604:DM links, Large Networks 6 million & Time-Series nodes 16

17 Examples: SIRS (pertusis) of Footprint Strength (a) Infection profile (b) Take-off plot PORTLAND graph 31 million CS 6604:DM links, Large Networks 6 million & Time-Series nodes 17

18 Outline Q: What is the epidemic threshold? Background Result and IntuiUon (StaUc Graphs) Proof Ideas Graphs) Bonus: Dynamic Graphs 18

19 Proof Sketch General VPM structure Model-based λ * C VPM < 1 Topology and stability Graph-based 19

20 Some trivia Ø first person in the US idenufied as a healthy carrier of the pathogen associated with typhoid fever. Ø infected some 53 people, over the course of her career as a cook! Ø forcibly quaranuned by public health authoriues 20

21 Two Infected States? SICR: with a carrier AsymtomaUc SymptomaUc Sneezing I1 I2 21

22 Ingredient 1: Our generalized model Endogenous Infected Exogenous Endogenous Vigilant 22

23 Models and more models Model SIR SIS SIRS SEIR.. SICR MSIR SIV SI 1I2V1 V2. Used for Mumps Flu Pertussis Chicken-pox Tuberculosis Measles Sensor Stability H.I.V. 23

24 Our generalized model Endogenous Infected Vigilant 24

25 Special case: SIR Infected Vigilant 25

26 Special case: H.I.V. SI I V V Non-terminal Terminal MulUple InfecUous, Vigilant states 26

27 Ingredient 2: NLDS + Stability View as a NLDS discrete Ume non-linear dynamical system (NLDS) size mn x Probability vector Specifies the state of the system at Ume t size N (number of nodes in the graph) S I V 27

28 Ingredient 2: NLDS + Stability View as a NLDS discrete Ume non-linear dynamical system (NLDS) size mn x 1... Non-linear func@on Explicitly gives the evoluuon of system

29 Ingredient 2: NLDS + Stability View as a NLDS discrete Ume non-linear dynamical system (NLDS) Threshold à Stability of NLDS 29

30 Special case: SIR S size 3N x 1 I R S I R = probability that node i is not apacked by any of its infecuous neighbors NLDS 30

31 Fixed Point State when no node is infected Q: Is it stable? 31

32 Stability for SIR Stable Unstable under threshold above threshold 32

33 See paper for full proof General VPM structure Model-based λ * C VPM < 1 Topology and stability Graph-based 33

34 Outline Q: What is the epidemic threshold? Background Result and IntuiUon (StaUc Graphs) Proof Ideas (StaUc Graphs) Bonus: Dynamic Graphs 34

35 Dynamic Graphs: Epidemic? DAY (e.g., work) Alternating behaviors adjacency matrix

36 Dynamic Graphs: Epidemic? NIGHT (e.g., home) Alternating behaviors adjacency matrix

37 Model Healthy SIS model recovery rate δ infecuon rate β N1 Infected Prob. β X N2 N3 Prob. δ Set of T arbitrary graphs day N night N, weekend.. N N 37

38 Obvious result No epidemic if λ max β δ <1 #inf. This looks OK BUT Too pessimisuc! Ume 38

39 Main result: Dynamic Graphs Threshold [Prakash+, 2010] Informally, NO epidemic if eig (S) = < 1 Single number! Largest eigenvalue of The system matrix S 39

40 NO epidemic if eig (S) = < 1 S = cure rate Prob. β N1 Infected Prob. δ X Healthy N2 infec@on rate N3 N day adjacency matrix night.. N 40

41 log(frac4on infected) ABOVE MIT Reality Mining ABOVE AT AT BELOW BELOW Time 41

42 Footprint (# steady state ) Take-off plots Synthe@c MIT Reality Our threshold EPIDEMIC Our threshold EPIDEMIC NO EPIDEMIC NO EPIDEMIC (log scale) 42

Toward Understanding Spatial Dependence on Epidemic Thresholds in Networks

Toward Understanding Spatial Dependence on Epidemic Thresholds in Networks Toward Understanding Spatial Dependence on Epidemic Thresholds in Networks Zesheng Chen Department of Computer Science Indiana University - Purdue University Fort Wayne, Indiana 4685 Email: chenz@ipfw.edu

More information

CS 6604: Data Mining Large Networks and Time- series. B. Aditya Prakash Lecture #9: Epidemics: Compe3ng Viruses

CS 6604: Data Mining Large Networks and Time- series. B. Aditya Prakash Lecture #9: Epidemics: Compe3ng Viruses CS 6604: Data Mining Large Networks and Time- series B. Aditya Prakash Lecture #9: Epidemics: Compe3ng Viruses Compe

More information

Virus Propagation on Time-Varying Networks: Theory and Immunization Algorithms

Virus Propagation on Time-Varying Networks: Theory and Immunization Algorithms Virus Propagation on Time-Varying Networks: Theory and Immunization Algorithms B. Aditya Prakash *, Hanghang Tong *, Nicholas Valler +, Michalis Faloutsos +, and Christos Faloutsos * * Computer Science

More information

Social Influence in Online Social Networks. Epidemiological Models. Epidemic Process

Social Influence in Online Social Networks. Epidemiological Models. Epidemic Process Social Influence in Online Social Networks Toward Understanding Spatial Dependence on Epidemic Thresholds in Networks Dr. Zesheng Chen Viral marketing ( word-of-mouth ) Blog information cascading Rumor

More information

Epidemics and information spreading

Epidemics and information spreading Epidemics and information spreading Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Social Network

More information

Epidemic Thresholds in Real Networks

Epidemic Thresholds in Real Networks IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1 Epidemic Thresholds in Real Networks Deepayan Chakrabarti, Yang Wang, Chenxi Wang, Jurij Leskovec and Christos Faloutsos deepay@cs.cmu.edu, yangwang@andrew.cmu.edu,

More information

Linear Algebra Methods for Data Mining

Linear Algebra Methods for Data Mining Linear Algebra Methods for Data Mining Saara Hyvönen, Saara.Hyvonen@cs.helsinki.fi Spring 2007 2. Basic Linear Algebra continued Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki

More information

CS224W: Analysis of Networks Jure Leskovec, Stanford University

CS224W: Analysis of Networks Jure Leskovec, Stanford University Announcements: Please fill HW Survey Weekend Office Hours starting this weekend (Hangout only) Proposal: Can use 1 late period CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu

More information

ECS 289 / MAE 298, Lecture 7 April 22, Percolation and Epidemiology on Networks, Part 2 Searching on networks

ECS 289 / MAE 298, Lecture 7 April 22, Percolation and Epidemiology on Networks, Part 2 Searching on networks ECS 289 / MAE 298, Lecture 7 April 22, 2014 Percolation and Epidemiology on Networks, Part 2 Searching on networks 28 project pitches turned in Announcements We are compiling them into one file to share

More information

Epidemics in Complex Networks and Phase Transitions

Epidemics in Complex Networks and Phase Transitions Master M2 Sciences de la Matière ENS de Lyon 2015-2016 Phase Transitions and Critical Phenomena Epidemics in Complex Networks and Phase Transitions Jordan Cambe January 13, 2016 Abstract Spreading phenomena

More information

Social and Economic Networks Matthew O. Jackson

Social and Economic Networks Matthew O. Jackson Social and Economic Networks Matthew O. Jackson Copyright: Matthew O. Jackson 2016 Please do not post or distribute without permission. Networks and Behavior How does network structure impact behavior?

More information

Winner Takes All: Competing Viruses or Ideas on fair-play Networks

Winner Takes All: Competing Viruses or Ideas on fair-play Networks WWW 212 Session: Social Networks April 16 2, 212, Lyon, France Winner Takes All: Competing Viruses or Ideas on fair-play Networks B. Aditya Prakash, Alex Beutel, Roni Rosenfeld, and Christos Faloutsos

More information

Epidemic Spread in Mobile Ad Hoc Networks: Determining the Tipping Point

Epidemic Spread in Mobile Ad Hoc Networks: Determining the Tipping Point Epidemic Spread in Mobile Ad Hoc Networks: Determining the Tipping Point Nicholas Valler, B. Prakash, Hanghang Tong, Michalis Faloutsos, Christos Faloutsos To cite this version: Nicholas Valler, B. Prakash,

More information

Competing Memes Propagation on Networks: A Case Study of Composite Networks

Competing Memes Propagation on Networks: A Case Study of Composite Networks Competing Memes Propagation on Networks: A Case Study of Composite Networks Xuetao Wei # xwei@cs.ucr.edu Iulian Neamtiu # neamtiu@cs.ucr.edu Nicholas Valler # nvaller@cs.ucr.edu Michalis Faloutsos # michalis@cs.ucr.edu

More information

An Optimal Control Problem Over Infected Networks

An Optimal Control Problem Over Infected Networks Proceedings of the International Conference of Control, Dynamic Systems, and Robotics Ottawa, Ontario, Canada, May 15-16 214 Paper No. 125 An Optimal Control Problem Over Infected Networks Ali Khanafer,

More information

Winner Takes All: Competing Viruses or Ideas on fair-play Networks

Winner Takes All: Competing Viruses or Ideas on fair-play Networks Winner Takes All: Competing Viruses or Ideas on fair-play Networks B. Aditya Prakash Alex Beutel Roni Rosenfeld Christos Faloutsos Computer Science Department, Carnegie Mellon University, USA Email: badityap,

More information

SIS epidemics on Networks

SIS epidemics on Networks SIS epidemics on etworks Piet Van Mieghem in collaboration with Eric Cator, Ruud van de Bovenkamp, Cong Li, Stojan Trajanovski, Dongchao Guo, Annalisa Socievole and Huijuan Wang 1 EURADOM 30 June-2 July,

More information

Spreading and Opinion Dynamics in Social Networks

Spreading and Opinion Dynamics in Social Networks Spreading and Opinion Dynamics in Social Networks Gyorgy Korniss Rensselaer Polytechnic Institute 05/27/2013 1 Simple Models for Epidemiological and Social Contagion Susceptible-Infected-Susceptible (SIS)

More information

Introduction to SEIR Models

Introduction to SEIR Models Department of Epidemiology and Public Health Health Systems Research and Dynamical Modelling Unit Introduction to SEIR Models Nakul Chitnis Workshop on Mathematical Models of Climate Variability, Environmental

More information

The Spreading of Epidemics in Complex Networks

The Spreading of Epidemics in Complex Networks The Spreading of Epidemics in Complex Networks Xiangyu Song PHY 563 Term Paper, Department of Physics, UIUC May 8, 2017 Abstract The spreading of epidemics in complex networks has been extensively studied

More information

ECS 289 F / MAE 298, Lecture 15 May 20, Diffusion, Cascades and Influence

ECS 289 F / MAE 298, Lecture 15 May 20, Diffusion, Cascades and Influence ECS 289 F / MAE 298, Lecture 15 May 20, 2014 Diffusion, Cascades and Influence Diffusion and cascades in networks (Nodes in one of two states) Viruses (human and computer) contact processes epidemic thresholds

More information

Die-out Probability in SIS Epidemic Processes on Networks

Die-out Probability in SIS Epidemic Processes on Networks Die-out Probability in SIS Epidemic Processes on etworks Qiang Liu and Piet Van Mieghem Abstract An accurate approximate formula of the die-out probability in a SIS epidemic process on a network is proposed.

More information

Epidemics on networks

Epidemics on networks Epidemics on networks Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Network Science Leonid

More information

A new centrality measure for probabilistic diffusion in network

A new centrality measure for probabilistic diffusion in network ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 5, No., September 204 ISSN : 2322-557 A new centrality measure for probabilistic diffusion in network Kiyotaka Ide, Akira Namatame,

More information

Modelling of the Hand-Foot-Mouth-Disease with the Carrier Population

Modelling of the Hand-Foot-Mouth-Disease with the Carrier Population Modelling of the Hand-Foot-Mouth-Disease with the Carrier Population Ruzhang Zhao, Lijun Yang Department of Mathematical Science, Tsinghua University, China. Corresponding author. Email: lyang@math.tsinghua.edu.cn,

More information

Analytically tractable processes on networks

Analytically tractable processes on networks University of California San Diego CERTH, 25 May 2011 Outline Motivation 1 Motivation Networks Random walk and Consensus Epidemic models Spreading processes on networks 2 Networks Motivation Networks Random

More information

An Improved Computer Multi-Virus Propagation Model with User Awareness

An Improved Computer Multi-Virus Propagation Model with User Awareness Journal of Information & Computational Science 8: 16 (2011) 4301 4308 Available at http://www.joics.com An Improved Computer Multi-Virus Propagation Model with User Awareness Xiaoqin ZHANG a,, Shuyu CHEN

More information

Announcements. Topics: Work On: - sec0ons 1.2 and 1.3 * Read these sec0ons and study solved examples in your textbook!

Announcements. Topics: Work On: - sec0ons 1.2 and 1.3 * Read these sec0ons and study solved examples in your textbook! Announcements Topics: - sec0ons 1.2 and 1.3 * Read these sec0ons and study solved examples in your textbook! Work On: - Prac0ce problems from the textbook and assignments from the coursepack as assigned

More information

Full Diffusion History Reconstruction in Networks

Full Diffusion History Reconstruction in Networks 205 IEEE International Conference on Big Data (Big Data) Full Diffusion History Reconstruction in Networks Zhen Chen, Hanghang Tong and Lei Ying School of Electrical, Computer and Energy Engineering School

More information

SI j RS E-Epidemic Model With Multiple Groups of Infection In Computer Network. 1 Introduction. Bimal Kumar Mishra 1, Aditya Kumar Singh 2

SI j RS E-Epidemic Model With Multiple Groups of Infection In Computer Network. 1 Introduction. Bimal Kumar Mishra 1, Aditya Kumar Singh 2 ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.13(2012) No.3,pp.357-362 SI j RS E-Epidemic Model With Multiple Groups of Infection In Computer Network Bimal Kumar

More information

Improved Bounds on the Epidemic Threshold of Exact SIS Models on Complex Networks

Improved Bounds on the Epidemic Threshold of Exact SIS Models on Complex Networks Improved Bounds on the Epidemic Threshold of Exact SIS Models on Complex Networks Navid Azizan Ruhi, Christos Thrampoulidis and Babak Hassibi Abstract The SIS (susceptible-infected-susceptible) epidemic

More information

Mathematical Analysis of Epidemiological Models: Introduction

Mathematical Analysis of Epidemiological Models: Introduction Mathematical Analysis of Epidemiological Models: Introduction Jan Medlock Clemson University Department of Mathematical Sciences 8 February 2010 1. Introduction. The effectiveness of improved sanitation,

More information

Mathematical Epidemiology Lecture 1. Matylda Jabłońska-Sabuka

Mathematical Epidemiology Lecture 1. Matylda Jabłońska-Sabuka Lecture 1 Lappeenranta University of Technology Wrocław, Fall 2013 What is? Basic terminology Epidemiology is the subject that studies the spread of diseases in populations, and primarily the human populations.

More information

arxiv: v2 [cond-mat.stat-mech] 9 Dec 2010

arxiv: v2 [cond-mat.stat-mech] 9 Dec 2010 Thresholds for epidemic spreading in networks Claudio Castellano 1 and Romualdo Pastor-Satorras 2 1 Istituto dei Sistemi Complessi (CNR-ISC), UOS Sapienza and Dip. di Fisica, Sapienza Università di Roma,

More information

Diffusion of Innovation

Diffusion of Innovation Diffusion of Innovation Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Social Network Analysis

More information

Virgili, Tarragona (Spain) Roma (Italy) Zaragoza, Zaragoza (Spain)

Virgili, Tarragona (Spain) Roma (Italy) Zaragoza, Zaragoza (Spain) Int.J.Complex Systems in Science vol. 1 (2011), pp. 47 54 Probabilistic framework for epidemic spreading in complex networks Sergio Gómez 1,, Alex Arenas 1, Javier Borge-Holthoefer 1, Sandro Meloni 2,3

More information

Epidemics on networks

Epidemics on networks Epidemics on networks Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Structural Analysis and

More information

Diffusion of information and social contagion

Diffusion of information and social contagion Diffusion of information and social contagion Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics

More information

Lecture VI Introduction to complex networks. Santo Fortunato

Lecture VI Introduction to complex networks. Santo Fortunato Lecture VI Introduction to complex networks Santo Fortunato Plan of the course I. Networks: definitions, characteristics, basic concepts in graph theory II. III. IV. Real world networks: basic properties

More information

Preventive behavioural responses and information dissemination in network epidemic models

Preventive behavioural responses and information dissemination in network epidemic models PROCEEDINGS OF THE XXIV CONGRESS ON DIFFERENTIAL EQUATIONS AND APPLICATIONS XIV CONGRESS ON APPLIED MATHEMATICS Cádiz, June 8-12, 215, pp. 111 115 Preventive behavioural responses and information dissemination

More information

6.207/14.15: Networks Lecture 7: Search on Networks: Navigation and Web Search

6.207/14.15: Networks Lecture 7: Search on Networks: Navigation and Web Search 6.207/14.15: Networks Lecture 7: Search on Networks: Navigation and Web Search Daron Acemoglu and Asu Ozdaglar MIT September 30, 2009 1 Networks: Lecture 7 Outline Navigation (or decentralized search)

More information

SIR model. (Susceptible-Infected-Resistant/Removed) Outlook. Introduction into SIR model. Janusz Szwabiński

SIR model. (Susceptible-Infected-Resistant/Removed) Outlook. Introduction into SIR model. Janusz Szwabiński SIR model (Susceptible-Infected-Resistant/Removed) Janusz Szwabiński Outlook Introduction into SIR model Analytical approximation Numerical solution Numerical solution on a grid Simulation on networks

More information

Link Operations for Slowing the Spread of Disease in Complex Networks. Abstract

Link Operations for Slowing the Spread of Disease in Complex Networks. Abstract PACS: 89.75.Hc; 88.80.Cd; 89.65.Ef Revision 1: Major Areas with Changes are Highlighted in Red Link Operations for Slowing the Spread of Disease in Complex Networks Adrian N. Bishop and Iman Shames NICTA,

More information

Epidemic Threshold of an SIS Model in Dynamic Switching Networks

Epidemic Threshold of an SIS Model in Dynamic Switching Networks Epidemic Threshold of an SIS Model in Dynamic Switching Networks Mohammad Reza Sanatkar, Warren N. White, Balasubramaniam Natarajan, Caterina M. Scoglio, and Karen A. Garrett arxiv:5.2472v2 [cs.si] 3 Jul

More information

Modeling, Analysis, and Control of Information Propagation in Multi-layer and Multiplex Networks. Osman Yağan

Modeling, Analysis, and Control of Information Propagation in Multi-layer and Multiplex Networks. Osman Yağan Modeling, Analysis, and Control of Information Propagation in Multi-layer and Multiplex Networks Osman Yağan Department of ECE Carnegie Mellon University Joint work with Y. Zhuang and V. Gligor (CMU) Alex

More information

Global Stability of a Computer Virus Model with Cure and Vertical Transmission

Global Stability of a Computer Virus Model with Cure and Vertical Transmission International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Volume 3, Issue 1, January 016, PP 16-4 ISSN 349-4840 (Print) & ISSN 349-4859 (Online) www.arcjournals.org Global

More information

Quantitative model to measure the spread of Security attacks in Computer Networks

Quantitative model to measure the spread of Security attacks in Computer Networks Quantitative model to measure the spread of Security attacks in Computer Networks SAURABH BARANWAL M.Sc.(Int.) 4 th year Mathematics and Sci. Computing Indian Institute of Technology, Kanpur email: saurabhbrn@gmail.com,

More information

Research Article Towards the Epidemiological Modeling of Computer Viruses

Research Article Towards the Epidemiological Modeling of Computer Viruses Discrete Dynamics in Nature and Society Volume 2012, Article ID 259671, 11 pages doi:10.1155/2012/259671 Research Article Towards the Epidemiological Modeling of Computer Viruses Xiaofan Yang 1, 2 and

More information

Oscillatory epidemic prevalence in g free networks. Author(s)Hayashi Yukio; Minoura Masato; Matsu. Citation Physical Review E, 69(1):

Oscillatory epidemic prevalence in g free networks. Author(s)Hayashi Yukio; Minoura Masato; Matsu. Citation Physical Review E, 69(1): JAIST Reposi https://dspace.j Title Oscillatory epidemic prevalence in g free networks Author(s)Hayashi Yukio; Minoura Masato; Matsu Citation Physical Review E, 69(1): 016112-1-0 Issue Date 2004-01 Type

More information

On Susceptible-Infected-Susceptible Epidemic Spreading: an Overview of Recent Study

On Susceptible-Infected-Susceptible Epidemic Spreading: an Overview of Recent Study The 1 st Net-X (2017) On Susceptible-Infected-Susceptible Epidemic Spreading: an Overview of Recent Study Cong Li Adaptive Networks and Control Lab, Fudan University Collaborators: Xiaojie Li, Jianbo Wang,

More information

Machine Learning and Modeling for Social Networks

Machine Learning and Modeling for Social Networks Machine Learning and Modeling for Social Networks Olivia Woolley Meza, Izabela Moise, Nino Antulov-Fatulin, Lloyd Sanders 1 Spreading and Influence on social networks Computational Social Science D-GESS

More information

Non-Linear Models Cont d: Infectious Diseases. Non-Linear Models Cont d: Infectious Diseases

Non-Linear Models Cont d: Infectious Diseases. Non-Linear Models Cont d: Infectious Diseases Cont d: Infectious Diseases Infectious Diseases Can be classified into 2 broad categories: 1 those caused by viruses & bacteria (microparasitic diseases e.g. smallpox, measles), 2 those due to vectors

More information

GLOBAL DYNAMICS OF A MATHEMATICAL MODEL OF TUBERCULOSIS

GLOBAL DYNAMICS OF A MATHEMATICAL MODEL OF TUBERCULOSIS CANADIAN APPIED MATHEMATICS QUARTERY Volume 13, Number 4, Winter 2005 GOBA DYNAMICS OF A MATHEMATICA MODE OF TUBERCUOSIS HONGBIN GUO ABSTRACT. Mathematical analysis is carried out for a mathematical model

More information

GEMF: GENERALIZED EPIDEMIC MODELING FRAMEWORK SOFTWARE IN PYTHON

GEMF: GENERALIZED EPIDEMIC MODELING FRAMEWORK SOFTWARE IN PYTHON GEMF: GENERALIZED EPIDEMIC MODELING FRAMEWORK SOFTWARE IN PYTHON HEMAN SHAKERI Network Science and Engineering Group (NetSE) Department of Electrical and Computer Engineering Kansas State University Manhattan,

More information

Network Science & Telecommunications

Network Science & Telecommunications Network Science & Telecommunications Piet Van Mieghem 1 ITC30 Networking Science Vision Day 5 September 2018, Vienna Outline Networks Birth of Network Science Function and graph Outlook 1 Network: service(s)

More information

Kalavakkam, Chennai, , Tamilnadu, INDIA 2,3 School of Advanced Sciences. VIT University Vellore, , Tamilnadu, INDIA

Kalavakkam, Chennai, , Tamilnadu, INDIA 2,3 School of Advanced Sciences. VIT University Vellore, , Tamilnadu, INDIA International Journal of Pure and Applied Mathematics Volume 09 No. 4 206, 799-82 ISSN: 3-8080 (printed version); ISSN: 34-3395 (on-line version) url: http://www.ijpam.eu doi: 0.2732/ijpam.v09i4.4 PAijpam.eu

More information

Lecture 1: Graphs, Adjacency Matrices, Graph Laplacian

Lecture 1: Graphs, Adjacency Matrices, Graph Laplacian Lecture 1: Graphs, Adjacency Matrices, Graph Laplacian Radu Balan January 31, 2017 G = (V, E) An undirected graph G is given by two pieces of information: a set of vertices V and a set of edges E, G =

More information

Spectral Graph Theory for. Dynamic Processes on Networks

Spectral Graph Theory for. Dynamic Processes on Networks Spectral Graph Theory for Dynamic Processes on etworks Piet Van Mieghem in collaboration with Huijuan Wang, Dragan Stevanovic, Fernando Kuipers, Stojan Trajanovski, Dajie Liu, Cong Li, Javier Martin-Hernandez,

More information

WE FOCUS ON A simple continuous-time model for the

WE FOCUS ON A simple continuous-time model for the IEEE/ACM TRANSACTIONS ON NETWORKING, VOL 17, NO 1, FEBRUARY 2009 1 Virus Spread in Networks Piet Van Mieghem, Member, IEEE, Jasmina Omic, and Robert Kooij Abstract The influence of the network characteristics

More information

Identifying Core Network Structure for Epidemic Simulations

Identifying Core Network Structure for Epidemic Simulations Identifying Core Network Structure for Epidemic Simulations Samarth Swarup 1, S. S. Ravi 2, M. M. Hassan Mahmud 3, and Kristian Lum 4 1 Biocomplexity Institute of Virginia Tech, Blacksburg, VA, USA, swarup@vbi.vt.edu

More information

Stability of SEIR Model of Infectious Diseases with Human Immunity

Stability of SEIR Model of Infectious Diseases with Human Immunity Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13, Number 6 (2017), pp. 1811 1819 Research India Publications http://www.ripublication.com/gjpam.htm Stability of SEIR Model of Infectious

More information

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 24 Apr 2004

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 24 Apr 2004 Behavior of susceptible inf ected susceptible epidemics on arxiv:cond-mat/0402065v2 [cond-mat.stat-mech] 24 Apr 2004 heterogeneous networks with saturation Jaewook Joo Department of Physics, Rutgers University,

More information

arxiv:cond-mat/ v3 [cond-mat.dis-nn] 10 Dec 2003

arxiv:cond-mat/ v3 [cond-mat.dis-nn] 10 Dec 2003 Efficient Immunization Strategies for Computer Networs and Populations Reuven Cohen, Shlomo Havlin, and Daniel ben-avraham 2 Minerva Center and Department of Physics, Bar-Ilan University, Ramat-Gan, 529,

More information

Diffusion of Innovation and Influence Maximization

Diffusion of Innovation and Influence Maximization Diffusion of Innovation and Influence Maximization Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics

More information

Complex networks: an introduction Alain Barrat

Complex networks: an introduction Alain Barrat Complex networks: an introduction Alain Barrat CPT, Marseille, France ISI, Turin, Italy http://www.cpt.univ-mrs.fr/~barrat http://cxnets.googlepages.com Plan of the lecture I. INTRODUCTION I. Networks:

More information

Adventures in random graphs: Models, structures and algorithms

Adventures in random graphs: Models, structures and algorithms BCAM January 2011 1 Adventures in random graphs: Models, structures and algorithms Armand M. Makowski ECE & ISR/HyNet University of Maryland at College Park armand@isr.umd.edu BCAM January 2011 2 Complex

More information

Models of Infectious Disease Formal Demography Stanford Summer Short Course James Holland Jones, Instructor. August 15, 2005

Models of Infectious Disease Formal Demography Stanford Summer Short Course James Holland Jones, Instructor. August 15, 2005 Models of Infectious Disease Formal Demography Stanford Summer Short Course James Holland Jones, Instructor August 15, 2005 1 Outline 1. Compartmental Thinking 2. Simple Epidemic (a) Epidemic Curve 1:

More information

Diffusion processes on complex networks

Diffusion processes on complex networks Diffusion processes on complex networks Lecture 8 - SIR model Janusz Szwabiński Outlook Introduction into SIR model Analytical approximation Numerical solution Numerical solution on a grid Simulation on

More information

The minimal spectral radius of graphs with a given diameter

The minimal spectral radius of graphs with a given diameter Linear Algebra and its Applications 43 (007) 408 419 www.elsevier.com/locate/laa The minimal spectral radius of graphs with a given diameter E.R. van Dam a,, R.E. Kooij b,c a Tilburg University, Department

More information

Networks as a tool for Complex systems

Networks as a tool for Complex systems Complex Networs Networ is a structure of N nodes and 2M lins (or M edges) Called also graph in Mathematics Many examples of networs Internet: nodes represent computers lins the connecting cables Social

More information

Epidemic reemergence in adaptive complex networks

Epidemic reemergence in adaptive complex networks Epidemic reemergence in adaptive complex networks J. Zhou, 1 G. Xiao, 1 S. A. Cheong, 2 X. Fu, 3 L. Wong, 4 S. Ma, 5 and T. H. Cheng 1 1 Division of Communication Engineering, School of Electrical and

More information

Inferring the origin of an epidemic with a dynamic message-passing algorithm

Inferring the origin of an epidemic with a dynamic message-passing algorithm Inferring the origin of an epidemic with a dynamic message-passing algorithm HARSH GUPTA (Based on the original work done by Andrey Y. Lokhov, Marc Mézard, Hiroki Ohta, and Lenka Zdeborová) Paper Andrey

More information

Section 8.1 Def. and Examp. Systems

Section 8.1 Def. and Examp. Systems Section 8.1 Def. and Examp. Systems Key Terms: SIR Model of an epidemic o Nonlinear o Autonomous Vector functions o Derivative of vector functions Order of a DE system Planar systems Dimension of a system

More information

arxiv: v1 [physics.soc-ph] 7 Jul 2015

arxiv: v1 [physics.soc-ph] 7 Jul 2015 Epidemic spreading and immunization strategy in multiplex networks Lucila G. Alvarez Zuzek, 1, Camila Buono, 1 and Lidia A. Braunstein 1, 2 1 Departamento de Física, Facultad de Ciencias Exactas y Naturales,

More information

A note on modeling retweet cascades on Twitter

A note on modeling retweet cascades on Twitter A note on modeling retweet cascades on Twitter Ashish Goel 1, Kamesh Munagala 2, Aneesh Sharma 3, and Hongyang Zhang 4 1 Department of Management Science and Engineering, Stanford University, ashishg@stanford.edu

More information

Mathematical Modeling and Analysis of Infectious Disease Dynamics

Mathematical Modeling and Analysis of Infectious Disease Dynamics Mathematical Modeling and Analysis of Infectious Disease Dynamics V. A. Bokil Department of Mathematics Oregon State University Corvallis, OR MTH 323: Mathematical Modeling May 22, 2017 V. A. Bokil (OSU-Math)

More information

Optimal contact process on complex networks

Optimal contact process on complex networks Optimal contact process on complex networks Rui Yang, 1 Tao Zhou, 2,3 Yan-Bo Xie, 2 Ying-Cheng Lai, 1,4 and Bing-Hong Wang 2 1 Department of Electrical Engineering, Arizona State University, Tempe, Arizona

More information

Generalized Epidemic Mean-Field Model for Spreading Processes Over Multilayer Complex Networks

Generalized Epidemic Mean-Field Model for Spreading Processes Over Multilayer Complex Networks IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 5, OCTOBER 2013 1609 Generalized Epidemic Mean-Field Model for Spreading Processes Over Multilayer Complex Networks Faryad Darabi Sahneh, Member,IEEE,CaterinaScoglio,Member,IEEE,and

More information

Modeling Epidemic Risk Perception in Networks with Community Structure

Modeling Epidemic Risk Perception in Networks with Community Structure Modeling Epidemic Risk Perception in Networks with Community Structure Franco Bagnoli,,3, Daniel Borkmann 4, Andrea Guazzini 5,6, Emanuele Massaro 7, and Stefan Rudolph 8 Department of Energy, University

More information

A Note on the Spread of Infectious Diseases. in a Large Susceptible Population

A Note on the Spread of Infectious Diseases. in a Large Susceptible Population International Mathematical Forum, Vol. 7, 2012, no. 50, 2481-2492 A Note on the Spread of Infectious Diseases in a Large Susceptible Population B. Barnes Department of Mathematics Kwame Nkrumah University

More information

A BINOMIAL MOMENT APPROXIMATION SCHEME FOR EPIDEMIC SPREADING IN NETWORKS

A BINOMIAL MOMENT APPROXIMATION SCHEME FOR EPIDEMIC SPREADING IN NETWORKS U.P.B. Sci. Bull., Series A, Vol. 76, Iss. 2, 2014 ISSN 1223-7027 A BINOMIAL MOMENT APPROXIMATION SCHEME FOR EPIDEMIC SPREADING IN NETWORKS Yilun SHANG 1 Epidemiological network models study the spread

More information

Threshold Conditions in SIR STD Models

Threshold Conditions in SIR STD Models Applied Mathematical Sciences, Vol. 3, 2009, no. 7, 333-349 Threshold Conditions in SIR STD Models S. Seddighi Chaharborj 1,, M. R. Abu Bakar 1, V. Alli 2 and A. H. Malik 1 1 Department of Mathematics,

More information

Research Article Two Quarantine Models on the Attack of Malicious Objects in Computer Network

Research Article Two Quarantine Models on the Attack of Malicious Objects in Computer Network Mathematical Problems in Engineering Volume 2012, Article ID 407064, 13 pages doi:10.1155/2012/407064 Research Article Two Quarantine Models on the Attack of Malicious Objects in Computer Network Bimal

More information

MATHEMATICAL MODELS Vol. III - Mathematical Models in Epidemiology - M. G. Roberts, J. A. P. Heesterbeek

MATHEMATICAL MODELS Vol. III - Mathematical Models in Epidemiology - M. G. Roberts, J. A. P. Heesterbeek MATHEMATICAL MODELS I EPIDEMIOLOGY M. G. Roberts Institute of Information and Mathematical Sciences, Massey University, Auckland, ew Zealand J. A. P. Heesterbeek Faculty of Veterinary Medicine, Utrecht

More information

Diffusion of Behavior and Equilibrium Properties in Network Games

Diffusion of Behavior and Equilibrium Properties in Network Games Diffusion of Behavior and Equilibrium Properties in Network Games By Matthew O. Jackson and Leeat Yariv* Situations in which agents choices depend on choices of those in close proximity, be it social or

More information

The death of an epidemic

The death of an epidemic LECTURE 2 Equilibrium Stability Analysis & Next Generation Method The death of an epidemic In SIR equations, let s divide equation for dx/dt by dz/ dt:!! dx/dz = - (β X Y/N)/(γY)!!! = - R 0 X/N Integrate

More information

Quarantine generated phase transition in epidemic spreading. Abstract

Quarantine generated phase transition in epidemic spreading. Abstract Quarantine generated phase transition in epidemic spreading C. Lagorio, M. Dickison, 2 * F. Vazquez, 3 L. A. Braunstein,, 2 P. A. Macri, M. V. Migueles, S. Havlin, 4 and H. E. Stanley Instituto de Investigaciones

More information

Spread of Malicious Objects in Computer Network: A Fuzzy Approach

Spread of Malicious Objects in Computer Network: A Fuzzy Approach Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 8, Issue 2 (December 213), pp. 684 7 Applications and Applied Mathematics: An International Journal (AAM) Spread of Malicious Objects

More information

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 7 Jan 2000

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 7 Jan 2000 Epidemics and percolation in small-world networks Cristopher Moore 1,2 and M. E. J. Newman 1 1 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501 2 Departments of Computer Science and

More information

Models of Communication Dynamics for Simulation of Information Diffusion

Models of Communication Dynamics for Simulation of Information Diffusion Models of Communication Dynamics for Simulation of Information Diffusion Konstantin Mertsalov, Malik Magdon-Ismail, Mark Goldberg Rensselaer Polytechnic Institute Department of Computer Science 11 8th

More information

Dynamics of a network-based SIS epidemic model with nonmonotone incidence rate

Dynamics of a network-based SIS epidemic model with nonmonotone incidence rate Dynamics of a network-based SIS epidemic model with nonmonotone incidence rate Chun-Hsien Li a, a Department of Mathematics, National Kaohsiung Normal University, Yanchao District, Kaohsiung City 82444,

More information

A Time Since Recovery Model with Varying Rates of Loss of Immunity

A Time Since Recovery Model with Varying Rates of Loss of Immunity Bull Math Biol (212) 74:281 2819 DOI 1.17/s11538-12-978-7 ORIGINAL ARTICLE A Time Since Recovery Model with Varying Rates of Loss of Immunity Subhra Bhattacharya Frederick R. Adler Received: 7 May 212

More information

Least Squares Parameter Es.ma.on

Least Squares Parameter Es.ma.on Least Squares Parameter Es.ma.on Alun L. Lloyd Department of Mathema.cs Biomathema.cs Graduate Program North Carolina State University Aims of this Lecture 1. Model fifng using least squares 2. Quan.fica.on

More information

Identifying critical nodes in multi-layered networks under multi-vector malware attack Rafael Vida 1,2,3, Javier Galeano 3, and Sara Cuenda 4

Identifying critical nodes in multi-layered networks under multi-vector malware attack Rafael Vida 1,2,3, Javier Galeano 3, and Sara Cuenda 4 Int. J. Complex Systems in Science vol. 3(1) (2013), pp. 97 105 Identifying critical nodes in multi-layered networks under multi-vector malware attack Rafael Vida 1,2,3, Javier Galeano 3, and Sara Cuenda

More information

Epidemic spreading on heterogeneous networks with identical infectivity

Epidemic spreading on heterogeneous networks with identical infectivity Physics Letters A 364 (2007) 189 193 wwwelseviercom/locate/pla Epidemic spreading on heterogeneous networs with identical infectivity Rui Yang, Bing-Hong Wang, Jie Ren, Wen-Jie Bai, Zhi-Wen Shi, Wen-Xu

More information

MODELING THE SPREAD OF DENGUE FEVER BY USING SIR MODEL. Hor Ming An, PM. Dr. Yudariah Mohammad Yusof

MODELING THE SPREAD OF DENGUE FEVER BY USING SIR MODEL. Hor Ming An, PM. Dr. Yudariah Mohammad Yusof MODELING THE SPREAD OF DENGUE FEVER BY USING SIR MODEL Hor Ming An, PM. Dr. Yudariah Mohammad Yusof Abstract The establishment and spread of dengue fever is a complex phenomenon with many factors that

More information

Comparative analysis of transport communication networks and q-type statistics

Comparative analysis of transport communication networks and q-type statistics Comparative analysis of transport communication networs and -type statistics B. R. Gadjiev and T. B. Progulova International University for Nature, Society and Man, 9 Universitetsaya Street, 498 Dubna,

More information

Epidemic dynamics and endemic states in complex networks

Epidemic dynamics and endemic states in complex networks PHYSICAL REVIEW E, VOLUME 63, 066117 Epidemic dynamics and endemic states in complex networks Romualdo Pastor-Satorras 1 and Alessandro Vespignani 2 1 Departmento de Física i Enginyeria Nuclear, Universitat

More information

The Dynamic Properties of a Deterministic SIR Epidemic Model in Discrete-Time

The Dynamic Properties of a Deterministic SIR Epidemic Model in Discrete-Time Applied Mathematics, 05, 6, 665-675 Published Online September 05 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/046/am056048 The Dynamic Properties of a Deterministic SIR Epidemic Model in Discrete-Time

More information

Maximizing the Spread of Influence through a Social Network. David Kempe, Jon Kleinberg, Éva Tardos SIGKDD 03

Maximizing the Spread of Influence through a Social Network. David Kempe, Jon Kleinberg, Éva Tardos SIGKDD 03 Maximizing the Spread of Influence through a Social Network David Kempe, Jon Kleinberg, Éva Tardos SIGKDD 03 Influence and Social Networks Economics, sociology, political science, etc. all have studied

More information