Spectral Graph Theory for. Dynamic Processes on Networks

Size: px
Start display at page:

Download "Spectral Graph Theory for. Dynamic Processes on Networks"

Transcription

1 Spectral Graph Theory for Dynamic Processes on etworks Piet Van Mieghem in collaboration with Huijuan Wang, Dragan Stevanovic, Fernando Kuipers, Stojan Trajanovski, Dajie Liu, Cong Li, Javier Martin-Hernandez, Ruud van de Bovenkamp and Rob Kooij Outline Dynamic Processes on etworks Modifying the spectral radius Principal eigenvector ew (?) graph theoretic results Summary

2 Effect of etwork on Function Brain Biology Economy Social etwork Science networking Man-made Infrastructures Internet, power-grid Brain/Bio-inspired etworking to design superior man-made robust networks/systems Coupled oscillators (Kuramoto model) Interaction equals sums of sinus of phase difference of each neighbor:! k = " k + g$ akj sin(! j! k ) θk j= coupling strength natural frequency % coupled gc! "f () $ (A) g 4 J. G. Restrepo, E. Ott, and B. R. Hunt. Onset of synchronization in large networks of coupled oscillators, Phys. Rev. E, vol. 7, 365, 5

3 Simple SIS model Homogeneous birth (infection) rate β on all edges between infected and susceptible nodes Homogeneous death (curing) rate δ for infected nodes τ = β /δ : effective spreading rate δ Healthy 3 β β Infected Infected 5 Epidemics in networks: modeling & immunization network protection self-replicating objects (worms) propagation errors rumors (social nets) epidemic algorithms (gossiping) cybercrime : network robustness & security! " X j j!neighbor(i)!! c =! = " " ( A) Epidemic threshold - Van Mieghem, P., J. S. Omic and R. E. Kooij, 9, "Virus Spread in etworks", IEEE/ACM Transaction on etworking, Vol. 7, o., February, pp Van Mieghem, P.,, "The -Intertwined SIS epidemic network model", Computing (Springer), Vol. 93, Issue, p

4 Transformation s =! & principal eigenvector dy! (s) ds s= = " $ j= " d j L dy! (s) ds s=! = " j= j= (x ) j (x ) j 3 7 Van Mieghem, P.,, "Epidemic Phase Transition of the SIS-type in etworks", Europhysics Letters (EPL), Vol. 97, Februari, p s c = λ Algebraic graph theory: notation Any graph G can be represented by an adjacency matrix A and an incidence matrix B, and a Laplacian Q B L = 6 L = 9 = 4 T A = = A T Q = BB = Δ A Δ = diag ( d d d 8 ) 4

5 Outline Dynamic Processes on etworks Modifying the spectral radius Principal eigenvector ew (?) graph theoretic results Summary Affecting the epidemic threshold Degree-preserving rewiring (assortativity of the graph) Van Mieghem, P., H. Wang, X. Ge, S. Tang and F. A. Kuipers,, "Influence of Assortativity and Degree-preserving Rewiring on the Spectra of etworks", The European Physical Journal B, vol. 76, o. 4, pp Van Mieghem, P., X. Ge, P. Schumm, S. Trajanovski and H. Wang,, "Spectral Graph Analysis of Modularity and Assortativity", Physical Review E, Vol. 8, ovember, p Li, C., H. Wang and P. Van Mieghem,, "Degree and Principal Eigenvectors in Complex etworks", IFIP etworking, May -5, Prague, Czech Republic. Removing links/nodes (optimal way is P-complete) Van Mieghem, P., D. Stevanovic, F. A. Kuipers, C. Li, R. van de Bovenkamp, D. Liu and H. Wang,,"Decreasing the spectral radius of a graph by link removals", Physical Review E, Vol. 84, o., July, p. 6. Quarantining and network protection Omic, J., J. Martin Hernandez and P. Van Mieghem,, "etwork protection against worms and cascading failures using modularity partitioning", nd International Teletraffic Congress (ITC ), September 7-9, Amsterdam, etherlands. Gourdin, E., J. Omic and P. Van Mieghem,, "Optimization of network protection against virus spread", 8th International Workshop on Design of Reliable Communication etworks (DRC ), October -, Krakow, Poland. E.R. van Dam, R.E. Kooij, The minimal spectral radius of graphs with a given diameter, Linear Algebra and its Applications, 43, 7, pp

6 Assortativity Reformulation of ewman s definition into algebraic graph theory =! d j =, =! d j = L, = d T d =! d j j =! D = E [ D D l + l " ] " E [ D l + ]E D l " Var[ D l + ]Var[ D l + ] j = [ ] A network is (degree) assortative if ρ D > A network is (degree) disassortative if ρ D < = 3 " 3 d j " where k = u T A k u is the total number of walks with k hops: j = j = k! " j = d j k Van Mieghem, P., H. Wang, X. Ge, S. Tang and F. A. Kuipers,,"Influence of Assortativity and Degree-preserving Rewiring on the Spectra of etworks", The European Physical Journal B, vol. 76, o. 4, pp Degree-preserving rewiring a c a c a c b d b d b d ( ) d i " d j i~ j! D =" 3 d j " $ j = L & % j = d j ' ) ( only two terms change degree-preserving rewiring algorithm 6

7 Bounds largest eigenvalue adjacency matrix Classical bounds: Walks based: E [ D] = L! " ( A)! d max d max!! (A)! d max! ( A) " /(k) & k % ( " / k & k % ( $ ' $ ' / k = :! ( A) " dt d& % ( = L $ ' + Var[ D] E D ( [ ]) k = 3 :! 3 ( A) " 3 = ) 3 D * d j + & % $ j = ( + & % $ ' ( ' Optimized:! ( A) " 3 + ( 3 ) others ( ) 3 P. Van Mieghem, Graph Spectra for Complex etworks, Cambridge University Press, Comparison! 5 5 exact bound bound bound " D Barabasi-Albert power law graph with = 5 and L=9! " 3 $ & % / 3 4 7

8 USA air transportation network 5 Degree-preserving rewiring USA air transport network: adjacency eig. 5 Adjacency eigenvalues!d Percentage of rewired links Percentage of rewired links 3 4 8

9 Degree-preserving rewiring USA air transport network: Laplacian eig..7. Laplacian eigenvalues Pr[D = k].. Pr[D = k] ~ k degree k Percentage of rewired links Decreasing the spectral radius Which set of m removed links (or nodes) decreases the spectral radius most? [P-complete problem] Scaling law:! (A)!! (A m ) = c G m" What is the best heuristic strategy? remove the link l with maximum product of the eigenvector components: x l + x l - 8 Van Mieghem, P., D. Stevanovic, F. A. Kuipers, C. Li, R. van de Bovenkamp, D. Liu and H. Wang,,"Decreasing the spectral radius of a graph by link removals", Physical Review E, Vol. 84, o., July, p. 6. 9

10 Outline Dynamic Processes on etworks Modifying the spectral radius Principal eigenvector ew (?) graph theoretic results Summary.6 Binomial networks The component of the largest eigenvector Binomial etworks =5, L=984 ρ=.8 mean=.64 ρ=.4 mean=.375 ρ= mean=.4 ρ=.4 mean=.47 ρ=.8 mean=.43 without rewiring normalized degree The mean of the components decreases with the assortativity The normalized, ranked degree is between the green and purple line n Li, C., H. Wang and P. Van Mieghem,, "Degree and Principal Eigenvectors in Complex etworks", IFIP etworking, May -5, Prague, Czech Republic.

11 Power law networks.3 The component of the largest eigenvector Power law etwork: =5, L=984 ρ=.4 mean=.85 ρ=. mean=.433 ρ= mean=.3 ρ=. mean=.3458 ρ=.4 mean=.3793 without rewiring normalized degree The mean of the components decreases with the assortativity n Power law networks (log-scale) - The component of the largest eigenvector Power law etwork: =5, L=984 ρ=.4 mean=.85 ρ=. mean=.433 ρ= mean=.3 ρ=. mean=.3458 ρ=.4 mean=.3793 without rewiring normalized degree n

12 E[D] = 8 3 Outline Dynamic Processes on etworks Modifying the spectral radius Principal eigenvector ew (?) graph theoretic results Summary

13 Upper bound principal eigenvector of A Let x denote the principal eigenvector of A belonging to the largest eigenvalue λ (A). Let m denote the set of nodes that are removed from G x n! $ & + (& % x j ) '&! (A) *& n" m If m =, equality holds a ij x i j" m i" m If m =, then x n! S.M. Cioaba, A necessary and sufficient eigenvector condition for a connected graph to be bipartite, Electron. J. Linear Algebra (ELA) () Li, C., H. Wang and P. Van Mieghem,, "Bounds for the spectral radius of a graph when nodes are removed", Linear Algebra and its Applications, vol. 437, pp Lower bound principal eigenvector of A Let $ n j=; jm Then x m x m T = n! " ( z! x j ) = b k (m)z k and all eigenvalues are different k= This follows after inversion of A k = (! m!! ) k=;k"m k! k x k x k T! $ k= b k (m)a k = ( A!! k I ) k=;k"m (! m!! ) k=;k"m k using the inversion of the Vandermonde matrix, which can be related to Lagrange s interpolation theorem! j= Corollary: for any connected graph, it holds that ( x ) j! max & ( ( ' (! "! ) k= k " % max $ j$ k=h ij b k () ( A k ) ij, " " % b k () A k e! k=h ij ( ) 6 jj ) + + > * 3

14 Spectral identity For any symmetric matrix A ( ) = det A \ i det A!!I ( { }!!I )det A \{ k}!!i ( )! ( det( A \ rowi col k!!i)) det( A \{ i,k}!!i) Is this identity new? Using this identity, we can deduce (x k ) j = det A \{ j}!! ki P. Van Mieghem, Graph Spectra for Complex etworks, Cambridge University Press, second edition in preparation. " n= ( ) ( ) det A \{ n}!! k I 7 Topology domain 3 = 6 L = 9 Spectral domain A = X!X T Most network problems: - shortest path - graph metrics - network algorithms X 3-ary tree : green = 8 4

15 Spectral invariants The number of eigenvector components with positive (negative) sign and those with zero value umerical results (Javier Martin-Hernandez): about 5 % of the eigenvector components are positive invariant? due to orthonormal matrix properties? What does it mean? 9 Outline Dynamic Processes on etworks Modifying the spectral radius Principal eigenvector ew (?) graph theoretic results Summary 5

16 Summary Real epidemics: phase transition at τc > /λ, but the Intertwined mean-field approximation is very useful in network engineering via spectral analysis Epidemic threshold engineering: Degree-preserving assortative rewiring increases λ, while degree-preserving disassortative rewiring decreases λ Removing links/nodes to maximally decrease λ is Phard What do eigenvalues and eigenvectors "physically" mean? 3 Books Articles: 3 6

17 Thank You Piet Van Mieghem AS, TUDelft 33 7

SIS epidemics on Networks

SIS epidemics on Networks SIS epidemics on etworks Piet Van Mieghem in collaboration with Eric Cator, Ruud van de Bovenkamp, Cong Li, Stojan Trajanovski, Dongchao Guo, Annalisa Socievole and Huijuan Wang 1 EURADOM 30 June-2 July,

More information

Network Science & Telecommunications

Network Science & Telecommunications Network Science & Telecommunications Piet Van Mieghem 1 ITC30 Networking Science Vision Day 5 September 2018, Vienna Outline Networks Birth of Network Science Function and graph Outlook 1 Network: service(s)

More information

On Susceptible-Infected-Susceptible Epidemic Spreading: an Overview of Recent Study

On Susceptible-Infected-Susceptible Epidemic Spreading: an Overview of Recent Study The 1 st Net-X (2017) On Susceptible-Infected-Susceptible Epidemic Spreading: an Overview of Recent Study Cong Li Adaptive Networks and Control Lab, Fudan University Collaborators: Xiaojie Li, Jianbo Wang,

More information

Die-out Probability in SIS Epidemic Processes on Networks

Die-out Probability in SIS Epidemic Processes on Networks Die-out Probability in SIS Epidemic Processes on etworks Qiang Liu and Piet Van Mieghem Abstract An accurate approximate formula of the die-out probability in a SIS epidemic process on a network is proposed.

More information

Optimally decreasing the spectral radius of a graph by link removals

Optimally decreasing the spectral radius of a graph by link removals Optimally decreasing the spectral radius of a graph by link removals Piet Van Mieghem, Dragan Stevanović y, Fernando Kuipers, Cong Li, Ruud van de Bovenkamp, Daijie Liu and Huijuan Wang Delft University

More information

Social Influence in Online Social Networks. Epidemiological Models. Epidemic Process

Social Influence in Online Social Networks. Epidemiological Models. Epidemic Process Social Influence in Online Social Networks Toward Understanding Spatial Dependence on Epidemic Thresholds in Networks Dr. Zesheng Chen Viral marketing ( word-of-mouth ) Blog information cascading Rumor

More information

Influence of assortativity and degree-preserving rewiring on the spectra of networks

Influence of assortativity and degree-preserving rewiring on the spectra of networks Eur. Phys. J. B 76, 643 651 DOI: 1.114/epjb/e1-19-x Regular Article THE EUROPEA PHYSICAL JOURAL B Influence of assortativity and degree-preserving rewiring on the spectra of networks P. Van Mieghem 1,H.Wang

More information

ITTC Science of Communication Networks The University of Kansas EECS SCN Graph Spectra

ITTC Science of Communication Networks The University of Kansas EECS SCN Graph Spectra Science of Communication Networks The University of Kansas EECS SCN Graph Spectra Egemen K. Çetinkaya and James P.G. Sterbenz Department of Electrical Engineering & Computer Science Information Technology

More information

Topology-Driven Performance Analysis of Power Grids

Topology-Driven Performance Analysis of Power Grids Topology-Driven Performance Analysis of Power Grids Hale Çetinay, Yakup Koç, Fernando A. Kuipers, Piet Van Mieghem Abstract Direct connections between nodes usually result in efficient transmission in

More information

The minimal spectral radius of graphs with a given diameter

The minimal spectral radius of graphs with a given diameter Linear Algebra and its Applications 43 (007) 408 419 www.elsevier.com/locate/laa The minimal spectral radius of graphs with a given diameter E.R. van Dam a,, R.E. Kooij b,c a Tilburg University, Department

More information

A new centrality measure for probabilistic diffusion in network

A new centrality measure for probabilistic diffusion in network ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 5, No., September 204 ISSN : 2322-557 A new centrality measure for probabilistic diffusion in network Kiyotaka Ide, Akira Namatame,

More information

Linear Algebra Methods for Data Mining

Linear Algebra Methods for Data Mining Linear Algebra Methods for Data Mining Saara Hyvönen, Saara.Hyvonen@cs.helsinki.fi Spring 2007 2. Basic Linear Algebra continued Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki

More information

Nonnegative and spectral matrix theory Lecture notes

Nonnegative and spectral matrix theory Lecture notes Nonnegative and spectral matrix theory Lecture notes Dario Fasino, University of Udine (Italy) Lecture notes for the first part of the course Nonnegative and spectral matrix theory with applications to

More information

A network approach for power grid robustness against cascading failures

A network approach for power grid robustness against cascading failures A network approach for power grid robustness against cascading failures Xiangrong Wang, Yakup Koç, Robert E. Kooij,, Piet Van Mieghem Faculty of Electrical Engineering, Mathematics and Computer Science,

More information

Decentralized Protection Strategies against SIS Epidemics in Networks

Decentralized Protection Strategies against SIS Epidemics in Networks Decentralized Protection Strategies against SIS Epidemics in etworks Stojan Trajanovski, Yezekael Hayel, Eitan Altman, Huijuan Wang, and Piet Van Mieghem Abstract Defining an optimal protection strategy

More information

Characterization and Design of Complex Networks

Characterization and Design of Complex Networks Characterization and Design of Complex Networks Characterization and Design of Complex Networks Proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van

More information

Link Operations for Slowing the Spread of Disease in Complex Networks. Abstract

Link Operations for Slowing the Spread of Disease in Complex Networks. Abstract PACS: 89.75.Hc; 88.80.Cd; 89.65.Ef Revision 1: Major Areas with Changes are Highlighted in Red Link Operations for Slowing the Spread of Disease in Complex Networks Adrian N. Bishop and Iman Shames NICTA,

More information

Toward Understanding Spatial Dependence on Epidemic Thresholds in Networks

Toward Understanding Spatial Dependence on Epidemic Thresholds in Networks Toward Understanding Spatial Dependence on Epidemic Thresholds in Networks Zesheng Chen Department of Computer Science Indiana University - Purdue University Fort Wayne, Indiana 4685 Email: chenz@ipfw.edu

More information

The Laplacian Spectrum of Complex Networks

The Laplacian Spectrum of Complex Networks 1 The Laplacian Spectrum of Complex etworks A. Jamakovic and P. Van Mieghem Delft University of Technology, The etherlands {A.Jamakovic,P.VanMieghem}@ewi.tudelft.nl Abstract The set of all eigenvalues

More information

The N-intertwined SIS epidemic network model

The N-intertwined SIS epidemic network model Computing 0 93:47 69 DOI 0.007/s00607-0-055-y The N-intertwined SIS epidemic network model Piet Van Mieghem Received: September 0 / Accepted: 7 September 0 / Published online: 3 October 0 The Authors 0.

More information

Chapter 2 Topology-Driven Performance Analysis of Power Grids

Chapter 2 Topology-Driven Performance Analysis of Power Grids Chapter 2 Topology-Driven Performance Analysis of Power Grids Hale Çetinay, Yakup Koç, Fernando A. Kuipers and Piet Van Mieghem Abstract Direct connections between nodes usually result in efficient transmission

More information

Integral equations for the heterogeneous, Markovian SIS process with time-dependent rates in time-variant networks

Integral equations for the heterogeneous, Markovian SIS process with time-dependent rates in time-variant networks Integral equations for the heterogeneous, Markovian SIS process with time-dependent rates in time-variant networks P. Van Mieghem Delft University of Technology 2 April 208 Abstract We reformulate the

More information

Epidemics in Complex Networks and Phase Transitions

Epidemics in Complex Networks and Phase Transitions Master M2 Sciences de la Matière ENS de Lyon 2015-2016 Phase Transitions and Critical Phenomena Epidemics in Complex Networks and Phase Transitions Jordan Cambe January 13, 2016 Abstract Spreading phenomena

More information

Potential Game approach to virus attacks in network with general topology

Potential Game approach to virus attacks in network with general topology Potential Game approach to virus attacks in network with general topology François-Xavier Legenvre, Yezekael Hayel, Eitan Altman To cite this version: François-Xavier Legenvre, Yezekael Hayel, Eitan Altman.

More information

Analytically tractable processes on networks

Analytically tractable processes on networks University of California San Diego CERTH, 25 May 2011 Outline Motivation 1 Motivation Networks Random walk and Consensus Epidemic models Spreading processes on networks 2 Networks Motivation Networks Random

More information

WE FOCUS ON A simple continuous-time model for the

WE FOCUS ON A simple continuous-time model for the IEEE/ACM TRANSACTIONS ON NETWORKING, VOL 17, NO 1, FEBRUARY 2009 1 Virus Spread in Networks Piet Van Mieghem, Member, IEEE, Jasmina Omic, and Robert Kooij Abstract The influence of the network characteristics

More information

An Optimal Control Problem Over Infected Networks

An Optimal Control Problem Over Infected Networks Proceedings of the International Conference of Control, Dynamic Systems, and Robotics Ottawa, Ontario, Canada, May 15-16 214 Paper No. 125 An Optimal Control Problem Over Infected Networks Ali Khanafer,

More information

Markov Chains, Random Walks on Graphs, and the Laplacian

Markov Chains, Random Walks on Graphs, and the Laplacian Markov Chains, Random Walks on Graphs, and the Laplacian CMPSCI 791BB: Advanced ML Sridhar Mahadevan Random Walks! There is significant interest in the problem of random walks! Markov chain analysis! Computer

More information

Spectral Graph Theory Tools. Analysis of Complex Networks

Spectral Graph Theory Tools. Analysis of Complex Networks Spectral Graph Theory Tools for the Department of Mathematics and Computer Science Emory University Atlanta, GA 30322, USA Acknowledgments Christine Klymko (Emory) Ernesto Estrada (Strathclyde, UK) Support:

More information

Decentralized Protection Strategies against SIS Epidemics in Networks

Decentralized Protection Strategies against SIS Epidemics in Networks Decentralized Protection Strategies against SIS Epidemics in etworks Stojan Trajanovski, Student ember, IEEE, Yezekael Hayel, ember, IEEE, Eitan Altman, Fellow, IEEE, Huijuan Wang, and Piet Van ieghem,

More information

Network Theory with Applications to Economics and Finance

Network Theory with Applications to Economics and Finance Network Theory with Applications to Economics and Finance Instructor: Michael D. König University of Zurich, Department of Economics, Schönberggasse 1, CH - 8001 Zurich, email: michael.koenig@econ.uzh.ch.

More information

Kristina Lerman USC Information Sciences Institute

Kristina Lerman USC Information Sciences Institute Rethinking Network Structure Kristina Lerman USC Information Sciences Institute Università della Svizzera Italiana, December 16, 2011 Measuring network structure Central nodes Community structure Strength

More information

The Spreading of Epidemics in Complex Networks

The Spreading of Epidemics in Complex Networks The Spreading of Epidemics in Complex Networks Xiangyu Song PHY 563 Term Paper, Department of Physics, UIUC May 8, 2017 Abstract The spreading of epidemics in complex networks has been extensively studied

More information

ECS 289 F / MAE 298, Lecture 15 May 20, Diffusion, Cascades and Influence

ECS 289 F / MAE 298, Lecture 15 May 20, Diffusion, Cascades and Influence ECS 289 F / MAE 298, Lecture 15 May 20, 2014 Diffusion, Cascades and Influence Diffusion and cascades in networks (Nodes in one of two states) Viruses (human and computer) contact processes epidemic thresholds

More information

Diffusion of Innovation

Diffusion of Innovation Diffusion of Innovation Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Social Network Analysis

More information

THE near-threshold behavior, i.e. the behavior around the

THE near-threshold behavior, i.e. the behavior around the etwork localization is unalterable by infections in bursts Qiang Liu and Piet Van Mieghem arxiv:80.0880v [physics.soc-ph] Dec 08 Abstract To shed light on the disease localization phenomenon, we study

More information

A New Spectral Technique Using Normalized Adjacency Matrices for Graph Matching 1

A New Spectral Technique Using Normalized Adjacency Matrices for Graph Matching 1 CHAPTER-3 A New Spectral Technique Using Normalized Adjacency Matrices for Graph Matching Graph matching problem has found many applications in areas as diverse as chemical structure analysis, pattern

More information

Shortest Paths & Link Weight Structure in Networks

Shortest Paths & Link Weight Structure in Networks Shortest Paths & Link Weight Structure in etworks Piet Van Mieghem CAIDA WIT (May 2006) P. Van Mieghem 1 Outline Introduction The Art of Modeling Conclusions P. Van Mieghem 2 Telecommunication: e2e A ETWORK

More information

Fast Linear Iterations for Distributed Averaging 1

Fast Linear Iterations for Distributed Averaging 1 Fast Linear Iterations for Distributed Averaging 1 Lin Xiao Stephen Boyd Information Systems Laboratory, Stanford University Stanford, CA 943-91 lxiao@stanford.edu, boyd@stanford.edu Abstract We consider

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

A Study on Relationship between Modularity and Diffusion Dynamics in Networks from Spectral Analysis Perspective

A Study on Relationship between Modularity and Diffusion Dynamics in Networks from Spectral Analysis Perspective A Study on Relationship between Modularity and Diffusion Dynamics in Networks from Spectral Analysis Perspective Kiyotaka Ide, Akira Namatame Department of Computer Science National Defense Academy of

More information

ORIE 4741: Learning with Big Messy Data. Spectral Graph Theory

ORIE 4741: Learning with Big Messy Data. Spectral Graph Theory ORIE 4741: Learning with Big Messy Data Spectral Graph Theory Mika Sumida Operations Research and Information Engineering Cornell September 15, 2017 1 / 32 Outline Graph Theory Spectral Graph Theory Laplacian

More information

Lecture VI Introduction to complex networks. Santo Fortunato

Lecture VI Introduction to complex networks. Santo Fortunato Lecture VI Introduction to complex networks Santo Fortunato Plan of the course I. Networks: definitions, characteristics, basic concepts in graph theory II. III. IV. Real world networks: basic properties

More information

Numerical evaluation of the upper critical dimension of percolation in scale-free networks

Numerical evaluation of the upper critical dimension of percolation in scale-free networks umerical evaluation of the upper critical dimension of percolation in scale-free networks Zhenhua Wu, 1 Cecilia Lagorio, 2 Lidia A. Braunstein, 1,2 Reuven Cohen, 3 Shlomo Havlin, 3 and H. Eugene Stanley

More information

Consensus, Flocking and Opinion Dynamics

Consensus, Flocking and Opinion Dynamics Consensus, Flocking and Opinion Dynamics Antoine Girard Laboratoire Jean Kuntzmann, Université de Grenoble antoine.girard@imag.fr International Summer School of Automatic Control GIPSA Lab, Grenoble, France,

More information

Effect of the interconnected network structure on the epidemic threshold

Effect of the interconnected network structure on the epidemic threshold PHYSICAL REVIEW E 8883 Effect of the interconnected network structure on the epidemic threshold Huijuan Wang * Qian Li Gregorio D Agostino 3 Shlomo Havlin 4 H. Eugene Stanley and Piet Van Mieghem Faculty

More information

Network observability and localization of the source of diffusion based on a subset of nodes

Network observability and localization of the source of diffusion based on a subset of nodes Network observability and localization of the source of diffusion based on a subset of nodes Sabina Zejnilović, João Gomes, Bruno Sinopoli Carnegie Mellon University, Department of Electrical and Computer

More information

Estimating network degree distributions from sampled networks: An inverse problem

Estimating network degree distributions from sampled networks: An inverse problem Estimating network degree distributions from sampled networks: An inverse problem Eric D. Kolaczyk Dept of Mathematics and Statistics, Boston University kolaczyk@bu.edu Introduction: Networks and Degree

More information

Diffusion of Innovation and Influence Maximization

Diffusion of Innovation and Influence Maximization Diffusion of Innovation and Influence Maximization Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics

More information

The Hierarchical Product of Graphs

The Hierarchical Product of Graphs The Hierarchical Product of Graphs Lali Barrière Francesc Comellas Cristina Dalfó Miquel Àngel Fiol Universitat Politècnica de Catalunya - DMA4 April 8, 2008 Outline 1 Introduction 2 Graphs and matrices

More information

Complex Networks, Course 303A, Spring, Prof. Peter Dodds

Complex Networks, Course 303A, Spring, Prof. Peter Dodds Complex Networks, Course 303A, Spring, 2009 Prof. Peter Dodds Department of Mathematics & Statistics University of Vermont Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

More information

Kalavakkam, Chennai, , Tamilnadu, INDIA 2,3 School of Advanced Sciences. VIT University Vellore, , Tamilnadu, INDIA

Kalavakkam, Chennai, , Tamilnadu, INDIA 2,3 School of Advanced Sciences. VIT University Vellore, , Tamilnadu, INDIA International Journal of Pure and Applied Mathematics Volume 09 No. 4 206, 799-82 ISSN: 3-8080 (printed version); ISSN: 34-3395 (on-line version) url: http://www.ijpam.eu doi: 0.2732/ijpam.v09i4.4 PAijpam.eu

More information

Structural Vulnerability Assessment of Electric Power Grids

Structural Vulnerability Assessment of Electric Power Grids Structural Vulnerability Assessment of Electric Power Grids Yakup Koç 1 Martijn Warnier 1 Robert E. Kooij 2,3 Frances M.T. Brazier 1 1 Faculty of Technology, Policy and Management, Delft University of

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 0

MATH 56A: STOCHASTIC PROCESSES CHAPTER 0 MATH 56A: STOCHASTIC PROCESSES CHAPTER 0 0. Chapter 0 I reviewed basic properties of linear differential equations in one variable. I still need to do the theory for several variables. 0.1. linear differential

More information

Spectral Graph Theory and You: Matrix Tree Theorem and Centrality Metrics

Spectral Graph Theory and You: Matrix Tree Theorem and Centrality Metrics Spectral Graph Theory and You: and Centrality Metrics Jonathan Gootenberg March 11, 2013 1 / 19 Outline of Topics 1 Motivation Basics of Spectral Graph Theory Understanding the characteristic polynomial

More information

Information Propagation Analysis of Social Network Using the Universality of Random Matrix

Information Propagation Analysis of Social Network Using the Universality of Random Matrix Information Propagation Analysis of Social Network Using the Universality of Random Matrix Yusuke Sakumoto, Tsukasa Kameyama, Chisa Takano and Masaki Aida Tokyo Metropolitan University, 6-6 Asahigaoka,

More information

An Introduction to Spectral Graph Theory

An Introduction to Spectral Graph Theory An Introduction to Spectral Graph Theory Mackenzie Wheeler Supervisor: Dr. Gary MacGillivray University of Victoria WheelerM@uvic.ca Outline Outline 1. How many walks are there from vertices v i to v j

More information

Algebraic Representation of Networks

Algebraic Representation of Networks Algebraic Representation of Networks 0 1 2 1 1 0 0 1 2 0 0 1 1 1 1 1 Hiroki Sayama sayama@binghamton.edu Describing networks with matrices (1) Adjacency matrix A matrix with rows and columns labeled by

More information

Lecture 1 and 2: Introduction and Graph theory basics. Spring EE 194, Networked estimation and control (Prof. Khan) January 23, 2012

Lecture 1 and 2: Introduction and Graph theory basics. Spring EE 194, Networked estimation and control (Prof. Khan) January 23, 2012 Lecture 1 and 2: Introduction and Graph theory basics Spring 2012 - EE 194, Networked estimation and control (Prof. Khan) January 23, 2012 Spring 2012: EE-194-02 Networked estimation and control Schedule

More information

Sparse Linear Algebra Issues Arising in the Analysis of Complex Networks

Sparse Linear Algebra Issues Arising in the Analysis of Complex Networks Sparse Linear Algebra Issues Arising in the Analysis of Complex Networks Department of Mathematics and Computer Science Emory University Atlanta, GA 30322, USA Acknowledgments Christine Klymko (Emory)

More information

1 Complex Networks - A Brief Overview

1 Complex Networks - A Brief Overview Power-law Degree Distributions 1 Complex Networks - A Brief Overview Complex networks occur in many social, technological and scientific settings. Examples of complex networks include World Wide Web, Internet,

More information

A lower bound for the spectral radius of graphs with fixed diameter

A lower bound for the spectral radius of graphs with fixed diameter A lower bound for the spectral radius of graphs with fixed diameter Sebastian M. Cioabă Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA e-mail: cioaba@math.udel.edu Edwin

More information

Epidemics and information spreading

Epidemics and information spreading Epidemics and information spreading Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Social Network

More information

Communities, Spectral Clustering, and Random Walks

Communities, Spectral Clustering, and Random Walks Communities, Spectral Clustering, and Random Walks David Bindel Department of Computer Science Cornell University 26 Sep 2011 20 21 19 16 22 28 17 18 29 26 27 30 23 1 25 5 8 24 2 4 14 3 9 13 15 11 10 12

More information

Applied Mathematics Letters

Applied Mathematics Letters Applied Mathematics Letters (009) 15 130 Contents lists available at ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml Spectral characterizations of sandglass graphs

More information

Data Analysis and Manifold Learning Lecture 9: Diffusion on Manifolds and on Graphs

Data Analysis and Manifold Learning Lecture 9: Diffusion on Manifolds and on Graphs Data Analysis and Manifold Learning Lecture 9: Diffusion on Manifolds and on Graphs Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline of Lecture

More information

Performance Analysis of Complex Networks and Systems

Performance Analysis of Complex Networks and Systems Performance Analysis of Complex Networks and Systems PIET VAN MIEGHEM Delft University of Technology in this web service University Printing House, Cambridge CB2 8BS, United Kingdom is part of the University

More information

arxiv: v2 [physics.soc-ph] 6 Aug 2012

arxiv: v2 [physics.soc-ph] 6 Aug 2012 Localization and spreading of diseases in complex networks arxiv:122.4411v2 [physics.soc-ph] 6 Aug 212 A. V. Goltsev, 1,2 S. N. Dorogovtsev, 1,2 J. G. Oliveira, 1,3 and J. F. F. Mendes 1 1 Department of

More information

Spectral Graph Theory

Spectral Graph Theory Spectral Graph Theory Aaron Mishtal April 27, 2016 1 / 36 Outline Overview Linear Algebra Primer History Theory Applications Open Problems Homework Problems References 2 / 36 Outline Overview Linear Algebra

More information

ON THE WIENER INDEX AND LAPLACIAN COEFFICIENTS OF GRAPHS WITH GIVEN DIAMETER OR RADIUS

ON THE WIENER INDEX AND LAPLACIAN COEFFICIENTS OF GRAPHS WITH GIVEN DIAMETER OR RADIUS MATCH Communications in Mathematical and in Computer Chemistry MATCH Commun. Math. Comput. Chem. 63 (2010) 91-100 ISSN 0340-6253 ON THE WIENER INDEX AND LAPLACIAN COEFFICIENTS OF GRAPHS WITH GIVEN DIAMETER

More information

The Distance Spectrum

The Distance Spectrum The Distance Spectrum of a Tree Russell Merris DEPARTMENT OF MATHEMATICS AND COMPUTER SClENCE CALlFORNlA STATE UNlVERSlN HAYWARD, CAL lfornla ABSTRACT Let T be a tree with line graph T*. Define K = 21

More information

Diffusion and random walks on graphs

Diffusion and random walks on graphs Diffusion and random walks on graphs Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Structural

More information

Diffusion of information and social contagion

Diffusion of information and social contagion Diffusion of information and social contagion Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics

More information

Kernels of Directed Graph Laplacians. J. S. Caughman and J.J.P. Veerman

Kernels of Directed Graph Laplacians. J. S. Caughman and J.J.P. Veerman Kernels of Directed Graph Laplacians J. S. Caughman and J.J.P. Veerman Department of Mathematics and Statistics Portland State University PO Box 751, Portland, OR 97207. caughman@pdx.edu, veerman@pdx.edu

More information

Emergent Phenomena on Complex Networks

Emergent Phenomena on Complex Networks Chapter 1 Emergent Phenomena on Complex Networks 1.0.1 More is different When many interacting elements give rise to a collective behavior that cannot be explained or predicted by considering them individually,

More information

A Modified Earthquake Model Based on Generalized Barabási Albert Scale-Free

A Modified Earthquake Model Based on Generalized Barabási Albert Scale-Free Commun. Theor. Phys. (Beijing, China) 46 (2006) pp. 1011 1016 c International Academic Publishers Vol. 46, No. 6, December 15, 2006 A Modified Earthquake Model Based on Generalized Barabási Albert Scale-Free

More information

Machine Learning for Data Science (CS4786) Lecture 11

Machine Learning for Data Science (CS4786) Lecture 11 Machine Learning for Data Science (CS4786) Lecture 11 Spectral clustering Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ ANNOUNCEMENT 1 Assignment P1 the Diagnostic assignment 1 will

More information

The Hierarchical Product of Graphs

The Hierarchical Product of Graphs The Hierarchical Product of Graphs Lali Barrière Francesc Comellas Cristina Dalfó Miquel Àngel Fiol Universitat Politècnica de Catalunya - DMA4 March 22, 2007 Outline 1 Introduction 2 The hierarchical

More information

Graphs with given diameter maximizing the spectral radius van Dam, Edwin

Graphs with given diameter maximizing the spectral radius van Dam, Edwin Tilburg University Graphs with given diameter maximizing the spectral radius van Dam, Edwin Published in: Linear Algebra and its Applications Publication date: 2007 Link to publication Citation for published

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms : Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA 2 Department of Computer

More information

Lecture 10. Under Attack!

Lecture 10. Under Attack! Lecture 10 Under Attack! Science of Complex Systems Tuesday Wednesday Thursday 11.15 am 12.15 pm 11.15 am 12.15 pm Feb. 26 Feb. 27 Feb. 28 Mar.4 Mar.5 Mar.6 Mar.11 Mar.12 Mar.13 Mar.18 Mar.19 Mar.20 Mar.25

More information

Géza Ódor MTA-EK-MFA Budapest 16/01/2015 Rio de Janeiro

Géza Ódor MTA-EK-MFA Budapest 16/01/2015 Rio de Janeiro Griffiths phases, localization and burstyness in network models Géza Ódor MTA-EK-MFA Budapest 16/01/2015 Rio de Janeiro Partners: R. Juhász M. A. Munoz C. Castellano R. Pastor-Satorras Infocommunication

More information

Evolutionary Games on Networks. Wen-Xu Wang and G Ron Chen Center for Chaos and Complex Networks

Evolutionary Games on Networks. Wen-Xu Wang and G Ron Chen Center for Chaos and Complex Networks Evolutionary Games on Networks Wen-Xu Wang and G Ron Chen Center for Chaos and Complex Networks Email: wenxuw@gmail.com; wxwang@cityu.edu.hk Cooperative behavior among selfish individuals Evolutionary

More information

LECTURE NOTE #11 PROF. ALAN YUILLE

LECTURE NOTE #11 PROF. ALAN YUILLE LECTURE NOTE #11 PROF. ALAN YUILLE 1. NonLinear Dimension Reduction Spectral Methods. The basic idea is to assume that the data lies on a manifold/surface in D-dimensional space, see figure (1) Perform

More information

Moment-Based Analysis of Synchronization in Small-World Networks of Oscillators

Moment-Based Analysis of Synchronization in Small-World Networks of Oscillators Moment-Based Analysis of Synchronization in Small-World etworks of Oscillators Victor M. Preciado and Ali Jadbabaie Abstract In this paper, we investigate synchronization in a small-world network of coupled

More information

The non-backtracking operator

The non-backtracking operator The non-backtracking operator Florent Krzakala LPS, Ecole Normale Supérieure in collaboration with Paris: L. Zdeborova, A. Saade Rome: A. Decelle Würzburg: J. Reichardt Santa Fe: C. Moore, P. Zhang Berkeley:

More information

CS168: The Modern Algorithmic Toolbox Lectures #11 and #12: Spectral Graph Theory

CS168: The Modern Algorithmic Toolbox Lectures #11 and #12: Spectral Graph Theory CS168: The Modern Algorithmic Toolbox Lectures #11 and #12: Spectral Graph Theory Tim Roughgarden & Gregory Valiant May 2, 2016 Spectral graph theory is the powerful and beautiful theory that arises from

More information

Synchronization Transitions in Complex Networks

Synchronization Transitions in Complex Networks Synchronization Transitions in Complex Networks Y. Moreno 1,2,3 1 Institute for Biocomputation and Physics of Complex Systems (BIFI) University of Zaragoza, Zaragoza 50018, Spain 2 Department of Theoretical

More information

THE unavailability of electrical power can severely disrupt

THE unavailability of electrical power can severely disrupt 2524 IEEE SYSTEMS JOURNAL, VOL. 12, NO. 3, SEPTEMBER 2018 A Topological Investigation of Power Flow Hale Cetinay, Fernando A. Kuipers, Senior Member, IEEE, and Piet Van Mieghem Abstract This paper combines

More information

Lecture 1: Graphs, Adjacency Matrices, Graph Laplacian

Lecture 1: Graphs, Adjacency Matrices, Graph Laplacian Lecture 1: Graphs, Adjacency Matrices, Graph Laplacian Radu Balan January 31, 2017 G = (V, E) An undirected graph G is given by two pieces of information: a set of vertices V and a set of edges E, G =

More information

Quantitative model to measure the spread of Security attacks in Computer Networks

Quantitative model to measure the spread of Security attacks in Computer Networks Quantitative model to measure the spread of Security attacks in Computer Networks SAURABH BARANWAL M.Sc.(Int.) 4 th year Mathematics and Sci. Computing Indian Institute of Technology, Kanpur email: saurabhbrn@gmail.com,

More information

Shannon Entropy and Degree Correlations in Complex Networks

Shannon Entropy and Degree Correlations in Complex Networks Shannon Entropy and Degree Correlations in Complex etworks SAMUEL JOHSO, JOAQUÍ J. TORRES, J. MARRO, and MIGUEL A. MUÑOZ Instituto Carlos I de Física Teórica y Computacional, Departamento de Electromagnetismo

More information

Attack Strategies on Complex Networks

Attack Strategies on Complex Networks Attack Strategies on Complex Networks Lazaros K. Gallos 1, Reuven Cohen 2, Fredrik Liljeros 3, Panos Argyrakis 1, Armin Bunde 4, and Shlomo Havlin 5 1 Department of Physics, University of Thessaloniki,

More information

Stability and topology of scale-free networks under attack and defense strategies

Stability and topology of scale-free networks under attack and defense strategies Stability and topology of scale-free networks under attack and defense strategies Lazaros K. Gallos, Reuven Cohen 2, Panos Argyrakis, Armin Bunde 3, and Shlomo Havlin 2 Department of Physics, University

More information

CS224W: Analysis of Networks Jure Leskovec, Stanford University

CS224W: Analysis of Networks Jure Leskovec, Stanford University Announcements: Please fill HW Survey Weekend Office Hours starting this weekend (Hangout only) Proposal: Can use 1 late period CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu

More information

Networks and Their Spectra

Networks and Their Spectra Networks and Their Spectra Victor Amelkin University of California, Santa Barbara Department of Computer Science victor@cs.ucsb.edu December 4, 2017 1 / 18 Introduction Networks (= graphs) are everywhere.

More information

v iv j E(G) x u, for each v V(G).

v iv j E(G) x u, for each v V(G). Volume 3, pp. 514-5, May 01 A NOTE ON THE LEAST EIGENVALUE OF A GRAPH WITH GIVEN MAXIMUM DEGREE BAO-XUAN ZHU Abstract. This note investigates the least eigenvalues of connected graphs with n vertices and

More information

Spectra of Adjacency and Laplacian Matrices

Spectra of Adjacency and Laplacian Matrices Spectra of Adjacency and Laplacian Matrices Definition: University of Alicante (Spain) Matrix Computing (subject 3168 Degree in Maths) 30 hours (theory)) + 15 hours (practical assignment) Contents 1. Spectra

More information

Intrinsic products and factorizations of matrices

Intrinsic products and factorizations of matrices Available online at www.sciencedirect.com Linear Algebra and its Applications 428 (2008) 5 3 www.elsevier.com/locate/laa Intrinsic products and factorizations of matrices Miroslav Fiedler Academy of Sciences

More information

6.207/14.15: Networks Lectures 4, 5 & 6: Linear Dynamics, Markov Chains, Centralities

6.207/14.15: Networks Lectures 4, 5 & 6: Linear Dynamics, Markov Chains, Centralities 6.207/14.15: Networks Lectures 4, 5 & 6: Linear Dynamics, Markov Chains, Centralities 1 Outline Outline Dynamical systems. Linear and Non-linear. Convergence. Linear algebra and Lyapunov functions. Markov

More information