Assessing WRF PBL Schemes for Wind Energy Applications

Size: px
Start display at page:

Download "Assessing WRF PBL Schemes for Wind Energy Applications"

Transcription

1 Assessing WRF PBL Schemes for Wind Energy Applications Branko Kosović, Yubao Liu, Youwei Liu, Will Cheng NCAR Workshop May 12, 21 NATIONAL CENTER FOR ATMOSPHERIC RESEARCH

2 In the Past PBL Parameterizations Have Not Been Evaluated with Respect to Wind Forecasting at 8m Accurate representation of internal PBL processes and PBL interaction with surface and upper troposphere is important for accurate wind forecasting in PBL. We are trying to determine optimal PBL parameterization configuration for wind forecasting: PBL scheme, vertical resolution, and input parameters. We focus on PBL parameterizations available in WRF.

3 We Need to Identify and Address Limitations of PBL Schemes that Impact Wind Forecasting What is the level of uncertainty in external forcing? When are wind forecast errors largest? daytime or nightime are there seasonal differences under what synoptic conditions, etc. How can we improve performance of PBL schemes? through improved representation of physical processes by reducing uncertainty in model parameters better accounting for uncertainties in model parameters

4 Surface Weather Map March 5, 21 Lake Benton Wildorado 28, University Corporation for Atmospheric Research. All rights reserved.

5 High and Low Temperatures March 5, 21

6 During Several Days at the Beginning of March We Observed Significant Under Prediction of Wind Speed

7 Qualitative Comparison with Data from A Profiler Shows that Upper Level Winds are Accurately Predicted 4 Wildorado Profiler m/s Height [m] March 21

8 Qualitative Comparison with Data from A Profiler Shows that Upper Level Winds are Accurately Predicted 4 Wildorado Wind Speed Forecast m/s Height [m] March 21

9 Operational Forecast for XXXX Wind Farm Underestimated Wind Speed Between March 3 and 7

10 Qualitative Comparison with Data from A Profiler Shows that Upper Level Winds are Accurately Predicted 4 XXXX Profiler m/s Height [m] March 21

11 Qualitative Comparison with Data from A Profiler Shows that Upper Level Winds are Accurately Predicted 4 Wind Speed Forecast m/s Height [m] March 21

12 We used several PBL parameterizations available in WRF in our SCM study Yonsei University - YSU Melor-Yamada-Janic - MYJ Melor-Yamada-Nakanishi-Niino MYNN (2.5) Melor-Yamada-Nakanishi-Niino MYNN3 Quasi Normal Scale Elimination QNSE Initial conditions and forcing were derived from the operational NCEP GFS (1 deg) analysis with 6h data frequency to force SCM simulations We used 56 and 84 grid points in vertical direction

13 Temperature from SCM with YSU Parameterization and 56 Grid Points at XXXX Wind Farm 8 6 Height [m] March 21

14 Wind Speed from SCM with YSU Parameterization and 56 Grid Points at XXXX Wind Farm 8 6 Height [m] March 21

15 Wind Speed Difference Between SCM Simulations with YSU and MYJ Schemes are Negligible m/s Height [m] March 21-1.

16 Wind Speed Difference Between SCM Simulations with YSU and MYNN Schemes are Small 8 m/s Height [m] March 21-1.

17 Wind Speed Difference Between SCM Simulations with YSU and MYNN3 Schemes are Negligible m/s Height [m] March 21-1.

18 Wind Speed Difference Between SCM Simulations with YSU and QNSE are Small m/s Height [m] March 21-1.

19 GFS Analysis Does Not Include Snow Cower Over the Domain of Interest at the Beginning of March During the time of interest near Lake Benton snow cover was estimated at ~2in. However, without snow cover the grassland surface roughness, z =.5, while for snow cover it is significantly lower, z =.1. We modified input data to account for snow cover and rerun SCM simulations.

20 Wind Speed Difference Between SCM Simulations with YSU Scheme with and without Snow Cover Height [m] March 21-2.

21 Wind Speed Difference Between SCM Simulations with High-Resolution YSU with and YSU m/s Height [m] March 21-3.

22 Comparison of Measured Wind Speed at XXXX on with SCM Prediction with YSU Scheme 14 Solid line measurements Dotted line SCM 12 1 Wind Speed [m/s] March 21

23 Temperature from SCM with YSU Parameterization and 56 Grid Points at XXXX Wind Farm 8 6 Height [m] March 21

24 Wind Speed from SCM with YSU Parameterization and 56 Grid Points at XXXX Wind Farm 8 6 Height [m] March 21

25 Wind Speed Difference Between SCM Simulations with YSU and MYJ at XXXX Wind Farm m/s Height [m] March 21-1.

26 Comparison of Measured Wind Speed at XXXX with SCM Prediction with YSU Scheme 14 Solid line measurements Dotted line SCM 12 1 Wind Speed [m/s] March 21

27 Summary and Next Steps SCM captures southerly LLJ but the magnitude of the wind at turbine hub is significantly underestimated Little difference between SCM simulations with different PBL schemes SCMs over predict 1m winds while under predicting hub-height winds It is important to assimilate reliable, quality controlled local data not assimilated in large scale forecasts (analysis) By correctly accounting for surface roughness and by increasing vertical resolution we reduced the error in wind speed prediction by 1.5 m/s More and better data are needed to further study and better understand PBL processes that affect LLJ We will further analyze surface layer parameterizations and PBL parameterizations 29, and University their Corporation interaction for Atmospheric Research. All rights reserved.

28 For Wind Energy Applications We Need to Improve Wind Forecasting in Planetary Boundary Layer (PBL) Hypothesis: Accurate representation of internal PBL processes and PBL interaction with surface and upper troposphere is important for accurate wind forecasting in PBL Objective: Improved wind forecasting in PBL Steps: Analyze simple PBL parameterizations w.r.t. wind forecasting below 3m Analyze PBL parameterizations in WRF Analyze how PBL parameterization(s) affect wind forecasting in WRF

29 During Several Days at the Beginning of March We Observed Significant Under Prediction of Wind Speed

30

31 From A. Beljaars ECMWF training course on BLs In the Past PBL Parameterizations Have Not Been Evaluated with Respect to Wind Forecasting at 8m A number of reasons exists to have a realistic representation of the boundary layer in a large scale model: The large-scale budgets of momentum heat and moisture are considerably affected by the surface fluxes on time scales of a few days. Model variables in the boundary layer are important model products. The boundary layer interacts with other processes e.g. clouds and convection.

32 To Improve PBL Parameterizations We Need to Answer Some of Following Questions What is the level of uncertainty in external forcing? What is the level of uncertainty in representation of internal processes (or parameters)? Are there processes that are not represented at all or that are not represented accurately? Which processes and parameters affect wind forecasting the most? What can we do to improve representation of these processes or reduce uncertainty in parameters toward improving wind forecasting in PBL?

33 Surface Weather Map March 4, 21 Lake Benton Wilderado

34 Wind Speed Difference Between SCM Simulations with YSU and QNSE at XXXX Wind Farm 8 6 Height [m] 4 2 March 21

WRF-RTFDDA Optimization and Wind Farm Data Assimilation

WRF-RTFDDA Optimization and Wind Farm Data Assimilation 2009, University Corporation for Atmospheric Research. All rights reserved. WRF-RTFDDA Optimization and Wind Farm Data Assimilation William Y.Y. Cheng, Yubao Liu, Yuewei Liu, and Gregory Roux NCAR/Research

More information

VALIDATION OF BOUNDARY-LAYER WINDS FROM WRF MESOSCALE FORECASTS WITH APPLICATIONS TO WIND ENERGY FORECASTING

VALIDATION OF BOUNDARY-LAYER WINDS FROM WRF MESOSCALE FORECASTS WITH APPLICATIONS TO WIND ENERGY FORECASTING VALIDATION OF BOUNDARY-LAYER WINDS FROM WRF MESOSCALE FORECASTS WITH APPLICATIONS TO WIND ENERGY FORECASTING Caroline Draxl, Andrea N. Hahmann, Alfredo Peña, Jesper N. Nissen, and Gregor Giebel Risø National

More information

Simulating the Vertical Structure of the Wind with the WRF Model

Simulating the Vertical Structure of the Wind with the WRF Model Simulating the Vertical Structure of the Wind with the WRF Model Andrea N Hahmann, Caroline Draxl, Alfredo Peña, Jake Badger, Xiaoli Lársen, and Joakim R. Nielsen Wind Energy Division Risø National Laboratory

More information

Wind Flow Modeling The Basis for Resource Assessment and Wind Power Forecasting

Wind Flow Modeling The Basis for Resource Assessment and Wind Power Forecasting Wind Flow Modeling The Basis for Resource Assessment and Wind Power Forecasting Detlev Heinemann ForWind Center for Wind Energy Research Energy Meteorology Unit, Oldenburg University Contents Model Physics

More information

WRF/Chem forecasting of boundary layer meteorology and O 3. Xiaoming 湖南气象局 Nov. 22 th 2013

WRF/Chem forecasting of boundary layer meteorology and O 3. Xiaoming 湖南气象局 Nov. 22 th 2013 WRF/Chem forecasting of boundary layer meteorology and O 3 Xiaoming Hu @ 湖南气象局 Nov. 22 th 2013 Importance of O 3, Aerosols Have adverse effects on human health and environments Reduce visibility Play an

More information

Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes

Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes WIND ENERGY Wind Energ. 2014; 17:39 55 Published online 28 October 2012 in Wiley Online Library (wileyonlinelibrary.com)..1555 RESEARCH ARTICLE Evaluating winds and vertical wind shear from Weather Research

More information

UNIVERSITY OF CALIFORNIA

UNIVERSITY OF CALIFORNIA UNIVERSITY OF CALIFORNIA Methods of Improving Methane Emission Estimates in California Using Mesoscale and Particle Dispersion Modeling Alex Turner GCEP SURE Fellow Marc L. Fischer Lawrence Berkeley National

More information

Warm weather s a comin!

Warm weather s a comin! Warm weather s a comin! Performance Dependence on Closure Constants of the MYNN PBL Scheme for Wind Ramp Events in a Stable Boundary Layer David E. Jahn IGERT Wind Energy Science Engineering and Policy

More information

Uncertainties in planetary boundary layer schemes and current status of urban boundary layer simulations at OU

Uncertainties in planetary boundary layer schemes and current status of urban boundary layer simulations at OU Uncertainties in planetary boundary layer schemes and current status of urban boundary layer simulations at OU Xiaoming Hu September 16 th @ 3:00 PM, NWC 5600 Contributors: Fuqing Zhang, Pennsylvania State

More information

A WRF Ensemble for Improved Wind Speed Forecasts at Turbine Height

A WRF Ensemble for Improved Wind Speed Forecasts at Turbine Height 212 W E A T H E R A N D F O R E C A S T I N G VOLUME 28 A WRF Ensemble for Improved Wind Speed Forecasts at Turbine Height ADAM J. DEPPE AND WILLIAM A. GALLUS JR. Department of Geological and Atmospheric

More information

WIND CLIMATE ESTIMATION USING WRF MODEL OUTPUT: MODEL SENSITIVITIES

WIND CLIMATE ESTIMATION USING WRF MODEL OUTPUT: MODEL SENSITIVITIES WIND CLIMATE ESTIMATION USING WRF MODEL OUTPUT: MODEL SENSITIVITIES Andrea N Hahmann (ahah@dtu.dk) Claire Vincent, Alfredo Peña, Ebba Dellwik, Julia Lange, Charlotte Hasager Wind Energy Department, DTU,

More information

Dynamic Ensemble Model Evaluation of Elevated Thunderstorms sampled by PRECIP

Dynamic Ensemble Model Evaluation of Elevated Thunderstorms sampled by PRECIP Dynamic Ensemble Model Evaluation of Elevated Thunderstorms sampled by PRECIP Joshua S. Kastman, Patrick S. Market, and Neil Fox, University of Missouri, Columbia, MO Session 8B - Numerical Weather Prediction

More information

Simulating roll clouds associated with low-level convergence in WRF

Simulating roll clouds associated with low-level convergence in WRF Simulating roll clouds associated with low-level convergence in WRF Abhnil Prasad1,3, Steven Sherwood1,3 and Hélène Brogniez2 1 Climate Change Research Centre, University of New South Wales, Sydney, NSW,

More information

Investigation of surface layer parameterization in WRF model & its impact on modeled nocturnal wind biases

Investigation of surface layer parameterization in WRF model & its impact on modeled nocturnal wind biases Investigation of surface layer parameterization in WRF model & its impact on modeled nocturnal wind biases Pius Lee 1, Fantine Ngan 1,2, Hang Lei 1,2, Li Pan 1,2, Hyuncheol Kim 1,2, and Daniel Tong 1,2

More information

THE INFLUENCE OF THE GREAT LAKES ON NORTHWEST SNOWFALL IN THE SOUTHERN APPALACHIANS

THE INFLUENCE OF THE GREAT LAKES ON NORTHWEST SNOWFALL IN THE SOUTHERN APPALACHIANS P2.18 THE INFLUENCE OF THE GREAT LAKES ON NORTHWEST SNOWFALL IN THE SOUTHERN APPALACHIANS Robbie Munroe* and Doug K. Miller University of North Carolina at Asheville, Asheville, North Carolina B. Holloway

More information

Influences of PBL Parameterizations on Warm-Season Convection-Permitting Regional Climate Simulations

Influences of PBL Parameterizations on Warm-Season Convection-Permitting Regional Climate Simulations Influences of PBL Parameterizations on Warm-Season Convection-Permitting Regional Climate Simulations Stan Trier (NCAR/MMM) Andreas Prein (NCAR/ASP) and Changhai Liu (NCAR/RAL) GEWEX Convection-Permitting

More information

Nesting large-eddy simulations within mesoscale simulations in WRF for wind energy applications

Nesting large-eddy simulations within mesoscale simulations in WRF for wind energy applications Performance Measures x.x, x.x, and x.x Nesting large-eddy simulations within mesoscale simulations in WRF for wind energy applications Julie K. Lundquist Jeff Mirocha, Branko Kosović 9 WRF User s Workshop,

More information

Report on EN2 DTC Ensemble Task 2015: Testing of Stochastic Physics for use in NARRE

Report on EN2 DTC Ensemble Task 2015: Testing of Stochastic Physics for use in NARRE Report on EN2 DTC Ensemble Task 2015: Testing of Stochastic Physics for use in NARRE Motivation: With growing evidence that initial- condition uncertainties are not sufficient to entirely explain forecast

More information

Real time probabilistic precipitation forecasts in the Milano urban area: comparison between a physics and pragmatic approach

Real time probabilistic precipitation forecasts in the Milano urban area: comparison between a physics and pragmatic approach Vienna, 18-22 April 16 Session HS4.1/AS4.3/GM9.12/NH1.7 Flash floods and associated hydro-geomorphic processes: observation, modelling and warning Real time probabilistic precipitation forecasts in the

More information

Sensitivity of tropical cyclone Jal simulations to physics parameterizations

Sensitivity of tropical cyclone Jal simulations to physics parameterizations Sensitivity of tropical cyclone Jal simulations to physics parameterizations R Chandrasekar and C Balaji Department of Mechanical Engineering, Indian Institute of Technology, Madras, Chennai 6 36, India.

More information

Di Wu, Xiquan Dong, Baike Xi, Zhe Feng, Aaron Kennedy, and Gretchen Mullendore. University of North Dakota

Di Wu, Xiquan Dong, Baike Xi, Zhe Feng, Aaron Kennedy, and Gretchen Mullendore. University of North Dakota Di Wu, Xiquan Dong, Baike Xi, Zhe Feng, Aaron Kennedy, and Gretchen Mullendore University of North Dakota Objectives 3 case studies to evaluate WRF and NAM performance in Oklahoma (OK) during summer 2007,

More information

A GSI-based convection-allowing EnKF and ensemble forecast system for PECAN

A GSI-based convection-allowing EnKF and ensemble forecast system for PECAN A GSI-based convection-allowing EnKF and ensemble forecast system for PECAN Aaron Johnson, Xuguang Wang, Samuel Degelia University of Oklahoma, Norman, OK 26 May 2016 7 th EnKF Data Assimilation Workshop,

More information

A Modeling Study of PBL heights

A Modeling Study of PBL heights A Modeling Study of PBL heights JEFFREY D. DUDA Dept. of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa I. Introduction The planetary boundary layer (PBL) is the layer in the lower

More information

Importance of Numerical Weather Prediction in Variable Renewable Energy Forecast

Importance of Numerical Weather Prediction in Variable Renewable Energy Forecast Importance of Numerical Weather Prediction in Variable Renewable Energy Forecast Dr. Abhijit Basu (Integrated Research & Action for Development) Arideep Halder (Thinkthrough Consulting Pvt. Ltd.) September

More information

Results of the GABLS3 diurnal-cycle benchmark for wind energy applications

Results of the GABLS3 diurnal-cycle benchmark for wind energy applications Results of the GABLS3 diurnal-cycle benchmark for wind energy applications Javier Sanz Rodrigo Wake Conference 2017 Visby, 1 June 2017 GABLS 3: Boundary-layer characteristics (Bosveld et al., 2014) Cabauw

More information

PROJECT PROPOSAL RESPONSE OF THE GREAT PLAINS NOCTURNAL LOW-LEVEL JET (NLLJ) TO VARIOUS WIND ENERGY SCENARIOS AS SIMULATED IN WRF.

PROJECT PROPOSAL RESPONSE OF THE GREAT PLAINS NOCTURNAL LOW-LEVEL JET (NLLJ) TO VARIOUS WIND ENERGY SCENARIOS AS SIMULATED IN WRF. PROJECT PROPOSAL RESPONSE OF THE GREAT PLAINS NOCTURNAL LOW-LEVEL JET (NLLJ) TO VARIOUS WIND ENERGY SCENARIOS AS SIMULATED IN WRF Daniel Gilbert Department of Geography and Earth Sciences University of

More information

Wind and turbulence structure in the boundary layer around an isolated mountain: airborne measurements during the MATERHORN field study

Wind and turbulence structure in the boundary layer around an isolated mountain: airborne measurements during the MATERHORN field study Wind and turbulence structure in the boundary layer around an isolated mountain: airborne measurements during the MATERHORN field study Stephan F.J. De Wekker 1, G.D. Emmitt 2, S. Greco 2, K. Godwin 2,

More information

Measurements and Simulations of Wakes in Onshore Wind Farms Julie K. Lundquist 1,2

Measurements and Simulations of Wakes in Onshore Wind Farms Julie K. Lundquist 1,2 Measurements and Simulations of Wakes in Onshore Wind Farms Julie K. Lundquist 1,2 1 University of Colorado Boulder, 2 National Renewable Energy Laboratory NORCOWE 2016, 14 16 Sept 2016, Bergen, Norway

More information

ANNUAL WRF SIMULATIONS FOR THE UTAH BUREAU OF LAND MANAGEMENT S AIR RESOURCE MANAGEMENT STRATEGY (ARMS) AIR QUALITY MODELING

ANNUAL WRF SIMULATIONS FOR THE UTAH BUREAU OF LAND MANAGEMENT S AIR RESOURCE MANAGEMENT STRATEGY (ARMS) AIR QUALITY MODELING ANNUAL WRF SIMULATIONS FOR THE UTAH BUREAU OF LAND MANAGEMENT S AIR RESOURCE MANAGEMENT STRATEGY (ARMS) AIR QUALITY MODELING Kenneth Craig*, Stephen Reid, Garnet Erdakos Sonoma Technology, Inc., Petaluma,

More information

Chihoko Yamashita 1,2, Han-Li Liu 1

Chihoko Yamashita 1,2, Han-Li Liu 1 1 1 Gravity Waves and the High-Resolution Modeling (Using ECMWF-T799) Chihoko Yamashita 1,2, Han-Li Liu 1 1. NCAR/HAO 2. University of Colorado at Boulder AWMG/WAWG Workshop 2012-02-01 Motivations Gravity

More information

Mesoscale meteorological models. Claire L. Vincent, Caroline Draxl and Joakim R. Nielsen

Mesoscale meteorological models. Claire L. Vincent, Caroline Draxl and Joakim R. Nielsen Mesoscale meteorological models Claire L. Vincent, Caroline Draxl and Joakim R. Nielsen Outline Mesoscale and synoptic scale meteorology Meteorological models Dynamics Parametrizations and interactions

More information

Arctic Boundary Layer

Arctic Boundary Layer Annual Seminar 2015 Physical processes in present and future large-scale models Arctic Boundary Layer Gunilla Svensson Department of Meteorology and Bolin Centre for Climate Research Stockholm University,

More information

Tue 2/9/2016. Turbulence and PBL closure: Reminders/announcements: Local & non-local WRF PBL options. - WRF real-data case assignment, due today

Tue 2/9/2016. Turbulence and PBL closure: Reminders/announcements: Local & non-local WRF PBL options. - WRF real-data case assignment, due today Tue 2/9/2016 Turbulence and PBL closure: Local & non-local WRF PBL options Reminders/announcements: - WRF real-data case assignment, due today - Some lessons learned here! - Project hypothesis assignment,

More information

K.B.R.R. Hariprasad, C.V. Srinivas, A.Bagavath Singh, S. Vijaya Bhaskara Rao, R. Baskaran, B. Venkatraman

K.B.R.R. Hariprasad, C.V. Srinivas, A.Bagavath Singh, S. Vijaya Bhaskara Rao, R. Baskaran, B. Venkatraman Accepted Manuscript Numerical Simulation and Intercomparison of Boundary Layer Structure with different PBL schemes in WRF using experimental observations at a Tropical site K.B.R.R. Hariprasad, C.V. Srinivas,

More information

Use of Satellite Observations to Measure Air-Sea Coupling and to Validate Its Estimates from Numerical Atmospheric Models

Use of Satellite Observations to Measure Air-Sea Coupling and to Validate Its Estimates from Numerical Atmospheric Models Use of Satellite Observations to Measure Air-Sea Coupling and to Validate Its Estimates from Numerical Atmospheric Models Natalie Perlin, Dudley Chelton, Simon de Szoeke College of Earth, Ocean, and Atmospheric

More information

Impacts of the Lowest Model Level Height on the Performance of Planetary Boundary Layer Parameterizations

Impacts of the Lowest Model Level Height on the Performance of Planetary Boundary Layer Parameterizations 664 M O N T H L Y W E A T H E R R E V I E W VOLUME 140 Impacts of the Lowest Model Level Height on the Performance of Planetary Boundary Layer Parameterizations HYEYUM HAILEY SHIN AND SONG-YOU HONG Department

More information

An analysis of Wintertime Cold-Air Pool in Armenia Using Climatological Observations and WRF Model Data

An analysis of Wintertime Cold-Air Pool in Armenia Using Climatological Observations and WRF Model Data An analysis of Wintertime Cold-Air Pool in Armenia Using Climatological Observations and WRF Model Data Hamlet Melkonyan 1,2, Artur Gevorgyan 1,2, Sona Sargsyan 1, Vladimir Sahakyan 2, Zarmandukht Petrosyan

More information

FINAL PROJECT REPORT YEAR: 2013 WTFRC Project Number: TR Project Title: High resolution weather forecasting for freeze prediction in WA

FINAL PROJECT REPORT YEAR: 2013 WTFRC Project Number: TR Project Title: High resolution weather forecasting for freeze prediction in WA FINAL PROJECT REPORT YEAR: 2013 WTFRC Project Number: TR-10-110 Project Title: High resolution weather forecasting for freeze prediction in WA PI: Gerrit Hoogenboom Co-PI: Tesfamichael Ghidey Organization:

More information

Arctic System Reanalysis Provides Highresolution Accuracy for Arctic Studies

Arctic System Reanalysis Provides Highresolution Accuracy for Arctic Studies Arctic System Reanalysis Provides Highresolution Accuracy for Arctic Studies David H. Bromwich, Aaron Wilson, Lesheng Bai, Zhiquan Liu POLAR2018 Davos, Switzerland Arctic System Reanalysis Regional reanalysis

More information

Impact of FORMOSAT 3/COSMIC Radio Occultation. near Taiwan

Impact of FORMOSAT 3/COSMIC Radio Occultation. near Taiwan Impact of FORMOSAT 3/COSMIC Radio Occultation Data on Predictions i of Typhoon and Mei yu Fronts near Taiwan CHING YUANG HUANG 1,2, CHAN SENG WONG 1, CHIEN JU WANG 2, and CHIN CHENG TSAI 2 1 Department

More information

Meteorological Modeling using Penn State/NCAR 5 th Generation Mesoscale Model (MM5)

Meteorological Modeling using Penn State/NCAR 5 th Generation Mesoscale Model (MM5) TSD-1a Meteorological Modeling using Penn State/NCAR 5 th Generation Mesoscale Model (MM5) Bureau of Air Quality Analysis and Research Division of Air Resources New York State Department of Environmental

More information

Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model

Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model W. O Hirok and P. Ricchiazzi Institute for Computational Earth System Science University of California

More information

Sensitivity of 24 h Forecast Dryline Position and Structure to Boundary Layer Parameterizations in Convection-allowing WRF Model Simulations

Sensitivity of 24 h Forecast Dryline Position and Structure to Boundary Layer Parameterizations in Convection-allowing WRF Model Simulations 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 Sensitivity of 24 h Forecast Dryline Position and Structure to Boundary Layer Parameterizations

More information

Impact of physical parameterizations and initial conditions on simulated atmospheric transport and CO 2 mole fractions in the US Midwest

Impact of physical parameterizations and initial conditions on simulated atmospheric transport and CO 2 mole fractions in the US Midwest Impact of physical parameterizations and initial conditions on simulated atmospheric transport and CO 2 mole fractions in the US Midwest Liza I. Díaz-Isaac 1,*, Thomas Lauvaux 1, Kenneth J. Davis 1 1 Department

More information

P1.1 THE QUALITY OF HORIZONTAL ADVECTIVE TENDENCIES IN ATMOSPHERIC MODELS FOR THE 3 RD GABLS SCM INTERCOMPARISON CASE

P1.1 THE QUALITY OF HORIZONTAL ADVECTIVE TENDENCIES IN ATMOSPHERIC MODELS FOR THE 3 RD GABLS SCM INTERCOMPARISON CASE P1.1 THE QUALITY OF HORIZONTAL ADVECTIVE TENDENCIES IN ATMOSPHERIC MODELS FOR THE 3 RD GABLS SCM INTERCOMPARISON CASE Fred C. Bosveld 1*, Erik van Meijgaard 1, Evert I. F. de Bruijn 1 and Gert-Jan Steeneveld

More information

Work Plan. Air Quality Research Program (AQRP) Project 12-TN1

Work Plan. Air Quality Research Program (AQRP) Project 12-TN1 Work Plan Air Quality Research Program (AQRP) Project 12-TN1 Investigation of surface layer parameterization of the WRF model and its impact on the observed nocturnal wind speed bias: Period of investigation

More information

Development of a Coupled Atmosphere-Ocean-Land General Circulation Model (GCM) at the Frontier Research Center for Global Change

Development of a Coupled Atmosphere-Ocean-Land General Circulation Model (GCM) at the Frontier Research Center for Global Change Chapter 1 Atmospheric and Oceanic Simulation Development of a Coupled Atmosphere-Ocean-Land General Circulation Model (GCM) at the Frontier Research Center for Global Change Project Representative Tatsushi

More information

5. General Circulation Models

5. General Circulation Models 5. General Circulation Models I. 3-D Climate Models (General Circulation Models) To include the full three-dimensional aspect of climate, including the calculation of the dynamical transports, requires

More information

Improved Atmospheric Stable Boundary Layer Formulations for Navy Seasonal Forecasting

Improved Atmospheric Stable Boundary Layer Formulations for Navy Seasonal Forecasting DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Improved Atmospheric Stable Boundary Layer Formulations for Navy Seasonal Forecasting Michael Tjernström Department of

More information

Boundary layer processes. Bjorn Stevens Max Planck Institute for Meteorology, Hamburg

Boundary layer processes. Bjorn Stevens Max Planck Institute for Meteorology, Hamburg Boundary layer processes Bjorn Stevens Max Planck Institute for Meteorology, Hamburg The Atmospheric Boundary Layer (ABL) An Abstraction (Wippermann 76) The bottom 100-3000 m of the Troposphere (Stull

More information

Air Quality Screening Modeling

Air Quality Screening Modeling Air Quality Screening Modeling 2007 Meteorology Simulation with WRF OTC Modeling Committee Meeting September 16, 2010 Baltimore, MD Presentation is based upon the following technical reports available

More information

Predicting Wind Power Generation

Predicting Wind Power Generation Predicting Wind Power Generation Daniel Kirk-Davidoff Chief Scientist for Weather and Climate Services MDA Information Systems LLC Adjunct Associate Professor of Atmospheric and Oceanic Science University

More information

A Study of Convective Initiation Failure on 22 Oct 2004

A Study of Convective Initiation Failure on 22 Oct 2004 A Study of Convective Initiation Failure on 22 Oct 2004 Jennifer M. Laflin Philip N. Schumacher NWS Sioux Falls, SD August 6 th, 2011 Introduction Forecasting challenge: strong forcing for ascent and large

More information

Development and Validation of Polar WRF

Development and Validation of Polar WRF Polar Meteorology Group, Byrd Polar Research Center, The Ohio State University, Columbus, Ohio Development and Validation of Polar WRF David H. Bromwich 1,2, Keith M. Hines 1, and Le-Sheng Bai 1 1 Polar

More information

Research Article WRF Model Methodology for Offshore Wind Energy Applications

Research Article WRF Model Methodology for Offshore Wind Energy Applications Advances in Meteorology, Article ID 319819, 14 pages http://dx.doi.org/10.1155/2014/319819 Research Article WRF Model Methodology for Offshore Wind Energy Applications Evangelia-Maria Giannakopoulou and

More information

A New Ocean Mixed-Layer Model Coupled into WRF

A New Ocean Mixed-Layer Model Coupled into WRF ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2012, VOL. 5, NO. 3, 170 175 A New Ocean Mixed-Layer Model Coupled into WRF WANG Zi-Qian 1,2 and DUAN An-Min 1 1 The State Key Laboratory of Numerical Modeling

More information

Modeling the Atmospheric Boundary Layer Wind. Response to Mesoscale Sea Surface Temperature. Perturbations

Modeling the Atmospheric Boundary Layer Wind. Response to Mesoscale Sea Surface Temperature. Perturbations Modeling the Atmospheric Boundary Layer Wind Response to Mesoscale Sea Surface Temperature Perturbations Natalie Perlin 1, Simon P. de Szoeke 2, Dudley B. Chelton 2, Roger M. Samelson 2, Eric D. Skyllingstad

More information

Role of Low Level Jetstream in Intense Monsoon Rainfall episodes over the West Coast of India

Role of Low Level Jetstream in Intense Monsoon Rainfall episodes over the West Coast of India Role of Low Level Jetstream in Intense Monsoon Rainfall episodes over the West Coast of India Dr. P.V. Joseph Professor Emeritus Department of Atmospheric Sciences Cochin University of Science and Technology

More information

Polar Weather Prediction

Polar Weather Prediction Polar Weather Prediction David H. Bromwich Session V YOPP Modelling Component Tuesday 14 July 2015 A special thanks to the following contributors: Kevin W. Manning, Jordan G. Powers, Keith M. Hines, Dan

More information

Shallow cumulus evaluated with the LASSO (ensemble LES) framework

Shallow cumulus evaluated with the LASSO (ensemble LES) framework Shallow cumulus evaluated with the LASSO (ensemble LES) framework Wayne M. Angevine, Joe Olson, and Jaymes Kenyon CIRES, University of Colorado, and NOAA ESRL Outline: What and why is LASSO? The shallow

More information

90 s. MS-Micro. Primitives NOABL. high. low. CPU / Information/ Global Market

90 s. MS-Micro. Primitives NOABL. high. low. CPU / Information/ Global Market 2010 2000 90 s MS-Micro Primitives NOABL low high CPU / Information/ Global Market 2010 2000 European Wind Atlas flatland 90 s Danish Revolution Risoe MS-Micro Primitives NOABL low high CPU / Information/

More information

EVALUATION OF THE WRF METEOROLOGICAL MODEL RESULTS FOR HIGH OZONE EPISODE IN SW POLAND THE ROLE OF MODEL INITIAL CONDITIONS Wrocław, Poland

EVALUATION OF THE WRF METEOROLOGICAL MODEL RESULTS FOR HIGH OZONE EPISODE IN SW POLAND THE ROLE OF MODEL INITIAL CONDITIONS Wrocław, Poland EVALUATION OF THE WRF METEOROLOGICAL MODEL RESULTS FOR HIGH OZONE EPISODE IN SW POLAND THE ROLE OF MODEL INITIAL CONDITIONS Kinga Wałaszek 1, Maciej Kryza 1, Małgorzata Werner 1 1 Department of Climatology

More information

Modeling the Atmospheric Boundary Layer Wind. Response to Mesoscale Sea Surface Temperature

Modeling the Atmospheric Boundary Layer Wind. Response to Mesoscale Sea Surface Temperature Modeling the Atmospheric Boundary Layer Wind Response to Mesoscale Sea Surface Temperature Natalie Perlin 1, Simon P. de Szoeke, Dudley B. Chelton, Roger M. Samelson, Eric D. Skyllingstad, and Larry W.

More information

1. Current atmospheric DA systems 2. Coupling surface/atmospheric DA 3. Trends & ideas

1. Current atmospheric DA systems 2. Coupling surface/atmospheric DA 3. Trends & ideas 1 Current issues in atmospheric data assimilation and its relationship with surfaces François Bouttier GAME/CNRM Météo-France 2nd workshop on remote sensing and modeling of surface properties, Toulouse,

More information

Stable Atmospheric Boundary Layers and Diurnal Cycles

Stable Atmospheric Boundary Layers and Diurnal Cycles Stable Atmospheric Boundary Layers and Diurnal Cycles Introduction and overview of GABLS Bert Holtslag DICE and GABLS4 Workshop, Toulouse, May 20, 2015 Meteorology and Air Quality Department Modeling Atmospheric

More information

Causes of WRF surface energy fluxes biases in a stratocumulus region

Causes of WRF surface energy fluxes biases in a stratocumulus region Clim Dyn DOI 10.1007/s00382-015-2599-9 Causes of WRF surface energy fluxes biases in a stratocumulus region A. Jousse 1 A. Hall 1 F. Sun 1 J. Teixeira 2 Received: 25 November 2014 / Accepted: 6 April 2015

More information

National Center for Atmospheric Research Research Applications Laboratory Renewable Energy

National Center for Atmospheric Research Research Applications Laboratory Renewable Energy National Center for Atmospheric Research Research Applications Laboratory Renewable Energy Dr. Sue Ellen Haupt, Director & Dr. Branko Kosovic, Program Manager Weather Systems & Assessment Program Research

More information

VERIFICATION OF HIGH RESOLUTION WRF-RTFDDA SURFACE FORECASTS OVER MOUNTAINS AND PLAINS

VERIFICATION OF HIGH RESOLUTION WRF-RTFDDA SURFACE FORECASTS OVER MOUNTAINS AND PLAINS VERIFICATION OF HIGH RESOLUTION WRF-RTFDDA SURFACE FORECASTS OVER MOUNTAINS AND PLAINS Gregory Roux, Yubao Liu, Luca Delle Monache, Rong-Shyang Sheu and Thomas T. Warner NCAR/Research Application Laboratory,

More information

Testing and Improving Pacific NW PBL forecasts

Testing and Improving Pacific NW PBL forecasts Testing and Improving Pacific NW PBL forecasts Chris Bretherton and Matt Wyant University of Washington Eric Grimit 3Tier NASA MODIS Image Testing and Improving Pacific NW PBL forecasts PBL-related forecast

More information

Speedwell High Resolution WRF Forecasts. Application

Speedwell High Resolution WRF Forecasts. Application Speedwell High Resolution WRF Forecasts Speedwell weather are providers of high quality weather data and forecasts for many markets. Historically we have provided forecasts which use a statistical bias

More information

Overview of 10 years of GABLS

Overview of 10 years of GABLS Overview of 10 years of GABLS Bert Holtslag (Wageningen Univ, www.maq.wur.nl ) Thanks to Sukanta Basu (NC State Univ), Bob Beare (Exeter Univ), Fred Bosveld (KNMI), Joan Cuxart (Univ. Balearic Islands)

More information

Weather Forecasting: Lecture 2

Weather Forecasting: Lecture 2 Weather Forecasting: Lecture 2 Dr. Jeremy A. Gibbs Department of Atmospheric Sciences University of Utah Spring 2017 1 / 40 Overview 1 Forecasting Techniques 2 Forecast Tools 2 / 40 Forecasting Techniques

More information

Wind Assessment & Forecasting

Wind Assessment & Forecasting Wind Assessment & Forecasting GCEP Energy Workshop Stanford University April 26, 2004 Mark Ahlstrom CEO, WindLogics Inc. mark@windlogics.com WindLogics Background Founders from supercomputing industry

More information

COSMIC GPS Radio Occultation and

COSMIC GPS Radio Occultation and An Impact Study of FORMOSAT-3/ COSMIC GPS Radio Occultation and Dropsonde Data on WRF Simulations 27 Mei-yu season Fang-Ching g Chien Department of Earth Sciences Chien National and Taiwan Kuo (29), Normal

More information

A COMPARISON OF VERY SHORT-TERM QPF S FOR SUMMER CONVECTION OVER COMPLEX TERRAIN AREAS, WITH THE NCAR/ATEC WRF AND MM5-BASED RTFDDA SYSTEMS

A COMPARISON OF VERY SHORT-TERM QPF S FOR SUMMER CONVECTION OVER COMPLEX TERRAIN AREAS, WITH THE NCAR/ATEC WRF AND MM5-BASED RTFDDA SYSTEMS A COMPARISON OF VERY SHORT-TERM QPF S FOR SUMMER CONVECTION OVER COMPLEX TERRAIN AREAS, WITH THE NCAR/ATEC WRF AND MM5-BASED RTFDDA SYSTEMS Wei Yu, Yubao Liu, Tom Warner, Randy Bullock, Barbara Brown and

More information

WASA WP1:Mesoscale modeling UCT (CSAG) & DTU Wind Energy Oct March 2014

WASA WP1:Mesoscale modeling UCT (CSAG) & DTU Wind Energy Oct March 2014 WASA WP1:Mesoscale modeling UCT (CSAG) & DTU Wind Energy Oct 2013 - March 2014 Chris Lennard and Brendan Argent University of Cape Town, Cape Town, South Africa Andrea N. Hahmann (ahah@dtu.dk), Jake Badger,

More information

MESOSCALE DATA ASSIMILATION FOR SIMULATION OF HEAVY RAINFALL EVENTS ASSOCIATED WITH SOUTH-WEST MONSOON

MESOSCALE DATA ASSIMILATION FOR SIMULATION OF HEAVY RAINFALL EVENTS ASSOCIATED WITH SOUTH-WEST MONSOON MESOSCALE DATA ASSIMILATION FOR SIMULATION OF HEAVY RAINFALL EVENTS ASSOCIATED WITH SOUTH-WEST MONSOON ASHISH ROUTRAY CENTRE FOR ATMOSPHERIC SCIENCES INDIAN INSTITUTE OF TECHNOLOGY, DELHI HAUZ KHAS, NEW

More information

Modeling Study of Atmospheric Boundary Layer Characteristics in Industrial City by the Example of Chelyabinsk

Modeling Study of Atmospheric Boundary Layer Characteristics in Industrial City by the Example of Chelyabinsk Modeling Study of Atmospheric Boundary Layer Characteristics in Industrial City by the Example of Chelyabinsk 1. Introduction Lenskaya Olga Yu.*, Sanjar M. Abdullaev* *South Ural State University Urbanization

More information

Sub-grid parametrization in the ECMWF model

Sub-grid parametrization in the ECMWF model Sub-grid parametrization in the ECMWF model Anton Beljaars Thanks to: Gianpaolo Balsamo, Peter Bechtold, Richard Forbes, Thomas Haiden, Marta Janiskova and Irina Sandu WWOSC: Parametrization at ECMWF Slide

More information

Sensitivity of precipitation forecasts to cumulus parameterizations in Catalonia (NE Spain)

Sensitivity of precipitation forecasts to cumulus parameterizations in Catalonia (NE Spain) Sensitivity of precipitation forecasts to cumulus parameterizations in Catalonia (NE Spain) Jordi Mercader (1), Bernat Codina (1), Abdelmalik Sairouni (2), Jordi Cunillera (2) (1) Dept. of Astronomy and

More information

MPAS Atmospheric Boundary Layer Simulation under Selected Stability Conditions: Evaluation using the SWIFT dataset

MPAS Atmospheric Boundary Layer Simulation under Selected Stability Conditions: Evaluation using the SWIFT dataset MPAS Atmospheric Boundary Layer Simulation under Selected Stability Conditions: Evaluation using the SWIFT dataset Rao Kotamarthi, Yan Feng, and Jiali Wang Argonne National Laboratory & MMC Team Motivation:

More information

Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches

Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches LONG-TERM

More information

18A.2 PREDICTION OF ATLANTIC TROPICAL CYCLONES WITH THE ADVANCED HURRICANE WRF (AHW) MODEL

18A.2 PREDICTION OF ATLANTIC TROPICAL CYCLONES WITH THE ADVANCED HURRICANE WRF (AHW) MODEL 18A.2 PREDICTION OF ATLANTIC TROPICAL CYCLONES WITH THE ADVANCED HURRICANE WRF (AHW) MODEL Jimy Dudhia *, James Done, Wei Wang, Yongsheng Chen, Qingnong Xiao, Christopher Davis, Greg Holland, Richard Rotunno,

More information

Observations and WRF simulations of fog events Engineering at the Spanish Northern Plateau

Observations and WRF simulations of fog events Engineering at the Spanish Northern Plateau Open Sciences doi:10.5194/asr-8-11-2012 Author(s) 2012. CC Attribution 3.0 License. Advances in Science & Research Open Access Proceedings Drinking Water Observations and WRF simulations of fog events

More information

M.Sc. in Meteorology. Physical Meteorology Prof Peter Lynch. Mathematical Computation Laboratory Dept. of Maths. Physics, UCD, Belfield.

M.Sc. in Meteorology. Physical Meteorology Prof Peter Lynch. Mathematical Computation Laboratory Dept. of Maths. Physics, UCD, Belfield. M.Sc. in Meteorology Physical Meteorology Prof Peter Lynch Mathematical Computation Laboratory Dept. of Maths. Physics, UCD, Belfield. Climate Change???????????????? Tourists run through a swarm of pink

More information

Lake parameters climatology for cold start runs (lake initialization) in the ECMWF forecast system

Lake parameters climatology for cold start runs (lake initialization) in the ECMWF forecast system 2nd Workshop on Parameterization of Lakes in Numerical Weather Prediction and Climate Modelling Lake parameters climatology for cold start runs (lake initialization) in the ECMWF forecast system R. Salgado(1),

More information

Influence of variations in low-level moisture and soil moisture on the organization of summer convective systems in the US Midwest

Influence of variations in low-level moisture and soil moisture on the organization of summer convective systems in the US Midwest Influence of variations in low-level moisture and soil moisture on the organization of summer convective systems in the US Midwest Jimmy O. Adegoke 1, Sajith Vezhapparambu 1, Christopher L. Castro 2, Roger

More information

Solar irradiance modelling over Belgium using WRF-ARW :

Solar irradiance modelling over Belgium using WRF-ARW : Solar irradiance modelling over Belgium Sensitivity analysis of Mellor-Yamada- Nakanishi-Niino (MYNN) boundary layer scheme parameters Beaumet J., Fettweis X., Doutreloup S. & Erpicum M. Meteoclim, PhD

More information

Tue 2/16/2016. Wrap-up on some WRF PBL options Paper presentations (Hans, Pat, Dylan, Masih, Xia, James) Begin convective parameterization (if time)

Tue 2/16/2016. Wrap-up on some WRF PBL options Paper presentations (Hans, Pat, Dylan, Masih, Xia, James) Begin convective parameterization (if time) Tue 2/16/2016 Finish turbulence and PBL closure: Wrap-up on some WRF PBL options Paper presentations (Hans, Pat, Dylan, Masih, Xia, James) Begin convective parameterization (if time) Reminders/announcements:

More information

MM5 v3.6.1 and WRF v3.5.1 model comparison of standard and surface energy variables in the development of the planetary boundary layer

MM5 v3.6.1 and WRF v3.5.1 model comparison of standard and surface energy variables in the development of the planetary boundary layer doi:10.5194/gmd-7-2693-2014 Author(s) 2014. CC Attribution 3.0 License. MM5 v3.6.1 and WRF v3.5.1 model comparison of standard and surface energy variables in the development of the planetary boundary

More information

Near-surface weather prediction and surface data assimilation: challenges, development, and potential data needs

Near-surface weather prediction and surface data assimilation: challenges, development, and potential data needs Near-surface weather prediction and surface data assimilation: challenges, development, and potential data needs Zhaoxia Pu Department of Atmospheric Sciences University of Utah, Salt Lake City, Utah,

More information

An Impact Study of GPS RO Data on the Typhoon Track Forecast using the CWB Global Forecast System

An Impact Study of GPS RO Data on the Typhoon Track Forecast using the CWB Global Forecast System An Impact Study of GPS RO Data on the Typhoon Track Forecast using the CWB Global Forecast System Ming-Jen Yang 1, Yu-Chun Chen 2,1, Yen-Chih Shen 2, Chin-Tzu Fong 2, and Wen-Mei Chen 2 1 National Central

More information

EVALUATION OF THE PRESAXIO AIR QUALITY FORECASTING SYSTEM: PBL SCHEMES WRF COMPARISON AND AIR QUALITY MODELING VALIDATION

EVALUATION OF THE PRESAXIO AIR QUALITY FORECASTING SYSTEM: PBL SCHEMES WRF COMPARISON AND AIR QUALITY MODELING VALIDATION EVALUATION OF THE PRESAXIO AIR QUALITY FORECASTING SYSTEM: PBL SCHEMES WRF COMPARISON AND AIR QUALITY MODELING VALIDATION Jose A. Souto 1, Santiago Saavedra 1, Angel Rodriguez 1, Maria Dios 1, David Cartelle

More information

Variational data assimilation of lightning with WRFDA system using nonlinear observation operators

Variational data assimilation of lightning with WRFDA system using nonlinear observation operators Variational data assimilation of lightning with WRFDA system using nonlinear observation operators Virginia Tech, Blacksburg, Virginia Florida State University, Tallahassee, Florida rstefane@vt.edu, inavon@fsu.edu

More information

SIMULATION OF ATMOSPHERIC STATES FOR THE CASE OF YEONG-GWANG STORM SURGE ON 31 MARCH 2007 : MODEL COMPARISON BETWEEN MM5, WRF AND COAMPS

SIMULATION OF ATMOSPHERIC STATES FOR THE CASE OF YEONG-GWANG STORM SURGE ON 31 MARCH 2007 : MODEL COMPARISON BETWEEN MM5, WRF AND COAMPS SIMULATION OF ATMOSPHERIC STATES FOR THE CASE OF YEONG-GWANG STORM SURGE ON 31 MARCH 2007 : MODEL COMPARISON BETWEEN MM5, WRF AND COAMPS JEONG-WOOK LEE 1 ; KYUNG-JA HA 1* ; KI-YOUNG HEO 1 ; KWANG-SOON

More information

Development and Testing of Polar WRF *

Development and Testing of Polar WRF * Development and Testing of Polar WRF * David H. Bromwich, Keith M. Hines and Le-Sheng Bai Polar Meteorology Group Byrd Polar Research Center The Ohio State University Columbus, Ohio *Supported by NSF,

More information

Advanced Hurricane WRF (AHW) Physics

Advanced Hurricane WRF (AHW) Physics Advanced Hurricane WRF (AHW) Physics Jimy Dudhia MMM Division, NCAR 1D Ocean Mixed-Layer Model 1d model based on Pollard, Rhines and Thompson (1973) was added for hurricane forecasts Purpose is to represent

More information

Logistics. Goof up P? R? Can you log in? Requests for: Teragrid yes? NCSA no? Anders Colberg Syrowski Curtis Rastogi Yang Chiu

Logistics. Goof up P? R? Can you log in? Requests for: Teragrid yes? NCSA no? Anders Colberg Syrowski Curtis Rastogi Yang Chiu Logistics Goof up P? R? Can you log in? Teragrid yes? NCSA no? Requests for: Anders Colberg Syrowski Curtis Rastogi Yang Chiu Introduction to Numerical Weather Prediction Thanks: Tom Warner, NCAR A bit

More information

Intercomparison of 7 Planetary Boundary- Layer/Surface-Layer Physics Schemes over Complex Terrain for Battlefield Situational Awareness

Intercomparison of 7 Planetary Boundary- Layer/Surface-Layer Physics Schemes over Complex Terrain for Battlefield Situational Awareness ARL-TR-8353 MAY 2018 US Army Research Laboratory Intercomparison of 7 Planetary Boundary- Layer/Surface-Layer Physics Schemes over Complex Terrain for Battlefield Situational Awareness by Richard S Penc,

More information

Sensitivity to the PBL and convective schemes in forecasts with CAM along the Pacific Cross-section

Sensitivity to the PBL and convective schemes in forecasts with CAM along the Pacific Cross-section Sensitivity to the PBL and convective schemes in forecasts with CAM along the Pacific Cross-section Cécile Hannay, Jeff Kiehl, Dave Williamson, Jerry Olson, Jim Hack, Richard Neale and Chris Bretherton*

More information