Derrick Herndon and Chris Velden University of Wisconsin - Madison Cooperative Institute for Meteorological Satellite Studies

Size: px
Start display at page:

Download "Derrick Herndon and Chris Velden University of Wisconsin - Madison Cooperative Institute for Meteorological Satellite Studies"

Transcription

1 Derrick Herndon and Chris Velden University of Wisconsin - Madison Cooperative Institute for Meteorological Satellite Studies Presented at International Workshop on Satellite Analysis of Tropical Cyclones February, 2016 Honolulu, HI AMSU ARCHER SSMIS ATMS

2 Motivation Dvorak may not work well for all TC structures/phases Increasing the number of quality intensity estimates reduces uncertainty and increases current intensity confidence -> Better Forecast X T3.5 Morokat 2009 Bolaven 2012 Halong hours RI T5.5?

3 In order to account for storms with different structures an all the above approach is needed. Multiple satellite scanning strategies (Geo/LEO) Multiple channels to measure the various TC features that are related to intensity. (subjective/objective) Geostationary Intensity Position Structure MW Imager Position Structure Intensity? MW Sounder Intensity Structure

4 Derive Tb anomalies from mw temperature sounders. Channel 9 Channel 8 Channel 7 Channel 6 Vertical Cross Section of Tb Anomalies for Typhoon Lekima AMSU-A Weighting Functions for channels 3-10

5 Flown aboard NOAA 15-19, METOP A/B, Aqua, FY Series 2 Instruments: AMSU-A (temperature) AMSU-B/MHS (moisture) Primary channels of interest are 5-8 AMSU-A and channel 16 on AMSU-B Flown aboard DMSP F16-F19 Both sounder and imager channels Primary channels of interest are channels 3-5 (sounder) and channels (imager) ATMS is similar Pressure

6 Summary of Current Operational Temperature Sounder Resolution (km) Moisture Sounder /Imager Resolution (km) Swath Width (km) # of Sats Scan Type AMSU 48 (nadir) 79 x 149 (limb) 16 (nadir) 27 x 52 (limb) * Crosstrack SSMI S Conical ATMS 32 (nadir) 70 x 137 (limb) 16 (nadir) 30 x 68 (limb) Crosstrack * NOAA15 AMSU-B failed 2011, NOAA 19 AMSU-A CH8 noisy since 2009 METOP-A AMSU CH7 failed SSMIS F-18 and F-16 sounders failed in 2015 FY-3C MWTS-II failed in 2015

7 Initial estimate of TC center CIMSS Algorithm General Approach - Warning agency forecast - ARCHER Locate warmest pixel Estimate environmental temperature - filter out unrepresentative temps X Calculate temperature anomaly Use regressions for each channel to estimate pressure anomaly Use estimate of eye size to correct initial pressure anomaly estimate Estimate Vmax using pressure anomaly, latitude, storm size, Tb gradient and motion Sounder FOV

8 Eye Size Bias Correction: Account for Eyewall Slope Vertical Cross Section of Tb Anomalies for Typhoon Lekima Channel 6 Channel 5 Channel 4 Channel 3 Eye size bias correction for each channel accounts for Eyewall slope. Currently 45 degree eyewall slope is assumed however recent research suggests eyewall slope may change with TC eye size Smaller eye = steeper slope Channels for SSMIS

9 AMSU - Address loss of AMSU-B on N15 - Update limb corrections - Added Metop-B - ARCHER II-based eye size Developed and added SSMIS Added S-NPP ATMS Changes Since IWSATC 2011 Evaluation of upper level temperature observations From field campaigns -> improve sounder-based estimates

10 Parameters That Contribute to Vmax Estimates Inner core Tb gradient contribution to Vmax estimate. Two different inner core Tb gradients for these storms. Related to Holland B parameter (Holland 1980) Inner core organization. Energy transfer efficiency. Same MSLP for these two storms but different Vmax. Use ARCHER intensity score to adjust Vmax 91 Ghz Imagery Storm motion. Some portion of the motion is imparted on Vmax. The amount contributed varies with storm intensity and organization H*Wind for Hurricane Wilma 955 mb Vmax = 110 knots Storm Motion 35 knots Vmax exceeds expected value based on pressure/storm size by ~ 20 knots

11 TC Intensity and Structure from MIRS Retrievals One or two passes to fully cover TC and its environment Here two NOAA-19 passes over Hurricane Edouard, 0530 UTC and 0700 UTC 15 Sep 2014 Temperature retrieval at each yellow point forms the basis for the analysis GOES µm infrared image of Hurricane Edouard at 0515 UTC 15 Sep 2014, with location of NOAA-19 MIRS retrievals overlaid. Prepared by J. Dostalek, CIRA/CSU

12 The temperature retrievals are interpolated to an r-z grid Using the hydrostatic assumption, the gridded temperature profiles are used to calculate the pressure field on the r-z grid The pressure field is used to compute the gradient wind Various metrics from the r-z temperature and wind fields are used in a regression equation to estimate v max, p min, r 34, r 50, and r 64 Temperature anomaly (Top) and gradient wind (Bottom) from NOAA19 MIRS analysis, Hurricane Edouard, 0500 UTC, 15 Sep Prepared by J. Dostalek, CIRA/CSU

13 Examples of AMSU & ATMS Intensity Fixes CORENTIN STAN Prepared by J. Knaff NOAA/NESDIS

14 Validation Statistics AMSU ATMS These products are operational at NESDIS and fixes are available at: Values are MAE For AMSU: ftp://satepsanone.nesdis.noaa.gov/tcfp/amsutc/ For ATMS: ftp://satepsanone.nesdis.noaa.gov/tcfp/npptc/ Prepared by J. Dostalek, CIRA/CSU, J. Knaff NOAA/NESDIS

15 N = 876 CIMSS AMSU MSLP CIMSS AMSU Vmax Subj. Dvorak (Operational) BIAS AVG ERROR RMSE Homogenous sample with recon-aided Best Track estimates for ATL, EPAC, CPAC and WPAC. Subj. Dvorak is the average of subjective operational Dvorak estimates from TAFB and SAB (ATL/EPAC) or JTWC, SAB and JMA in WPAC. N=369 CIMSS SSMIS MSLP CIMSS SSMIS Vmax BIAS AVG ERROR RMSE SSMIS data verified with recon-aided Best Track estimates for ATL, EPAC, CPAC and WPAC

16 JPSS Risk Reduction Project: Evaluate Usefulness of ATMS to reduce improve TC Intensity estimates N=181 CIMSS ATMS MSLP CIMSS ATMS Vmax DVK Vmax BIAS AVG ERROR RMSE Dependent results CIMSS ATMS intensity estimates. DVK MSW is average of all available Dvorak estimates (no JMA). This sample is a combination of Atlantic, East Pacific, West Pacific and SHEM storms. Validation is aircraft data (N=103) when available and best track data when no aircraft data is available.

17 Example Cases

18 Tropical Transition: Hurricane Alex Hurricane Alex Jan 14, 2016 S-NPP ATMS Tb Cross Section

19 Monsoon Depressions Morokat (09W) 2009 Talas (15W) 2011 Nakri (12W) 2014 Dvorak 25 knots AMSU/SSMIS knots Best Track 20 knots Dvorak 35 knots AMSU/SSMIS knots Best Track 45 knots Dvorak knots AMSU/ATMS 60 knots Best Track 20 knots Obs 60 Gusts 75 knots

20 Monsoon Depressions Nakri (12W) 2014 Dvorak knots AMSU/ATMS 60 knots Best Track 20 knots Obs 60 gusts 75 knots 981 hpa ASCAT partial pass SSMIS warm core MSLP 981 hpa Vmax 56 knots

21 Halong (11W) 2014 Rapid Intensification/Weakening Dvorak knots AMSU/SSMIS knots Best Track 75 knots

22 Extratropical Transition Pabuk (19W) 2013 Aug 26 15Z Observation 965 mb Moving at 25 knots Aug 26 09Z

23 Wind Shear/CDO Structures Bolaven (16W) 2012 Aug 22 12Z Sounder estimates suggest much weaker system The CDO structure is one of the most difficult to characterize using the Dvorak Technique Aug 22 19Z RI? Aug 23 00Z Aug 23 12Z Aug 24 00Z Aug 24 12Z

24 Pinhole Eye Most problematic structure for nearly all methods. Intense scattering in the eyewall, very small eye compared to instrument resolution, TC position offset from instrument scan location. Largest sounder errors tend to occur with this structure. ATMS should help.

25 Future Work Evaluate high altitude observations from HS3/TCI campaigns to better understand microwave sounder bias characteristics Improve estimation of Vmax using improved inputs from ARCHER (SEF/ERC, asymmetries) Hydrometeor scattering correction for ATMS Address too strong bias during early developing stage Temperature cross section for Edouard 2014 using Global Hawk dropsondes

26 Questions?

27 REFERENCES Brueske K. and C. Velden 2003: Satellite-Based Tropical Cyclone Intensity Estimation Using the NOAA-KLM Series Advanced Microwave Sounding Unit (AMSU). Monthly Weather Review Volume 131, Issue 4 (April 2003) pp Demuth J. and M. DeMaria, 2004: Evaluation of Advanced Microwave Sounding Unit Tropical- Cyclone Intensity and Size Estimation Algorithms. Journal of Applied Meteorology Volume 43, Issue 2 (February 2004) pp Herndon D. and C. Velden, 2004: Upgrades to the UW-CIMSS AMSU-based TC intensity algorithm. Preprints, 26th Conference on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., Olander T. and C. Velden 2007: The Advanced Dvorak Technique: Continued Development of an Objective Scheme to Estimate Tropical Cyclone Intensity Using Geostationary Infrared Satellite Imagery. Wea. and Forecasting Volume 22, Issue 2 (April 2007) pp Velden C. et al., 2006: The Dvorak Tropical Cyclone Intensity Estimation Technique: A Satellite- Based Method that Has Endured for over 30 Years. Bulletin of the American Meteorological Society Volume 87, Issue 9 (September 2006) pp Wimmers, A., and C. Velden, 2010: Objectively Determining the Rotational Center of Tropical Cyclones in Passive Microwave Satellite Imagery. Submitted to JAMC.

28 REFERENCES Herndon, D., and C. Velden, J. D Hawkins 2012: Update on SATellite-based CONsensus (SATCON) Approach to TC Intensity Estimation. 30th Conference on Hurricanes and Tropical Meteorology. Ponte Vedra Beach, FL Herndon, D., and C. Velden, 2012: Estimating Tropical Cyclone Intensity Using the SSMIS and ATMS Sounders. 30th Conference on Hurricanes and Tropical Meteorology. Ponte Vedra Beach, FL Herndon, D., 2014: An Update on Tropical Cyclone Intensity Estimation from Satellite Microwave Sounders. 31st Conference on Hurricanes and Tropical Meteorology. San Diego, CA

29 CIMSS SSMIS Algorithm

30 CIMSS AMSU Algorithm Two scattering scenarios with different AMSU/TC geometry AMSU-B 89 GHz image with AMSU-A FOV closest to TC center AMSU-A scan FOV is located entirely in the large TC eye. AMSU FOV is near nadir. Scattering minimal to none. AMSU-B 89 GHz image with AMSU-A FOV closest to TC center AMSU-A scan FOV contains TC eyewall. Eye is small. AMSU-A FOV near scan edge. Significant scattering within the FOV

31 CIMSS AMSU Algorithm Compare to AMSU Footprint Adjust AMSU pressure if needed Get TC Eye Size AMSU MSLP Estimate Error vs Eye Size R 2 = MSLP Error (mb) Near Limb Footprint Difference Between Eye Size and FOV Resolution (km) Nadir Footprint

32 CIMSS AMSU Algorithm TC Presure Anomaly (mb) TC Pressure Anomaly (mb) AMSU Channel 6 vs Delta_P Chaneel 6 Tb Anomaly (K) AMSU Channel 8 vs Delta_P Channel 8 Tb Anomaly (K) TC Pressure Anomaly (mb) AMSU Channel 7 Tb vs Delta_P Channel 7 Tb Anomaly (K) Apply scattering correction to Tb s After removing under-sampled cases match Tb to MSLP anomaly for each channel Use regressions for initial estimates of MSLP anomaly

33 CIMSS AMSU Algorithm Storm center may fall between AMSU Footprints (FOV) Results in under-sampling of the warm core Use convolved AMSU-B moisture channel to adjust MSLP Only applied if initial MSLP estimate < 995 mb Proxy for TC position offset (bracketing factor) TC Center between FOV Cold AMSU-B 89 Ghz Tb used to adjust AMSU TC estimate TC Center is centered on FOV Warm AMSU-B 89 Ghz indicates no adjustment needed

34 CIMSS AMSU Algorithm Calculation of AMSU environmental Tb 8 FOV steps ~ 400 km nadir ~ 600 km limb A = Old Method B = New Method C = Noisy channel D = Topospheric anomaly in domain

35 CIMSS AMSU Algorithm Hydrometeors located at the levels of interest can mask the warm core signal through attenuation/scattering Result is a weak estimate. Especially for channels 6 and 7 This contamination can be corrected by comparing AMSU-A channels 2 and 15 - Use CH2 to predict CH15 in the absence of scattering. Difference between raw CH15 and predicted CH15 indicates level of scattering. Correlate difference with CHs 5-8 Hydrometeor scattering Corrected

Derrick Herndon and Chris Velden University of Wisconsin - Madison Cooperative Institute for Meteorological Satellite Studies

Derrick Herndon and Chris Velden University of Wisconsin - Madison Cooperative Institute for Meteorological Satellite Studies CIMSS SATellite CONsensus (SATCON) Derrick Herndon and Chris Velden University of Wisconsin - Madison Cooperative Institute for Meteorological Satellite Studies Presented at International Workshop on Satellite

More information

P1.21 Estimating TC Intensity Using the SSMIS and ATMS Sounders

P1.21 Estimating TC Intensity Using the SSMIS and ATMS Sounders P1.21 Estimating TC Intensity Using the SSMIS and ATMS Sounders Derrick C. Herndon* and Christopher Velden University of Wisconsin Cooperative Institute for Meteorological Satellite Studies (UW-CIMSS)

More information

P4.1 CONSENSUS ESTIMATES OF TROPICAL CYCLONE INTENSITY USING MULTISPECTRAL (IR AND MW) SATELLITE OBSERVATIONS

P4.1 CONSENSUS ESTIMATES OF TROPICAL CYCLONE INTENSITY USING MULTISPECTRAL (IR AND MW) SATELLITE OBSERVATIONS P4.1 CONSENSUS ESTIMATES OF TROPICAL CYCLONE INTENSITY USING MULTISPECTRAL (IR AND MW) SATELLITE OBSERVATIONS Christopher Velden* Derrick C. Herndon and James Kossin University of Wisconsin Cooperative

More information

Topic 2.3 OBJECTIVE TROPICAL CYCLONE INTENSITY ANALYSIS

Topic 2.3 OBJECTIVE TROPICAL CYCLONE INTENSITY ANALYSIS Topic 2.3 OBJECTIVE TROPICAL CYCLONE INTENSITY ANALYSIS Topic chairs: Rapporteurs: Elizabeth Ritchie and Chun-Chieh Wu Derrick Herndon and Chris Velden Cooperative Institute for Meteorological Satellite

More information

International TOVS Study Conference-XIV Proceedings. Liu zhe

International TOVS Study Conference-XIV Proceedings. Liu zhe Analysis of typhoon rananim using ATOVS retrieval products Liu zhe Institute of Meteorology, PLA University of Science and Technology, Nanjing, China Han zhigang Zhao zengliang Beijing Institute of Applied

More information

Observations Team: Satellite Observation Update. John Knaff NOAA/NESDIS Regional and Mesoscale Meteorology Branch

Observations Team: Satellite Observation Update. John Knaff NOAA/NESDIS Regional and Mesoscale Meteorology Branch Observations Team: Satellite Observation Update John Knaff NOAA/NESDIS Regional and Mesoscale Meteorology Branch 1 FY12 Satellite Milestones: i. CIRA/RAMMB continue maintaining and populating real-time

More information

Ryo Oyama Meteorological Research Institute, Japan Meteorological Agency. Abstract

Ryo Oyama Meteorological Research Institute, Japan Meteorological Agency. Abstract Algorithm and validation of a tropical cyclone central pressure estimation method based on warm core intensity as observed using the Advanced Microwave Sounding Unit-A (AMSU-A) Ryo Oyama Meteorological

More information

Microwave-TC intensity estimation. Ryo Oyama Meteorological Research Institute Japan Meteorological Agency

Microwave-TC intensity estimation. Ryo Oyama Meteorological Research Institute Japan Meteorological Agency Microwave-TC intensity estimation Ryo Oyama Meteorological Research Institute Japan Meteorological Agency Contents 1. Introduction 2. Estimation of TC Maximum Sustained Wind (MSW) using TRMM Microwave

More information

TC intensity estimation using Satellite data at JMA

TC intensity estimation using Satellite data at JMA SECOND INTERNATIONAL WORKSHOP ON SATELLITE ANALYSIS OF TROPICAL CYCLONES (IWSATC-II) TC intensity estimation using Satellite data at JMA Topics: 1) Estimation of TC central pressure using Microwave Sounder

More information

TC STRUCTURE GUIDANCE UPDATES

TC STRUCTURE GUIDANCE UPDATES TC STRUCTURE GUIDANCE UPDATES FROM NESDIS (CO)/CIRA Status and update for the multi-platform tropical cyclone wind analysis (MTCSWA) New microwave-sounder-based intensity and structure estimates New method

More information

The UW-CIMSS Advanced Dvorak Technique (ADT) : An Automated IR Method to Estimate Tropical Cyclone Intensity

The UW-CIMSS Advanced Dvorak Technique (ADT) : An Automated IR Method to Estimate Tropical Cyclone Intensity The UW-CIMSS Advanced (ADT) : An Automated IR Method to Estimate Tropical Cyclone Intensity Timothy Olander and Christopher Velden University of Wisconsin Madison, USA Cooperative Institute for Meteorological

More information

Chapter 10 Assessing Hurricane Intensity Using Satellites

Chapter 10 Assessing Hurricane Intensity Using Satellites Chapter 10 Assessing Hurricane Intensity Using Satellites Mark DeMaria, John A. Knaff, and Raymond Zehr Abstract Tropical cyclones spend most of their life cycle over the tropical and subtropical oceans.

More information

NOAA/NESDIS Tropical Web Page with LEO Satellite Products and Applications for Forecasters

NOAA/NESDIS Tropical Web Page with LEO Satellite Products and Applications for Forecasters NOAA/NESDIS Tropical Web Page with LEO Satellite Products and Applications for Forecasters Sheldon Kusselson National Oceanic and Atmospheric Administration (NOAA) National Environmental Satellite Data

More information

Satellite-Derived Tropical Cyclone Structure and Intensity

Satellite-Derived Tropical Cyclone Structure and Intensity DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Satellite-Derived Tropical Cyclone Structure and Intensity Jeffrey D. Hawkins Naval Research Laboratory 7 Grace Hopper

More information

TROPICAL CYCLONE PROBABILITY PRODUCTS LECTURE 1C: WIND PROBABILITY

TROPICAL CYCLONE PROBABILITY PRODUCTS LECTURE 1C: WIND PROBABILITY TROPICAL CYCLONE PROBABILITY PRODUCTS LECTURE 1C: WIND PROBABILITY Russell L. Elsberry Materials provided by Mark DeMaria and John Knaff Outline What contributes most uncertainty to wind at a point? CIRA

More information

Hurricane Sandy warm-core structure observed from advanced Technology Microwave Sounder

Hurricane Sandy warm-core structure observed from advanced Technology Microwave Sounder GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 3325 3330, doi:10.1002/grl.50626, 2013 Hurricane Sandy warm-core structure observed from advanced Technology Microwave Sounder Tong Zhu 1,2 and Fuzhong Weng 3 Received

More information

World Meteorological Organization. International Workshop on Satellite Analysis of Tropical Cyclones II (IWSATC-II)

World Meteorological Organization. International Workshop on Satellite Analysis of Tropical Cyclones II (IWSATC-II) World Meteorological Organization International Workshop on Satellite Analysis of Tropical Cyclones II (IWSATC-II) Report and Recommendations Prepared by Andrew Burton and Christopher Velden (Co-Chairs)

More information

Hurricane Structure: Theory and Diagnosis

Hurricane Structure: Theory and Diagnosis Hurricane Structure: Theory and Diagnosis 7 March, 2016 World Meteorological Organization Workshop Chris Landsea Chris.Landsea@noaa.gov National Hurricane Center, Miami Outline Structure of Hurricanes

More information

AN ANALYSIS OF TROPICAL CYCLONE INTENSITY ESTIMATES OF THE ADVANCED MICROWAVE SOUNDING UNIT (AMSU),

AN ANALYSIS OF TROPICAL CYCLONE INTENSITY ESTIMATES OF THE ADVANCED MICROWAVE SOUNDING UNIT (AMSU), AN ANALYSIS OF TROPICAL CYCLONE INTENSITY ESTIMATES OF THE ADVANCED MICROWAVE SOUNDING UNIT (AMSU), 2005-2008 Corey Walton University of Miami, Coral Gables, FL INTRODUCTION Analysis and forecasts of tropical

More information

An Example of Temperature Structure Differences in Two Cyclone Systems Derived from the Advanced Microwave Sounder Unit

An Example of Temperature Structure Differences in Two Cyclone Systems Derived from the Advanced Microwave Sounder Unit 476 WEATHER AND FORECASTING VOLUME 15 An Example of Temperature Structure Differences in Two Cyclone Systems Derived from the Advanced Microwave Sounder Unit JOHN A. KNAFF Cooperative Institute for Research

More information

Jun Mitch Goldberg %, Pei Timothy J. Schmit &, Jinlong Zhenglong and Agnes

Jun Mitch Goldberg %, Pei Timothy J. Schmit &, Jinlong Zhenglong and Agnes Progress on the assimilation of advanced IR sounder radiances in cloudy skies Jun Li @, Mitch Goldberg %, Pei Wang @#, Timothy J. Schmit &, Jinlong Li @, Zhenglong Li @, and Agnes Lim @ @CIMSS, University

More information

Interpretation of Polar-orbiting Satellite Observations. Atmospheric Instrumentation

Interpretation of Polar-orbiting Satellite Observations. Atmospheric Instrumentation Interpretation of Polar-orbiting Satellite Observations Outline Polar-Orbiting Observations: Review of Polar-Orbiting Satellite Systems Overview of Currently Active Satellites / Sensors Overview of Sensor

More information

Kotaro Bessho Typhoon Research Department, Meteorological Research Institute, Nagamine 1-1, Tsukuba , Japan

Kotaro Bessho Typhoon Research Department, Meteorological Research Institute, Nagamine 1-1, Tsukuba , Japan The Possibility of Determining Whether Organized Cloud Clusters Will Develop into Tropical Storms by Detecting Warm Core Structures from Advanced Microwave Sounding Unit Observations Kotaro Bessho Typhoon

More information

Improving Tropical Cyclone Forecasts by Assimilating Microwave Sounder Cloud-Screened Radiances and GPM precipitation measurements

Improving Tropical Cyclone Forecasts by Assimilating Microwave Sounder Cloud-Screened Radiances and GPM precipitation measurements Improving Tropical Cyclone Forecasts by Assimilating Microwave Sounder Cloud-Screened Radiances and GPM precipitation measurements Hyojin Han a, Jun Li a, Mitch Goldberg b, Pei Wang a,c, Jinlong Li a,

More information

9C.4 IMPROVING TROPICAL CYCLONE TRACK AND INTENSITY FORECASTING WITH JPSS IMAGER AND SOUNDER DATA

9C.4 IMPROVING TROPICAL CYCLONE TRACK AND INTENSITY FORECASTING WITH JPSS IMAGER AND SOUNDER DATA 9C.4 IMPROVING TROPICAL CYCLONE TRACK AND INTENSITY FORECASTING WITH JPSS IMAGER AND SOUNDER DATA Galina Chirokova * CIRA/CSU, Fort Collins, CO, USA Mark DeMaria NOAA/NWS/NCEP/NHC, Miami, FL, USA Robert

More information

The impact of assimilation of microwave radiance in HWRF on the forecast over the western Pacific Ocean

The impact of assimilation of microwave radiance in HWRF on the forecast over the western Pacific Ocean The impact of assimilation of microwave radiance in HWRF on the forecast over the western Pacific Ocean Chun-Chieh Chao, 1 Chien-Ben Chou 2 and Huei-Ping Huang 3 1Meteorological Informatics Business Division,

More information

Marine Meteorology Division, Naval Research Laboratory, Monterey, CA. Tellus Applied Sciences, Inc.

Marine Meteorology Division, Naval Research Laboratory, Monterey, CA. Tellus Applied Sciences, Inc. Nancy Baker 1, Rolf Langland 1, Pat Pauley 1, Liang Xu 1 Dagmar Merkova 2,3 and Ron Gelaro 2 Chris Velden 4 1 Marine Meteorology Division, Naval Research Laboratory, Monterey, CA 2 Global Modeling and

More information

A Pronounced Bias in Tropical Cyclone Minimum Sea Level Pressure Estimation Based on the Dvorak Technique

A Pronounced Bias in Tropical Cyclone Minimum Sea Level Pressure Estimation Based on the Dvorak Technique 15 A Pronounced Bias in Tropical Cyclone Minimum Sea Level Pressure Estimation Based on the Dvorak Technique JAMES P. KOSSIN AND CHRISTOPHER S. VELDEN Cooperative Institute for Meteorological Satellite

More information

Tropical Cyclone Mesoscale Data Assimilation

Tropical Cyclone Mesoscale Data Assimilation Tropical Cyclone Mesoscale Data Assimilation Sharan Majumdar (RSMAS / U. Miami) Chris Velden (CIMSS / U. Wisconsin) Acknowledgments: Ryan Torn (SUNY at Albany), Altug Aksoy and Tomislava Vukicevic (NOAA/AOML/HRD)

More information

4B.4 HURRICANE SATELLITE (HURSAT) DATA SETS: LOW EARTH ORBIT INFRARED AND MICROWAVE DATA

4B.4 HURRICANE SATELLITE (HURSAT) DATA SETS: LOW EARTH ORBIT INFRARED AND MICROWAVE DATA 4B.4 HURRICANE SATELLITE (HURSAT) DATA SETS: LOW EARTH ORBIT INFRARED AND MICROWAVE DATA Kenneth R. Knapp* NOAA - National Climatic Data Center, Asheville, North Carolina 1. INTRODUCTION Given the recent

More information

AN UPDATE ON UW-CIMSS SATELLITE-DERIVED WIND DEVELOPMENTS

AN UPDATE ON UW-CIMSS SATELLITE-DERIVED WIND DEVELOPMENTS AN UPDATE ON UW-CIMSS SATELLITE-DERIVED WIND DEVELOPMENTS Christopher Velden, Steve Wanzong and Paul Menzel University of Wisconsin - Cooperative Institute for Meteorological Satellite Studies 1225 West

More information

Satellite Applications to Hurricane Intensity Forecasting

Satellite Applications to Hurricane Intensity Forecasting Satellite Applications to Hurricane Intensity Forecasting Christopher J. Slocum - CSU Kate D. Musgrave, Louie D. Grasso, and Galina Chirokova - CIRA/CSU Mark DeMaria and John Knaff - NOAA/NESDIS Center

More information

P1.6 Simulation of the impact of new aircraft and satellite-based ocean surface wind measurements on H*Wind analyses

P1.6 Simulation of the impact of new aircraft and satellite-based ocean surface wind measurements on H*Wind analyses P1.6 Simulation of the impact of new aircraft and satellite-based ocean surface wind measurements on H*Wind analyses Timothy L. Miller 1, R. Atlas 2, P. G. Black 3, J. L. Case 4, S. S. Chen 5, R. E. Hood

More information

Report on CIMSS Participation in the Utility of GOES-R Instruments for Hurricane Data Assimilation and Forecasting

Report on CIMSS Participation in the Utility of GOES-R Instruments for Hurricane Data Assimilation and Forecasting Report on CIMSS Participation in the Utility of GOES-R Instruments for Hurricane Data Assimilation and Forecasting Award Number: NA10NES4400010 Award Period: 06/01/2010-05/31/2014 Program Office: NESDIS

More information

Masahiro Kazumori, Takashi Kadowaki Numerical Prediction Division Japan Meteorological Agency

Masahiro Kazumori, Takashi Kadowaki Numerical Prediction Division Japan Meteorological Agency Development of an all-sky assimilation of microwave imager and sounder radiances for the Japan Meteorological Agency global numerical weather prediction system Masahiro Kazumori, Takashi Kadowaki Numerical

More information

Observing system experiments of MTSAT-2 Rapid Scan Atmospheric Motion Vector for T-PARC 2008 using the JMA operational NWP system

Observing system experiments of MTSAT-2 Rapid Scan Atmospheric Motion Vector for T-PARC 2008 using the JMA operational NWP system Tenth International Winds Workshop 1 Observing system experiments of MTSAT-2 Rapid Scan Atmospheric Motion Vector for T-PARC 2008 using the JMA operational NWP system Koji Yamashita Japan Meteorological

More information

Hurricane Structure: Theory and Application. John Cangialosi National Hurricane Center

Hurricane Structure: Theory and Application. John Cangialosi National Hurricane Center Hurricane Structure: Theory and Application John Cangialosi National Hurricane Center World Meteorological Organization Workshop Is this Tropical, Subtropical, or Extratropical? Subtropical Tropical Extratropical

More information

Forecast of hurricane track and intensity with advanced IR soundings

Forecast of hurricane track and intensity with advanced IR soundings Forecast of hurricane track and intensity with advanced IR soundings Jun Li @, Hui Liu #, Jinlong Li @, and Tim Schmit & @CIMSS/SSEC, University of Wisconsin-Madison #National Center for Atmospheric Research

More information

Future Opportunities of Using Microwave Data from Small Satellites for Monitoring and Predicting Severe Storms

Future Opportunities of Using Microwave Data from Small Satellites for Monitoring and Predicting Severe Storms Future Opportunities of Using Microwave Data from Small Satellites for Monitoring and Predicting Severe Storms Fuzhong Weng Environmental Model and Data Optima Inc., Laurel, MD 21 st International TOV

More information

Introduction of the Hyperspectral Environmental Suite (HES) on GOES-R and beyond

Introduction of the Hyperspectral Environmental Suite (HES) on GOES-R and beyond Introduction of the Hyperspectral Environmental Suite (HES) on GOES-R and beyond 1 Timothy J. Schmit, 2 Jun Li, 3 James Gurka 1 NOAA/NESDIS, Office of Research and Applications, Advanced Satellite Products

More information

Topic 2: Cyclogenesis, Intensity and Intensity Change

Topic 2: Cyclogenesis, Intensity and Intensity Change EIGHTH INTERNATIONAL WORKSHOP ON TROPICAL CYCLONES Topic 2: Cyclogenesis, Intensity and Intensity Change Topic chairs: Elizabeth A. Ritchie (UA) and Chun-Chieh Wu (NTU) Rapporteurs: Anantha Aiyyar (NCSU),

More information

Estimating Tropical Cyclone Intensity from Infrared Image Data

Estimating Tropical Cyclone Intensity from Infrared Image Data 690 W E A T H E R A N D F O R E C A S T I N G VOLUME 26 Estimating Tropical Cyclone Intensity from Infrared Image Data MIGUEL F. PIÑEROS College of Optical Sciences, The University of Arizona, Tucson,

More information

Operational Use of Scatterometer Winds at JMA

Operational Use of Scatterometer Winds at JMA Operational Use of Scatterometer Winds at JMA Masaya Takahashi Numerical Prediction Division, Japan Meteorological Agency (JMA) 10 th International Winds Workshop, Tokyo, 26 February 2010 JMA Outline JMA

More information

28th Conference on Hurricanes and Tropical Meteorology, 28 April 2 May 2008, Orlando, Florida.

28th Conference on Hurricanes and Tropical Meteorology, 28 April 2 May 2008, Orlando, Florida. P2B. TROPICAL INTENSITY FORECASTING USING A SATELLITE-BASED TOTAL PRECIPITABLE WATER PRODUCT Mark DeMaria* NOAA/NESDIS/StAR, Fort Collins, CO Jeffery D. Hawkins Naval Research Laboratory, Monterey, CA

More information

On the assimilation of hyperspectral infrared sounder radiances in cloudy skies

On the assimilation of hyperspectral infrared sounder radiances in cloudy skies On the assimilation of hyperspectral infrared sounder radiances in cloudy skies Jun Li 1, Pei Wang 1, Zhenglong Li 1, Jinlong Li 1 and Mitchell D. Goldberg 2 1 Cooperative Institute for Meteorological

More information

Operational and Statistical Prediction of Rapid Intensity Change. Mark DeMaria and Eric Blake, NCEP/NHC John Kaplan, AOML/HRD

Operational and Statistical Prediction of Rapid Intensity Change. Mark DeMaria and Eric Blake, NCEP/NHC John Kaplan, AOML/HRD Operational and Statistical Prediction of Rapid Intensity Change Mark DeMaria and Eric Blake, NCEP/NHC John Kaplan, AOML/HRD Outline Evaluation of NHC forecasts and deterministic models for rapid intensification

More information

Impact of assimilating the VIIRS-based CrIS cloudcleared radiances on hurricane forecasts

Impact of assimilating the VIIRS-based CrIS cloudcleared radiances on hurricane forecasts Impact of assimilating the VIIRS-based CrIS cloudcleared radiances on hurricane forecasts Jun Li @, Pei Wang @, Jinlong Li @, Zhenglong Li @, Jung-Rim Lee &, Agnes Lim @, Timothy J. Schmit #, and Mitch

More information

An Evaluation of Dvorak Technique Based Tropical Cyclone Intensity Estimates

An Evaluation of Dvorak Technique Based Tropical Cyclone Intensity Estimates 1362 W E A T H E R A N D F O R E C A S T I N G VOLUME 25 An Evaluation of Dvorak Technique Based Tropical Cyclone Intensity Estimates JOHN A. KNAFF NOAA/NESDIS/Regional and Mesoscale Meteorology Branch,

More information

Satellite-Derived Winds in the U.S. Navy s Global NWP System: Usage and Data Impacts in the Tropics

Satellite-Derived Winds in the U.S. Navy s Global NWP System: Usage and Data Impacts in the Tropics Satellite-Derived Winds in the U.S. Navy s Global NWP System: Usage and Data Impacts in the Tropics Patricia Pauley 1, Rolf Langland 1, Rebecca Stone 2, and Nancy Baker 1 1 Naval Research Laboratory, Monterey,

More information

Atmospheric Motions Derived From Space Based Measurements: A Look To The Near Future. James F.W. Purdom

Atmospheric Motions Derived From Space Based Measurements: A Look To The Near Future. James F.W. Purdom Atmospheric Motions Derived From Space Based Measurements: A Look To The Near Future James F.W. Purdom Director, Office of Research and Applications NOAA/NESDIS 1. Introduction This short note addresses

More information

Florida State University Libraries

Florida State University Libraries Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2014 Estimate of Tropical Cyclone Parameters Based on Microwave Humidity Sounders Qi Shi Follow this

More information

Feature-tracked 3D Winds from Satellite Sounders: Derivation and Impact in Global Models

Feature-tracked 3D Winds from Satellite Sounders: Derivation and Impact in Global Models Feature-tracked 3D Winds from Satellite Sounders: Derivation and Impact in Global Models David Santek 1, A.-S. Daloz 1, S. Tushaus 1, M. Rogal 1, W. McCarty 2 1 Space Science and Engineering Center/University

More information

SIXTH INTERNATIONAL WORKSHOP on TROPICAL CYCLONES

SIXTH INTERNATIONAL WORKSHOP on TROPICAL CYCLONES WMO/CAS/WWW SIXTH INTERNATIONAL WORKSHOP on TROPICAL CYCLONES Topic 1a : Special focus session on: "Tutorial on the use of satellite data to define tropical cyclone structure". Rapporteur: C.S. Velden

More information

Comparative Study of Dvorak Analysis in the western North Pacific. Naohisa Koide and Shuji Nishimura Forecast Division, Japan Meteorological Agency

Comparative Study of Dvorak Analysis in the western North Pacific. Naohisa Koide and Shuji Nishimura Forecast Division, Japan Meteorological Agency Comparative Study of Dvorak Analysis in the western North Pacific Naohisa Koide and Shuji Nishimura Forecast Division, Japan Meteorological Agency 1. Introduction The United Nations Economic and Social

More information

NHC Ensemble/Probabilistic Guidance Products

NHC Ensemble/Probabilistic Guidance Products NHC Ensemble/Probabilistic Guidance Products Michael Brennan NOAA/NWS/NCEP/NHC Mark DeMaria NESDIS/STAR HFIP Ensemble Product Development Workshop 21 April 2010 Boulder, CO 1 Current Ensemble/Probability

More information

HIGH-RESOLUTION SATELLITE-DERIVED WIND FIELDS PE (035-71)

HIGH-RESOLUTION SATELLITE-DERIVED WIND FIELDS PE (035-71) HIGH-RESOLUTION SATELLITE-DERIVED WIND FIELDS PE 0602435 (035-71) Jeffrey D. Hawkins Naval Research Laboratory Monterey, CA 93943-5502 Ph (408) 656-4833/ Fax (408) 656-4769 hawkins@nrlmry.navy.mil LONG-TERM

More information

The Contribution of Locally Generated MTSat-1R Atmospheric Motion Vectors to Operational Meteorology in the Australian Region

The Contribution of Locally Generated MTSat-1R Atmospheric Motion Vectors to Operational Meteorology in the Australian Region The Contribution of Locally Generated MTSat-1R Atmospheric Motion Vectors to Operational Meteorology in the Australian Region John Le Marshall Director, JCSDA 2004-2007 CAWCR 2007-2008 J. Le Marshall,

More information

Study for utilizing high wind speed data in the JMA s Global NWP system

Study for utilizing high wind speed data in the JMA s Global NWP system Study for utilizing high wind speed data in the JMA s Global NWP system Masami Moriya Numerical Prediction Division, Japan Meteorological Agency (JMA) IOVWST Meeting, Portland, USA, 19-21 May 2015 1 Contents

More information

Assimilation of precipitation-related observations into global NWP models

Assimilation of precipitation-related observations into global NWP models Assimilation of precipitation-related observations into global NWP models Alan Geer, Katrin Lonitz, Philippe Lopez, Fabrizio Baordo, Niels Bormann, Peter Lean, Stephen English Slide 1 H-SAF workshop 4

More information

Satellite-Derived Tropical Cyclone Intensities and Structure Change (TCS-08 and ITOP)

Satellite-Derived Tropical Cyclone Intensities and Structure Change (TCS-08 and ITOP) DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Satellite-Derived Tropical Cyclone Intensities and Structure Change (TCS-08 and ITOP) Jeffrey D. Hawkins Naval Research

More information

Application of Satellite analysis in tropical cyclone of CMA

Application of Satellite analysis in tropical cyclone of CMA 2 nd International Workshop On Satellite Analysis of Tropical Cyclones (IWSATC-2) Satellite TC Analysis in Operations: Changes since IWSATC-1 17 February 2016 Honolulu, Hawaii, USA Application of Satellite

More information

SH RI Events. Influence From Patterns Of Different Scale

SH RI Events. Influence From Patterns Of Different Scale SH072014 RI Events Influence From Patterns Of Different Scale RI Explanation * Rapid intensification, approximately an increase of 2 Dvorak T-numbers or 30 knots in 24 hours, frequently occurs in JTWC

More information

A NEW SAR RETRIEVAL METHOD FOR HURRICANE WIND PARAMETERS

A NEW SAR RETRIEVAL METHOD FOR HURRICANE WIND PARAMETERS A NEW SAR RETRIEVAL METHOD FOR HURRICANE WIND PARAMETERS Antonio Reppucci, Susanne lehner, Johannes Schulz-Stellenfleth German Aerospace Center (DLR) Oberpfaffenhofen 82234 Wessling, Germany. Hurricane

More information

DA/Initialization/Ensemble Development Team Milestones and Priorities

DA/Initialization/Ensemble Development Team Milestones and Priorities DA/Initialization/Ensemble Development Team Milestones and Priorities Presented by Xuguang Wang HFIP annual review meeting Jan. 11-12, 2017, Miami, FL Fully cycled, self-consistent, dual-resolution, GSI

More information

SMAP Winds. Hurricane Irma Sep 5, AMS 33rd Conference on Hurricanes and Tropical Meteorology Ponte Vedra, Florida, 4/16 4/20, 2018

SMAP Winds. Hurricane Irma Sep 5, AMS 33rd Conference on Hurricanes and Tropical Meteorology Ponte Vedra, Florida, 4/16 4/20, 2018 Intensity and Size of Strong Tropical Cyclones in 2017 from NASA's SMAP L-Band Radiometer Thomas Meissner, Lucrezia Ricciardulli, Frank Wentz, Remote Sensing Systems, Santa Rosa, USA Charles Sampson, Naval

More information

Remotely Sensed Tropical Cyclone Structure/Intensity Changes

Remotely Sensed Tropical Cyclone Structure/Intensity Changes Remotely Sensed Tropical Cyclone Structure/Intensity Changes Jeffrey D. Hawkins Naval Research Laboratory Monterey, CA 93943-5502 (831) 656-4833, fax (831) 656-6006, hawkins@nrlmry.navy.mil Award #: N0001400WX20251

More information

An Overview of the UW Hyperspectral Retrieval System for AIRS, IASI and CrIS

An Overview of the UW Hyperspectral Retrieval System for AIRS, IASI and CrIS An Overview of the UW Hyperspectral Retrieval System for AIRS, IASI and CrIS Nadia Smith a, Elisabeth Weisz b and William L. Smith Cooperative Institute for Meteorological Satellite Studies (CIMSS) Space

More information

The warm-core structure of Super Typhoon Rammasun derived by FY-3C microwave temperature sounder measurements

The warm-core structure of Super Typhoon Rammasun derived by FY-3C microwave temperature sounder measurements ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. 17: 432 43 (21) Published online 22 June 21 in Wiley Online Library (wileyonlinelibrary.com) DOI: 1.12/asl.75 The warm-core structure of Super Typhoon Rammasun

More information

DERIVING ATMOSPHERIC MOTION VECTORS FROM AIRS MOISTURE RETRIEVAL DATA

DERIVING ATMOSPHERIC MOTION VECTORS FROM AIRS MOISTURE RETRIEVAL DATA DERIVING ATMOSPHERIC MOTION VECTORS FROM AIRS MOISTURE RETRIEVAL DATA David Santek 1, Sharon Nebuda 1, Christopher Velden 1, Jeff Key 2, Dave Stettner 1 1 Cooperative Institute for Meteorological Satellite

More information

P1.23 HISTOGRAM MATCHING OF ASMR-E AND TMI BRIGHTNESS TEMPERATURES

P1.23 HISTOGRAM MATCHING OF ASMR-E AND TMI BRIGHTNESS TEMPERATURES P1.23 HISTOGRAM MATCHING OF ASMR-E AND TMI BRIGHTNESS TEMPERATURES Thomas A. Jones* and Daniel J. Cecil Department of Atmospheric Science University of Alabama in Huntsville Huntsville, AL 1. Introduction

More information

The Transition of Atmospheric Infrared Sounder Total Ozone Products to Operations

The Transition of Atmospheric Infrared Sounder Total Ozone Products to Operations The Transition of Atmospheric Infrared Sounder Total Ozone Products to Operations Emily Berndt 1, Bradley Zavodsky 2, Gary Jedlovec 2 1 NASA Postdoctoral Program Marshall Space Flight Center, Huntsville,

More information

THE PHYSICAL processes associated with tropical cyclone

THE PHYSICAL processes associated with tropical cyclone 826 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 7, NO. 4, OCTOBER 2010 Detecting Tropical Cyclone Genesis From Remotely Sensed Infrared Image Data Miguel F. Piñeros, Elizabeth A. Ritchie, and J. Scott

More information

F O U N D A T I O N A L C O U R S E

F O U N D A T I O N A L C O U R S E F O U N D A T I O N A L C O U R S E December 6, 2018 Satellite Foundational Course for JPSS (SatFC-J) F O U N D A T I O N A L C O U R S E Introduction to Microwave Remote Sensing (with a focus on passive

More information

The assimilation of AMSU and SSM/I brightness temperatures in clear skies at the Meteorological Service of Canada

The assimilation of AMSU and SSM/I brightness temperatures in clear skies at the Meteorological Service of Canada The assimilation of AMSU and SSM/I brightness temperatures in clear skies at the Meteorological Service of Canada Abstract David Anselmo and Godelieve Deblonde Meteorological Service of Canada, Dorval,

More information

Tropical Cyclone Data Impact Studies: Influence of Model Bias and Synthetic Observations

Tropical Cyclone Data Impact Studies: Influence of Model Bias and Synthetic Observations Tropical Cyclone Data Impact Studies: Influence of Model Bias and Synthetic Observations C. Reynolds, R. Langland and P. Pauley, Naval Research Laboratory, Marine Meteorology Division, Monterey, CA C.

More information

Augmentation of Early Intensity Forecasting in Tropical Cyclones

Augmentation of Early Intensity Forecasting in Tropical Cyclones DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Augmentation of Early Intensity Forecasting in Tropical Cyclones J. Scott Tyo College of Optical Sciences University of

More information

Using satellite-based remotely-sensed data to determine tropical cyclone size and structure characteristics

Using satellite-based remotely-sensed data to determine tropical cyclone size and structure characteristics DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Using satellite-based remotely-sensed data to determine tropical cyclone size and structure characteristics PI: Elizabeth

More information

9A.2 Tropical Cyclone Satellite Tutorial Online Through The COMET Program

9A.2 Tropical Cyclone Satellite Tutorial Online Through The COMET Program 9A.2 Tropical Cyclone Satellite Tutorial Online Through The COMET Program Thomas F. Lee Steven D. Miller F. Joseph Turk Jeffrey D. Hawkins Naval Research Laboratory, Monterey CA Patrick Dills Sherwood

More information

STATUS ON THE USE OF SCATTEROMETER DATA AT METEO FRANCE

STATUS ON THE USE OF SCATTEROMETER DATA AT METEO FRANCE STATUS ON THE USE OF SCATTEROMETER DATA AT METEO FRANCE Christophe Payan Centre National de Recherches Météorologiques, M CNRS-GAME CNRS and Météo-France Toulouse, France 9th International Winds Workshop,

More information

ESTIMATION OF THE SEA SURFACE WIND IN THE VICINITY OF TYPHOON USING HIMAWARI-8 LOW-LEVEL AMVS

ESTIMATION OF THE SEA SURFACE WIND IN THE VICINITY OF TYPHOON USING HIMAWARI-8 LOW-LEVEL AMVS Proceedings for the 13 th International Winds Workshop 27 June - 1 July 2016, Monterey, California, USA ESTIMATION OF THE SEA SURFACE WIND IN THE VICINITY OF TYPHOON USING HIMAWARI-8 LOW-LEVEL AMVS Kenichi

More information

COMPARISON OF SIMULATED RADIANCE FIELDS USING RTTOV AND CRTM AT MICROWAVE FREQUENCIES IN KOPS FRAMEWORK

COMPARISON OF SIMULATED RADIANCE FIELDS USING RTTOV AND CRTM AT MICROWAVE FREQUENCIES IN KOPS FRAMEWORK COMPARISON OF SIMULATED RADIANCE FIELDS USING RTTOV AND CRTM AT MICROWAVE FREQUENCIES IN KOPS FRAMEWORK Ju-Hye Kim 1, Jeon-Ho Kang 1, Hyoung-Wook Chun 1, and Sihye Lee 1 (1) Korea Institute of Atmospheric

More information

Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs)

Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs) Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs) Howard Berger and Chris Velden Cooperative Institute for Meteorological

More information

Outline of 4 Lectures

Outline of 4 Lectures Outline of 4 Lectures 1. Sept. 17, 2008: TC best track definition and datasets, global distribution of TCs; Review of history of meteorological satellites, introducing different orbits, scanning patterns,

More information

ATMS- and AMSU-A-derived hurricane warm core structures using a modified retrieval algorithm

ATMS- and AMSU-A-derived hurricane warm core structures using a modified retrieval algorithm PUBLICATIONS Journal of Geophysical Research: Atmospheres RESEARCH ARTICLE Key Points: The three-dimensional global distributions of atmospheric temperatures can be retrieved from ATMS observations using

More information

Operational Rain Assimilation at ECMWF

Operational Rain Assimilation at ECMWF Operational Rain Assimilation at ECMWF Peter Bauer Philippe Lopez, Angela Benedetti, Deborah Salmond, Sami Saarinen, Marine Bonazzola Presented by Arthur Hou Implementation* SSM/I TB s 1D+4D-Var Assimilation:

More information

11A.1 PREDICTION OF TROPICAL CYCLONE TRACK FORECAST ERROR FOR HURRICANES KATRINA, RITA, AND WILMA

11A.1 PREDICTION OF TROPICAL CYCLONE TRACK FORECAST ERROR FOR HURRICANES KATRINA, RITA, AND WILMA 11A.1 PREDICTION OF TROPICAL CYCLONE TRACK FORECAST ERROR FOR HURRICANES KATRINA, RITA, AND WILMA James S. Goerss* Naval Research Laboratory, Monterey, California 1. INTRODUCTION Consensus tropical cyclone

More information

Application of Himawari-8 AHI Data to the GOES-R Rainfall Rate Algorithm

Application of Himawari-8 AHI Data to the GOES-R Rainfall Rate Algorithm Application of Himawari-8 AHI Data to the GOES-R Rainfall Rate Algorithm Yaping Li 1, Robert Kuligowski 2 and Yan Hao 1 1. IMSG at NOAA/NESDIS/STAR 2. NOAA/NESDIS/STAR, College Park, MD 1 GOES-R Baseline

More information

Detecting Tropical Cyclone Structural Change with the TRMM Precipitation Radar (PR) and Advanced Microwave Sounding Unit (AMSU)

Detecting Tropical Cyclone Structural Change with the TRMM Precipitation Radar (PR) and Advanced Microwave Sounding Unit (AMSU) Detecting Tropical Cyclone Structural Change with the TRMM Precipitation Radar (PR) and Advanced Microwave Sounding Unit (AMSU) Stephen R. Guimond 1 *, F. Joseph Turk 2, Clay B. Blankenship 2 and Jeffrey

More information

A NEW METHOD OF RETRIEVAL OF WIND VELOCITY OVER THE SEA SURFACE IN TROPICAL CYCLONES OVER THE DATA OF MICROWAVE MEASUREMENTS. A.F.

A NEW METHOD OF RETRIEVAL OF WIND VELOCITY OVER THE SEA SURFACE IN TROPICAL CYCLONES OVER THE DATA OF MICROWAVE MEASUREMENTS. A.F. A NEW METHOD OF RETRIEVAL OF WIND VELOCITY OVER THE SEA SURFACE IN TROPICAL CYCLONES OVER THE DATA OF MICROWAVE MEASUREMENTS A.F. Nerushev Institute of Experimental Meteorology. 82 Lenin Ave., Obninsk,

More information

The NASA TROPICS CubeSat Constellation Mission: Overview and Science Objectives

The NASA TROPICS CubeSat Constellation Mission: Overview and Science Objectives SSC17-VI-07 The NASA TROPICS CubeSat Constellation Mission: Overview and Science Objectives W. Blackwell, D. Burianek, K. Clark, D. Crompton, A. Cunningham, L. Fuhrman, P. Hopman, and S. Michael MIT Lincoln

More information

THE VALIDATION OF GOES-LI AND AIRS TOTAL PRECIPITABLE WATER RETRIEVALS USING GROUND-BASED MEASUREMENTS

THE VALIDATION OF GOES-LI AND AIRS TOTAL PRECIPITABLE WATER RETRIEVALS USING GROUND-BASED MEASUREMENTS THE VALIDATION OF GOES-LI AND AIRS TOTAL PRECIPITABLE WATER RETRIEVALS USING GROUND-BASED MEASUREMENTS Richard Dworak and Ralph A. Petersen Cooperative Institute for Meteorological Satellite Studies, University

More information

CIMSS Hyperspectral IR Sounding Retrieval (CHISR) Processing & Applications

CIMSS Hyperspectral IR Sounding Retrieval (CHISR) Processing & Applications CIMSS Hyperspectral IR Sounding Retrieval (CHISR) Processing & Applications Jun Li @, Elisabeth Weisz @, Jinlong Li @, Hui Liu #, Timothy J. Schmit &, Jason Otkin @ and many other CIMSS collaborators @Cooperative

More information

Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels

Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels MET 4994 Remote Sensing: Radar and Satellite Meteorology MET 5994 Remote Sensing in Meteorology Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels Before you use data from any

More information

The Impact of Satellite Atmospheric Motion Vectors in the U.S. Navy Global Data Assimilation System NWP Results

The Impact of Satellite Atmospheric Motion Vectors in the U.S. Navy Global Data Assimilation System NWP Results The Impact of Satellite Atmospheric Motion Vectors in the U.S. Navy Global Data Assimilation System NWP Results Nancy L. Baker 1, Rolf Langland 1, Patricia M. Pauley 1, Liang Xu 1, Dagmar Merkova 2,3,

More information

Analysis of an Observing System Experiment for the Joint Polar Satellite System

Analysis of an Observing System Experiment for the Joint Polar Satellite System Analysis of an Observing System Experiment for the Joint Polar Satellite System S. Lord, George Gayno 1 and Fanglin Yang 1 24 November 2015 1 I. M. Systems Group at NCEP/EMC 1 Outline The Joint Polar Satellite

More information

Assessment of AHI Level-1 Data for HWRF Assimilation

Assessment of AHI Level-1 Data for HWRF Assimilation Assessment of AHI Level-1 Data for HWRF Assimilation Xiaolei Zou 1 and Fuzhong Weng 2 1 Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 2 Satellite Meteorology

More information

Satellite data assimilation for Numerical Weather Prediction II

Satellite data assimilation for Numerical Weather Prediction II Satellite data assimilation for Numerical Weather Prediction II Niels Bormann European Centre for Medium-range Weather Forecasts (ECMWF) (with contributions from Tony McNally, Jean-Noël Thépaut, Slide

More information

The Status of NOAA/NESDIS Precipitation Algorithms and Products

The Status of NOAA/NESDIS Precipitation Algorithms and Products The Status of NOAA/NESDIS Precipitation Algorithms and Products Ralph Ferraro NOAA/NESDIS College Park, MD USA S. Boukabara, E. Ebert, K. Gopalan, J. Janowiak, S. Kidder, R. Kuligowski, H. Meng, M. Sapiano,

More information

A two-season impact study of the Navy s WindSat surface wind retrievals in the NCEP global data assimilation system

A two-season impact study of the Navy s WindSat surface wind retrievals in the NCEP global data assimilation system A two-season impact study of the Navy s WindSat surface wind retrievals in the NCEP global data assimilation system Li Bi James Jung John Le Marshall 16 April 2008 Outline WindSat overview and working

More information

Comments by William M. Gray (Colorado State University) on the recently published paper in Science by Webster, et al

Comments by William M. Gray (Colorado State University) on the recently published paper in Science by Webster, et al Comments by William M. Gray (Colorado State University) on the recently published paper in Science by Webster, et al., titled Changes in tropical cyclone number, duration, and intensity in a warming environment

More information