High-Resolution RUC CAPE Values and Their Relationship to Right Turning Supercells

Size: px
Start display at page:

Download "High-Resolution RUC CAPE Values and Their Relationship to Right Turning Supercells"

Transcription

1 High-Resolution RUC CAPE Values and Their Relationship to Right Turning Supercells ANDREW H. MAIR Meteorology Program, Iowa State University, Ames, IA Mentor: Dr. William A. Gallus Jr. Department of Geological and Atmospheric Sciences Iowa State University, Ames, IA ABSTRACT Supercell movement is very important to severe weather prediction. Without knowing the direction a supercell will turn forecasting where one will go and how to issue warnings becomes much more difficult. In this study, data were collected from supercells during June 2008 across the United States. The 13 km high resolution RUC model was used to find a relationship between turning supercells and CAPE. The results show that CAPE values decrease 1-2 hours before a supercell right turns. The results also show that supercells that turn have a high CAPE value before compared to supercells that maintained a straight path. 1. Introduction Supercell movement is very important to severe weather prediction. Surprisingly very little research has been conducted on right turning supercells. Most of the research has focused on the new direction a supercell would travel rather than when the cell will turn. The focus of this research is to try to find a link between when a supercell right turns with CAPE values. CAPE stands for convective available potential energy, which means how much energy is available for convection when a parcel is lifted through the atmosphere. My original hypothesis formed was a supercell will become a right turning supercell due to mesocyclone strengthening. Therefore, CAPE should increase when a supercell right turns because CAPE has been show to strengthen the mesocyclone. Most supercell research seems to be focused on the degree to which a supercell will right turn rather than when it will turn. The most current method of determining right turning supercell movement is Bunkers et al. (1999) hodograph technique. In this method, the supercell movement is determined by looking at the hodograph and calculating the motion the storm will take if it right turns (Bunkers et al. 1999). There are a few older methods for predicting supercell motion, but Bunkers et al. (1999) research is the most up-to-date and statistically the most accurate theory for supercell motion. his newest theory is more accurate. The previous method focused on calculating the mean wind, followed by decreasing the speed by 25% and the motion changing 30 degrees (Maddox, 1975). Another older method involves calculating the mass flux between the updraft and downdraft of the storm (Colquhoun, 1980). What makes supercell motions very hard to predict is that right turning

2 supercells tend to go against the mean flow of the winds (Keer and Darkow, 1995). It has been observed in the meteorology community that nonsupercell storms move with the mean flow of the storm. However, storms that are stronger and live longer tend to turn to the right of the mean wind and slow down, this is where the term right turner comes from. Very little research has actually been covered on the timing of supercell turning. No current method exists for determining the timing of a storm turning. Most, if not all, of the techniques for supercell motion discussed tend to focus on the radiosonde and hodograph. This is not useful when trying to determine when a supercell will right turn due to the limited areas of where radiosondes are released. A factor that may affect a supercell right turning is the cold pool (Bunkers et al. 1999). There are also outside influences on a supercell and right turning, such as orography (Bunkers et al. 1999). Bunker s paper states that this may have a large influence on supercell movement because of the increased or decreased convergence caused on the leeward and windward side of mountains. Storms have been witnessed to stall or redevelop causing difficulty on supercell motion (Bunkers et al. 1999). 2. Data and methods Data was collected from June June was chosen because it was the most active month during the 2008 season. Data from only one year was looked at to ensure no change in resolution of the RUC analysis occurred. In order to find cases that fit the study, storm reports and reflectivity data were observed from the UCAR image archive. Data were selected when storm reports showed a tornado report and showed supercell characteristics on the radar image archive. Gibson Ridge Level 2 Analyst Edition radar files were then downloaded from NCDC. Using Gibson Ridge, latitude and longitude were recorded every half hour. Data was collected from anywhere in the United States, however, most of the data came from the central plains, where a total of 82 cases were collected with 54 supercells that followed a straight path and 28 cases that right turned. a. Storm initiation and dissipation In order for the storm to be initialized, radar reflectivity must show a return of at least 40 dbz. The storm was then followed until dissipation, which was when reflectivity returned below 40 dbz, or when the supercell becomes merged with another storm. Data was recorded for both storms that turn and storms that follow a straight vector. b. Track and turning In order to determine if a storm turns or if it is considered to be moving straight, a 20 turn from its current vector must be observed in the storm. Normal convention for supercells turning is a 30 turn, but 20 was used to account for errors in storm location. Also, errors in latitude and longitude caused by being distant to the radar can have an effect on correct supercell locations. Storm motions were calculated by using the GR2 Analyst storm motion tool. The storm was observed and where it appears to make a turn storm motion was calculated before and after and then compared. If a 20 turn in direction was observed then the storm is considered right turning. c. Collecting CAPE values In order to collect CAPE values, files were downloaded from the NCDC NOMADS site. The files were then converted and analyzed in Grads. Using 13 km high resolution RUC output CAPE values were recorded for the supercell at its current latitude and longitude on the hour. When collecting a CAPE value on the half hour, CAPE values were recorded for the hour before and the hour after and then averaged to obtain an interpolated CAPE value for that location. Surface based CAPE was used due to supercells being relatively low in the atmosphere and surface based CAPE would have the largest impact in a developed supercell. d. Statistical Analysis Storms were separated by those that turned and those that stayed on a straight path. Averages were then calculated and then

3 compared. A comparison was made between CAPE in the first hour of a storm s life and the last hour for both right turners and straight storms. June 7 th and 18 th were looked at for individual case patterns for individual storm data. June 7 th and 18 th were selected due to the largest amount of individual storms during June a supercell s life. However, when looking at individual storms, CAPE values fluctuate widely and change differently. 3. Observational Trends For this study, CAPE was observed for all supercells that either maintained a straight path or storms that made a right turn. A right turn is defined for this study as a turn to the right of the storm vector of at least 20. a. Non-Turning Supercell Trends For a supercell to be considered a nonturner, it has to have a storm vector that did not deviate to the right more than 20. Left turning storms were ignored for this study, so all non turning supercells maintained a straight path. Overall, data from non-turning supercells was very diverse. Some supercells had very low CAPE values while others had over 4000 J/kg of CAPE. As shown in Figures 1 and 2, even when only looking at data from one day, values are very diverse. Figure 2. CAPE values of non turning supercells from June 18 th 2008, throughout the day. b. Right Turning Supercell Trends Trends for right turning supercells are much more apparent than non-turners. As seen in Figure 3, CAPE values are much larger for the first 2 hours of a storm s life and then begin to fall approximately 2 hours before the storm right turns. After right turning, the supercells CAPE remains almost constant. Figure 1. CAPE values of non turning supercells from June 7 th 2008, throughout the day. On average, when a non-turner initializes, CAPE values are around 1351 J/kg, and when they dissipate they have a cape around 1215 J/kg, resulting in a 136 J/kg CAPE drop through Figure 3. CAPE values of turning supercells in June Storms were lined up so that all right turning occurred at the same time on the plots. Values for right turners are still very diverse as to be expected, but trends definitely show the values decreasing as the storm gets close to making its turn. Figure 4 shows box plots of the

4 values for every right turning supercell observed. As can be seen in figure 3, the straight line is the average CAPE throughout every recorded value. The varying blue line shows the average CAPE for that time period. As the storm develops, the values stay above the average, but as the storm gets closer to right turning, the values drop below the average. The values never return until the very end of storms lifetime. The last value can be seen as negligible due to very sparse data being recorded 4 hours after a storm right turned. The average CAPE value for initiation of right turners is 1953 J/kg, while at dissipation the average was CAPE was 1220 J/kg. CAPE at the time of turning was approximately 1525 J/kg. Thus, right turning supercells experienced an average CAPE drop of 733 J/kg, and on average 428 J/kg occurred before making a right turn. By looking at Figures 3 and 4, most of the CAPE dropped approximately 2 hours before turning. Figure 5. Shows the CAPE values of right turning supercells from June 7 th All storms are shown so that right turning takes place at the same time on each storm. In Figure 6, a similar trend appears. On 2 of the 3 storms, the CAPE decreased before the storm right turned. The supercell that did not have a CAPE drop before turning does, however, show a CAPE decrease after. Figure 4. CAPE values of all turning supercells in June Also, displays box plots to show variability in data. The linear light blue line is the average for all data collected, and the black line is the mean for that time period collected. Individual plots were also looked at for individual storm trends. Figure 5 shows all right turning supercells for June 7 th. Of the 5 right turning storms observed that day, 4 of the 5 decreased in CAPE approximately 1 to 2 hours before turning, showing consistency with the averaged values obtained. Figure 6. CAPE values of right turning supercells from June 18 th, All storms are shown so that right turning takes place at the same time on each storm. One possible reason CAPE decreases during right turning supercells is the diurnal cycle of CAPE each day. Figure 7 shows this cycle from a few cities during clear sky events in June. From Figure 7, it can be seen that CAPE values don t begin to fall until 0z. CAPE also tends to max out around 19z. Of the 28 right turning supercells observed 22 of them turned before 0z.

5 Figure 7. Diurnal cycle of CAPE change by hour. Data collected was from clear skies in 4 cities near most supercells. Data was also collected from June 7 th, in an area that experienced clear skies that day. Statistical analysis was performed in Figure 8 showing a projected change in CAPE 1 hour before turning until turn time. Confidence intervals were used and show the statistical odds of a right turning supercell that is identical to the ones collected having a change of CAPE in the range given. Figure 8. Confidence test of projected CAPE change from 1 hour before right turning until time of turn. A T-test was also performed on the orgininal hypothesis and the null hypothesis was unable to be rejected. Therefore, this does not support the original hyothesis of supercells gaining CAPE when right turning. 4. Comparisons of Turning and non Turning Supercells Right turning supercells show a much more organized pattern of CAPE tendencies than nonturning supercells (see Figures 1 and 2). Nonturning supercells seem to fluctuate largely compared to turning supercells. Figure 9. Average CAPE values for both turning and non turning supercells for the first 1.5 hours past initialization and the last 1.5 hours until dissipation. In Figure 9, you can see that right turning supercells on average had much higher CAPE values to begin with and tend to fall throughout the storms life. When looking at non-turning supercells, the CAPE values seem to consistently fluctuate throughout the storms life. Therefore, right turning supercells tend to have a much larger drop in CAPE compared to nonturning supercells. Although when looking at individual storms, many non right turning supercells showed a CAPE drop during the storms life, shown in Figures 1 and 2. Thus, concluding that a CAPE drop only occurs in right turning supercells cannot be made. However, 19 of 27 right turning supercells did show a CAPE drop before turning. One common trend that can be observed when comparing Figures 1 and 2 to 5 and 6, is how much more consistent right turning supercells are compared to non-turners. Most values on each cell do not change more than 1000 J/kg of CAPE. However, when looking at Figures 1 and 2, the CAPE values changes drastically over a short time period and have less stable CAPE values.

6 Figure 10. Averaged data from June 7 th, Data was averaged for turning supercells before turning, turning supercells after turning, and non turning supercells. Figure 10 shows a trend that can be observed. CAPE values before the supercell right turns are higher than non right turning supercells, but when looking at post-storm turning CAPE, CAPE values seems to become much smaller. At the end of the time period the values seem to begin to move in unison and decrease at the same rate. This would indicate that the whole atmosphere is beginning to become more stable and that CAPE values are falling consistently. It can be concluded that supercells that turn tend to have higher CAPE values before turning. This trend can also be observed in Figures 9 and 10 where CAPE values are much higher in turning supercells compared to non-turning supercells. The average CAPE value of the first hour of right turning supercells is 1927 J/kg, while nonturning supercells only averaged 1315 J/kg. So as a result right turning supercells averaged 612 J/kg of CAPE more than non turning supercells. 5. Conclusion Based on the dates shown above, it can be seen that right turning supercells tend to initialize with higher CAPE values and approximately 1 to 2 hours before turning, tend to show falling CAPE values. The CAPE values after the storm turns tend to be even lower than the CAPE of non-turning supercells. Unfortunately, many individual cases of non turning supercells show CAPE values in the same range as turning supercells. As a result, it cannot be concluded that all turning supercells show higher CAPE values all the time, but rather frequently have larger values. Non turning supercells tend to not show any consistent pattern with CAPE values. They tend to fluctuate much more than that of right turning supercells which indicates that other parameters need to be considered. My original hypothesis seems to be the opposite of what was observed. My original hypothesis was that CAPE values would rise when a supercell right turns. The direct opposite seems to have occurred. Turning supercells seem to lose CAPE approximately an hour to 2 hours before turning. Further research needs to be done on other parameters that strengthen a supercell s mesocyclone. In particular, helicity or other wind fields that assist in strengthening a mesocyclone. 6. Acknowledgements I would like to thank Dr.Gallus for his assistance on this project. I would also like to thank Jeff Duda for his help on running and using Grads, as well as Dave Flory for some procedure assistance, Justin Schultz for his guidance, and Ryan Alliss for statistical analysis. REFERENCES Brandes, 1977: Mesocyclone Evolution and Tornadogenesis: Some Observations. Monthly Weather Review 106, Bunkers, Klimowski, Zeitler, Thompson, and Weisman: Predicting Supercell Motion Using a New Hodograph Technique. Weather and forecasting 15, Colquhoun, J. R., 1980: A method of estimating the velocity of a severe thunderstorm using the vertical wind profile in the storm s environment. Eighth Conf. on Weather Forecasting and Analysis,

7 Denver, CO, Amer. Meteor. Soc., Donaldson, and Desrochers 1989: Improvement of Tornado Warnings by Doppler Radar Measurement of Mesocyclone Rotational Kinetic Energy. Weather and forecasting 5, Kerr, and Darkow, 1996: Storm-Relative Winds and Helicity in the Tornadic Thunderstorm Environment. Weather and forecasting 11, Maddox, 1976: An Evaluation of Tornado Proximity Wind and Stability Data. Monthly Weather Review 104, Richard, and Edwards, 2000: An Overview of Environmental Conditions and Forecast Implications of the 3 May 1999 Tornado Outbreak. Weather and forecasting 15,

Comparison of Estimated and Observed Storm Motions to Environmental Parameters

Comparison of Estimated and Observed Storm Motions to Environmental Parameters Comparison of Estimated and Observed Storm Motions to Environmental Parameters Eric Beamesderfer 1, 2, 3, 4, Kiel Ortega 3, 4, Travis Smith 3, 4, and John Cintineo 4, 5 1 National Weather Center Research

More information

Storm-Relative Flow and its Relationship to Low-Level Vorticity in Simulated Storms

Storm-Relative Flow and its Relationship to Low-Level Vorticity in Simulated Storms TH CONF. ON SEVERE LOCAL STORMS, 15. 1 Storm-Relative Flow and its Relationship to Low-Level Vorticity in Simulated Storms Cody Kirkpatrick University of Alabama in Huntsville Eugene W. McCaul, Jr. Universities

More information

Boundary-layer Decoupling Affects on Tornadoes

Boundary-layer Decoupling Affects on Tornadoes Boundary-layer Decoupling Affects on Tornadoes Chris Karstens ABSTRACT The North American low-level jet is known to have substantial impacts on the climatology of central and eastern regions of the United

More information

P3.17 THE DEVELOPMENT OF MULTIPLE LOW-LEVEL MESOCYCLONES WITHIN A SUPERCELL. Joshua M. Boustead *1 NOAA/NWS Weather Forecast Office, Topeka, KS

P3.17 THE DEVELOPMENT OF MULTIPLE LOW-LEVEL MESOCYCLONES WITHIN A SUPERCELL. Joshua M. Boustead *1 NOAA/NWS Weather Forecast Office, Topeka, KS P3.17 THE DEVELOPMENT OF MULTIPLE LOW-LEVEL MESOCYCLONES WITHIN A SUPERCELL Joshua M. Boustead *1 NOAA/NWS Weather Forecast Office, Topeka, KS Philip N. Schumacher NOAA/NWS Weather Forecaster Office, Sioux

More information

Storm-Relative Flow and its Relationship to Low-Level Vorticity in Simulated Storms

Storm-Relative Flow and its Relationship to Low-Level Vorticity in Simulated Storms TH CONF. ON SEVERE LOCAL STORMS, 15. 1 Storm-Relative Flow and its Relationship to Low-Level Vorticity in Simulated Storms Cody Kirkpatrick University of Alabama in Huntsville Eugene W. McCaul, Jr. Universities

More information

Boundary layer Decoupling Affects on Tornadoes. Chris Karstens Meteorology 507 May 6, 2008

Boundary layer Decoupling Affects on Tornadoes. Chris Karstens Meteorology 507 May 6, 2008 Boundary layer Decoupling Affects on Tornadoes Chris Karstens Meteorology 507 May 6, 2008 Outline Background Motivation Methodology Results Conclusions References Questions Blackadar (1957). Background

More information

Tornado Probabilities Derived from Rapid Update Cycle Forecast Soundings

Tornado Probabilities Derived from Rapid Update Cycle Forecast Soundings Tornado Probabilities Derived from Rapid Update Cycle Forecast Soundings Zachary M. Byko National Weather Center Research Experiences for Undergraduates, and The Pennsylvania State University, University

More information

Thermodynamics and Tornado Prediction. Tierney Dillon, Alex Lopez, Paddy Halloran. CAM Summer Research Summary Report August 31, 2015

Thermodynamics and Tornado Prediction. Tierney Dillon, Alex Lopez, Paddy Halloran. CAM Summer Research Summary Report August 31, 2015 Thermodynamics and Tornado Prediction Tierney Dillon, Alex Lopez, Paddy Halloran CAM Summer Research Summary Report August 31, 2015 Advisors: Misha Shvartsman and Pavel Bělík 1 Introduction and Problem

More information

Tornadogenesis in Supercells: The Three Main Ingredients. Ted Funk

Tornadogenesis in Supercells: The Three Main Ingredients. Ted Funk Tornadogenesis in Supercells: The Three Main Ingredients Ted Funk NWS Louisville, KY Spring 2002 Environmental Parameters Supercells occur within environments exhibiting several wellknown characteristics

More information

Deep Cyclone and rapid moving severe weather event of 5-6 June 2010 By Richard H. Grumm National Weather Service Office State College, PA 16803

Deep Cyclone and rapid moving severe weather event of 5-6 June 2010 By Richard H. Grumm National Weather Service Office State College, PA 16803 Deep Cyclone and rapid moving severe weather event of 5-6 June 2010 By Richard H. Grumm National Weather Service Office State College, PA 16803 1. INTRODUCTION A rapidly deepening surface cyclone raced

More information

Chapter 14 Thunderstorm Fundamentals

Chapter 14 Thunderstorm Fundamentals Chapter overview: Thunderstorm appearance Thunderstorm cells and evolution Thunderstorm types and organization o Single cell thunderstorms o Multicell thunderstorms o Orographic thunderstorms o Severe

More information

Supercells. Base lecture and Graphics created by The COMET Program May University Corporation for Atmospheric Research

Supercells. Base lecture and Graphics created by The COMET Program May University Corporation for Atmospheric Research Supercells Base lecture and Graphics created by The COMET Program May 2002 University Corporation for Atmospheric Research Objective To be able to forecast and better recognize supercell storms in all

More information

P PRELIMINARY ANALYSIS OF THE 10 JUNE 2010 SUPERCELLS INTERCEPTED BY VORTEX2 NEAR LAST CHANCE, COLORADO

P PRELIMINARY ANALYSIS OF THE 10 JUNE 2010 SUPERCELLS INTERCEPTED BY VORTEX2 NEAR LAST CHANCE, COLORADO P12.164 PRELIMINARY ANALYSIS OF THE 10 JUNE 2010 SUPERCELLS INTERCEPTED BY VORTEX2 NEAR LAST CHANCE, COLORADO 1. INTRODUCTION An outstanding question in the field of severe storms research is why some

More information

Evolution and Maintenance of the June 2003 Nocturnal Convection

Evolution and Maintenance of the June 2003 Nocturnal Convection Evolution and Maintenance of the 22-23 June 2003 Nocturnal Convection Jerilyn Billings NOAA/NWS Wichita, KS August 6 th, 2011 Work Completed at North Carolina State University for MS Thesis During the

More information

Using the Golden Ratio as a Model for Tornadogenesis. George McGivern Brad Walton Dr. Mikhail Shvartsman

Using the Golden Ratio as a Model for Tornadogenesis. George McGivern Brad Walton Dr. Mikhail Shvartsman Using the Golden Ratio as a Model for Tornadogenesis George McGivern Brad Walton Dr. Mikhail Shvartsman 1. Introduction: Intro to tornadoes and tornado forecasting. Problem and Goals: The main problems

More information

11A.2 Forecasting Short Term Convective Mode And Evolution For Severe Storms Initiated Along Synoptic Boundaries

11A.2 Forecasting Short Term Convective Mode And Evolution For Severe Storms Initiated Along Synoptic Boundaries 11A.2 Forecasting Short Term Convective Mode And Evolution For Severe Storms Initiated Along Synoptic Boundaries Greg L. Dial and Jonathan P. Racy Storm Prediction Center, Norman, Oklahoma 1. Introduction

More information

SIMULATED EFFECTS OF AN ISOLATED SUPERCELL ON THE EVOLUTION OF A NEARBY SQUALL LINE

SIMULATED EFFECTS OF AN ISOLATED SUPERCELL ON THE EVOLUTION OF A NEARBY SQUALL LINE 5.55 SIMULATED EFFECTS OF AN ISOLATED SUPERCELL ON THE EVOLUTION OF A NEARBY SQUALL LINE Jacey Wipf* and Adam French South Dakota School of Mines and Technology 1. INTRODUCTION 2. METHODOLOGY Operational

More information

Thunderstorm Dynamics. Helicity and Hodographs and their effect on thunderstorm longevity. Bluestein Vol II. Page

Thunderstorm Dynamics. Helicity and Hodographs and their effect on thunderstorm longevity. Bluestein Vol II. Page Thunderstorm Dynamics Helicity and Hodographs and their effect on thunderstorm longevity Bluestein Vol II. Page471-476. Dowsell, 1991: A REVIEW FOR FORECASTERS ON THE APPLICATION OF HODOGRAPHS TO FORECASTING

More information

NOTES AND CORRESPONDENCE. Characteristics of Vertical Wind Profiles near Supercells Obtained from the Rapid Update Cycle

NOTES AND CORRESPONDENCE. Characteristics of Vertical Wind Profiles near Supercells Obtained from the Rapid Update Cycle 1262 WEATHER AND FORECASTING NOTES AND CORRESPONDENCE Characteristics of Vertical Wind Profiles near Supercells Obtained from the Rapid Update Cycle PAUL MARKOWSKI, CHRISTINA HANNON, JEFF FRAME, ELISE

More information

Tool for Storm Analysis Using Multiple Data Sets

Tool for Storm Analysis Using Multiple Data Sets Tool for Storm Analysis Using Multiple Data Sets Robert M. Rabin 1,2 and Tom Whittaker 2 1 NOAA/National Severe Storms Laboratory, Norman OK 73069, USA 2 Cooperative Institute for Meteorological Satellite

More information

WARM SECTOR TORNADOES WITHOUT DISCERNIBLE SURFACE BOUNDARIES AND WITH MINIMAL DEEP LAYER SHEA

WARM SECTOR TORNADOES WITHOUT DISCERNIBLE SURFACE BOUNDARIES AND WITH MINIMAL DEEP LAYER SHEA 2.1 WARM SECTOR TORNADOES WITHOUT DISCERNIBLE SURFACE BOUNDARIES AND WITH MINIMAL DEEP LAYER SHEA * Joshua M. Boustead and Philip N. Schumacher National Weaer Service Sioux Falls, SD 1. INTRODUCTION On

More information

P10.4 EXAMINATION OF TORNADIC AND NON-TORNADIC SUPERCELLS IN SOUTHWEST VIRGINIA ON 28 APRIL 2002

P10.4 EXAMINATION OF TORNADIC AND NON-TORNADIC SUPERCELLS IN SOUTHWEST VIRGINIA ON 28 APRIL 2002 P10.4 EXAMINATION OF TORNADIC AND NON-TORNADIC SUPERCELLS IN SOUTHWEST VIRGINIA ON 28 APRIL 2002 Steve Keighton*, Kenneth Kostura, and Chris Liscinsky NOAA/National Weather Service Blacksburg, VA 1. INTRODUCTION

More information

Illustrating Predictability for Nocturnal Tornado Events in the Southeastern United States

Illustrating Predictability for Nocturnal Tornado Events in the Southeastern United States 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 Illustrating Predictability for Nocturnal Tornado Events in the Southeastern United States

More information

Environmental factors influential to the duration and intensity of tornadoes in simulated supercells

Environmental factors influential to the duration and intensity of tornadoes in simulated supercells GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl053041, 2012 Environmental factors influential to the duration and intensity of tornadoes in simulated supercells Jason Naylor 1 and Matthew S.

More information

Hurricane and Tropical Cyclone Tornado Environments from RUC Proximity Soundings

Hurricane and Tropical Cyclone Tornado Environments from RUC Proximity Soundings P8.1 Hurricane and Tropical Cyclone Tornado Environments from RUC Proximity Soundings Jonathan M. Davies* Private Meteorologist, Wichita, Kansas 1. Introduction Studies such as those by McCaul (1991, 1996)

More information

10.2 TORNADIC MINI-SUPERCELLS IN NORTHERN CANADA

10.2 TORNADIC MINI-SUPERCELLS IN NORTHERN CANADA 10.2 TORNADIC MINI-SUPERCELLS IN NORTHERN CANADA Patrick J. McCarthy*, Sandra Massey Prairie and Arctic Storm Prediction Centre Meteorological Service of Canada Dave Patrick Hydrometeorological and Arctic

More information

Weather Systems III: Thunderstorms and Twisters

Weather Systems III: Thunderstorms and Twisters Weather Systems III: Thunderstorms and Twisters Review 1. Definition of airmasses? Bergeron classification of air masses 2. Surface weather analysis: Station model, wind speed code, present weather 3.

More information

P1.13 GROUND BASED REMOTELY SENSED HIGH TEMPORAL RESOLUTION STABILITY INDICES ASSOCIATED WITH SOUTHERN GREAT PLAINS TORNADO OUTBREAKS

P1.13 GROUND BASED REMOTELY SENSED HIGH TEMPORAL RESOLUTION STABILITY INDICES ASSOCIATED WITH SOUTHERN GREAT PLAINS TORNADO OUTBREAKS P1.13 GROUND BASED REMOTELY SENSED HIGH TEMPORAL RESOLUTION STABILITY INDICES ASSOCIATED WITH SOUTHERN GREAT PLAINS TORNADO OUTBREAKS Timothy J. Wagner*, Wayne F. Feltz, Ralph Petersen, Steven A. Ackerman

More information

Jonathan M. Davies* Private Meteorologist, Wichita, Kansas

Jonathan M. Davies* Private Meteorologist, Wichita, Kansas 4.3 RUC Soundings with Cool Season Tornadoes in Small CAPE Settings and the 6 November 2005 Evansville, Indiana Tornado Jonathan M. Davies* Private Meteorologist, Wichita, Kansas 1. Introduction Several

More information

Analysis of Severe Storm Initiation Along Drylines in the Southern Plains

Analysis of Severe Storm Initiation Along Drylines in the Southern Plains Analysis of Severe Storm Initiation Along Drylines in the Southern Plains NICOLE L. BARBEE Meteorology Program, Iowa State University, Ames Mentor: Dr. William Gallus 1 1 Department of Geological and Atmospheric

More information

Short-term Forecasts of Left-Moving Supercells from an Experimental Warn-on-Forecast System

Short-term Forecasts of Left-Moving Supercells from an Experimental Warn-on-Forecast System Jones, T. A., and C. Nixon, 2017: Short-term forecasts of left-moving supercells from an experimental Warn-on-Forecast system. J. Operational Meteor., 5 (13), 161-170, doi: https://doi.org/10.15191/nwajom.2017.0513

More information

Solutions to Comprehensive Final Examination Given on Thursday, 13 December 2001

Solutions to Comprehensive Final Examination Given on Thursday, 13 December 2001 Name & Signature Dr. Droegemeier Student ID Meteorology 1004 Introduction to Meteorology Fall, 2001 Solutions to Comprehensive Final Examination Given on Thursday, 13 December 2001 BEFORE YOU BEGIN!! Please

More information

1. INTRODUCTION GSP Dr, Greer, SC tropical cyclones. 1 This study did not include tornadoes associated with

1. INTRODUCTION GSP Dr, Greer, SC tropical cyclones. 1 This study did not include tornadoes associated with 4.5 OBSERVATIONS OF A NON-SUPERCELL TORNADIC THUNDERSTORM FROM A TERMINAL DOPPLER WEATHER RADAR Justin D. Lane * and Patrick D. Moore NOAA/National Weather Service Greer, SC 1. INTRODUCTION Despite numerous

More information

P1.1 EXAMINING PRECONVECTIVE HEAVY RAINFALL ENVIRONMENTS UTILIZING OBSERVATIONAL AND MODEL ANALYSIS PROXIMITY SOUNDINGS

P1.1 EXAMINING PRECONVECTIVE HEAVY RAINFALL ENVIRONMENTS UTILIZING OBSERVATIONAL AND MODEL ANALYSIS PROXIMITY SOUNDINGS P1.1 EXAMINING PRECONVECTIVE HEAVY RAINFALL ENVIRONMENTS UTILIZING OBSERVATIONAL AND MODEL ANALYSIS PROXIMITY SOUNDINGS Michael J. Paddock and Charles E. Graves Saint Louis University, St. Louis, Missouri

More information

Ray Wolf * NOAA / National Weather Service Davenport (Quad Cities), Iowa 3. CASES

Ray Wolf * NOAA / National Weather Service Davenport (Quad Cities), Iowa 3. CASES 8B.4 ANALYSIS OF CELL MERGERS LEADING TO TORNADOGENESIS USING 3D RENDERED RADAR IMAGERY Ray Wolf * NOAA / National Weather Service Davenport (Quad Cities), Iowa 1. INTRODUCTION Convective cell mergers

More information

Investigation of Supercells in China : Environmental and Storm Characteristics

Investigation of Supercells in China : Environmental and Storm Characteristics 11A.6 Investigation of Supercells in China : Environmental and Storm Characteristics Xiaoding Yu Xiuming Wang Juan Zhao Haiyan Fei ( China Meteorological Administration Training Center) Abstract Based

More information

Test Form: A Key Final Exam: Spring 2011

Test Form: A Key Final Exam: Spring 2011 Test Form: A Key Final Exam: Spring 2011 Instructions: Write your name (last name and first name) on your bubble sheet. Write your student identification number on the bubble sheet, and carefully and completely

More information

A COMPREHENSIVE 5-YEAR SEVERE STORM ENVIRONMENT CLIMATOLOGY FOR THE CONTINENTAL UNITED STATES 3. RESULTS

A COMPREHENSIVE 5-YEAR SEVERE STORM ENVIRONMENT CLIMATOLOGY FOR THE CONTINENTAL UNITED STATES 3. RESULTS 16A.4 A COMPREHENSIVE 5-YEAR SEVERE STORM ENVIRONMENT CLIMATOLOGY FOR THE CONTINENTAL UNITED STATES Russell S. Schneider 1 and Andrew R. Dean 1,2 1 DOC/NOAA/NWS/NCEP Storm Prediction Center 2 OU-NOAA Cooperative

More information

P12.7 MESOCYCLONE AND RFD INDUCED DAMAGING WINDS OBSERVED IN THE 27 MAY 2004 SOUTHWEST OHIO SUPERCELL

P12.7 MESOCYCLONE AND RFD INDUCED DAMAGING WINDS OBSERVED IN THE 27 MAY 2004 SOUTHWEST OHIO SUPERCELL P12.7 MESOCYCLONE AND RFD INDUCED DAMAGING WINDS OBSERVED IN THE 27 MAY 2004 SOUTHWEST OHIO SUPERCELL John T. DiStefano* National Weather Service Office, Wilmington, Ohio 1. INTRODUCTION During the early

More information

QUASI-LINEAR CONVECTIVE SYSTEMS

QUASI-LINEAR CONVECTIVE SYSTEMS 3A.5 A STUDY OF THE PRE-STORM ENVIRONMENT OF TORNADIC QUASI-LINEAR CONVECTIVE SYSTEMS Elaine Savageau Godfrey University of Oklahoma, Norman, Oklahoma Robert J. Trapp Purdue University, West Lafayette,

More information

Thunderstorm: a cumulonimbus cloud or collection of cumulonimbus clouds featuring vigorous updrafts, precipitation and lightning

Thunderstorm: a cumulonimbus cloud or collection of cumulonimbus clouds featuring vigorous updrafts, precipitation and lightning Thunderstorm: a cumulonimbus cloud or collection of cumulonimbus clouds featuring vigorous updrafts, precipitation and lightning Thunderstorms are responsible for most of what we refer to as severe weather,

More information

P12.14 A SOUNDING-DERIVED CLIMATOLOGY OF SIGNIFICANT TORNADO EVENTS IN THE GREENVILLE-SPARTANBURG, SOUTH CAROLINA COUNTY WARNING AREA ( )

P12.14 A SOUNDING-DERIVED CLIMATOLOGY OF SIGNIFICANT TORNADO EVENTS IN THE GREENVILLE-SPARTANBURG, SOUTH CAROLINA COUNTY WARNING AREA ( ) P12.14 A SOUNDING-DERIVED CIMATOOGY OF SIGNIFICANT TORNADO EVENTS IN THE GREENVIE-SPARTANBURG, SOUTH CAROINA COUNTY WARNING AREA (1948-26) Justin D. ane* NOAA/National Weather Service Greer, South Carolina

More information

4/18/2010. National Weather Service. Severe Weather Forecasting: A Western North Carolina Case Study

4/18/2010. National Weather Service. Severe Weather Forecasting: A Western North Carolina Case Study National Weather Service Severe Weather Forecasting: A Western North Carolina Case Study Laurence G. Lee Science and Operations Officer National Weather Service Greer, SC Plus 13 River Forecast Centers

More information

Mid-Atlantic Severe Event of 1 June 2012

Mid-Atlantic Severe Event of 1 June 2012 Mid-Atlantic Severe Event of 1 June 2012 1. Introduction An unseasonably deep midtropospheric ridge (Fig. 1) brought a strong cold front into the Mid-Atlantic region on 1 June 2012. A surge of warm moist

More information

Tornado Occurrences. Tornadoes. Tornado Life Cycle 4/12/17

Tornado Occurrences. Tornadoes. Tornado Life Cycle 4/12/17 Chapter 19 Tornadoes Tornado Violently rotating column of air that extends from the base of a thunderstorm to the ground Tornado Statistics Over (100, 1000, 10000) tornadoes reported in the U.S. every

More information

Proximity sounding analysis for derechos and supercells: an assessment of similarities and differences

Proximity sounding analysis for derechos and supercells: an assessment of similarities and differences Atmospheric Research 67 68 (2003) 117 133 www.elsevier.com/locate/atmos Proximity sounding analysis for derechos and supercells: an assessment of similarities and differences Charles A. Doswell III a,

More information

Severe Weather with a strong cold front: 2-3 April 2006 By Richard H. Grumm National Weather Service Office State College, PA 16803

Severe Weather with a strong cold front: 2-3 April 2006 By Richard H. Grumm National Weather Service Office State College, PA 16803 Severe Weather with a strong cold front: 2-3 April 2006 By Richard H. Grumm National Weather Service Office State College, PA 16803 1. INTRODUCTION A strong cold front brought severe weather to much of

More information

David O. Blanchard* and Brian A. Klimowski National Weather Service, Flagstaff, Arizona

David O. Blanchard* and Brian A. Klimowski National Weather Service, Flagstaff, Arizona P12.1 SUPERCE EVOUTION IN ENVIRONMENTS WITH UNUSUA HODOGRAPHS David O. Blanchard* and Brian A. Klimowski National Weather Service, Flagstaff, Arizona 1. INTRODUCTION The events that transpired across northern

More information

Tornadoes. tornado: a violently rotating column of air

Tornadoes. tornado: a violently rotating column of air Tornadoes tornado: a violently rotating column of air Tornadoes What is the typical size of a tornado? What are typical wind speeds for a tornado? Five-stage life cycle of a tornado Dust Swirl Stage Tornado

More information

P4.479 A DETAILED ANALYSIS OF SPC HIGH RISK OUTLOOKS,

P4.479 A DETAILED ANALYSIS OF SPC HIGH RISK OUTLOOKS, P4.479 A DETAILED ANALYSIS OF SPC HIGH RISK OUTLOOKS, 2003-2009 Jason M. Davis*, Andrew R. Dean 2, and Jared L. Guyer 2 Valparaiso University, Valparaiso, IN 2 NOAA/NWS Storm Prediction Center, Norman,

More information

Exploring Tornado Prediction with Neural Modeling

Exploring Tornado Prediction with Neural Modeling DECISION SCIENCES INSTITUTE of Radar-Indicated Storm Features (Full Paper Submission) Trevor White Virginia Tech tsw90@vt.edu Tabitha L. James Virginia Tech tajames@vt.edu Deborah F. Cook Virginia Tech

More information

Pennsylvania Severe Weather of September 2016

Pennsylvania Severe Weather of September 2016 Pennsylvania Severe Weather of September 2016 By Richard H. Grumm National Weather Service State College, PA 1. Overview September 2016 was a relatively quiet month for severe weather across most of the

More information

Tornado Dynamics. Readings:

Tornado Dynamics. Readings: Tornado Dynamics Readings: Klemp (1987) Dynamics of Tornadic Thunderstorms (handout) Bluestein Vol II. Section 3.4.8. Rotunno, R., 1986: Tornadoes and tornadogenesis. In: P. Ray (Editor), Mesoscale Meteorology

More information

Department of Earth & Climate Sciences Spring 2016 Meteorology 260

Department of Earth & Climate Sciences Spring 2016 Meteorology 260 Department of Earth & Climate Sciences Spring 2016 Meteorology 260 Name Laboratory #9: Joplin Tornado Day Subsynoptic, Thermodynamic, and Wind Shear Setting Part A: 1600 UTC Surface Chart Subsynoptic Analyses

More information

STATISTICAL ANALYSIS ON SEVERE CONVECTIVE WEATHER COMBINING SATELLITE, CONVENTIONAL OBSERVATION AND NCEP DATA

STATISTICAL ANALYSIS ON SEVERE CONVECTIVE WEATHER COMBINING SATELLITE, CONVENTIONAL OBSERVATION AND NCEP DATA 12.12 STATISTICAL ANALYSIS ON SEVERE CONVECTIVE WEATHER COMBINING SATELLITE, CONVENTIONAL OBSERVATION AND NCEP DATA Zhu Yaping, Cheng Zhoujie, Liu Jianwen, Li Yaodong Institute of Aviation Meteorology

More information

Mobile, phased-array, X-band Doppler radar observations of tornadogenesis in the central U. S.

Mobile, phased-array, X-band Doppler radar observations of tornadogenesis in the central U. S. Mobile, phased-array, X-band Doppler radar observations of tornadogenesis in the central U. S. Howard B. Bluestein 1, Michael M. French 2, Ivan PopStefanija 3 and Robert T. Bluth 4 Howard (Howie Cb ) B.

More information

Multi-day severe event of May 2013

Multi-day severe event of May 2013 Abstract: Multi-day severe event of 18-22 May 2013 By Richard H. Grumm and Charles Ross National Weather Service State College, PA A relatively slow moving Trough over the western United States and a ridge

More information

P8.10 AN EXAMINATION OF VARYING SUPERCELL ENVIRONMENTS OVER THE COMPLEX TERRAIN OF THE EASTERN TENNESSEE RIVER VALLEY

P8.10 AN EXAMINATION OF VARYING SUPERCELL ENVIRONMENTS OVER THE COMPLEX TERRAIN OF THE EASTERN TENNESSEE RIVER VALLEY P8.10 AN EXAMINATION OF VARYING SUPERCELL ENVIRONMENTS OVER THE COMPLEX TERRAIN OF THE EASTERN TENNESSEE RIVER VALLEY by David M. Gaffin* and David G. Hotz National Weather Service, Morristown TN 1. INTRODUCTION

More information

Practical Use of the Skew-T, log-p diagram for weather forecasting. Primer on organized convection

Practical Use of the Skew-T, log-p diagram for weather forecasting. Primer on organized convection Practical Use of the Skew-T, log-p diagram for weather forecasting Primer on organized convection Outline Rationale and format of the skew-t, log-p diagram Some basic derived diagnostic measures Characterizing

More information

MET Lecture 29 Tornadoes IV

MET Lecture 29 Tornadoes IV MET 4300 Lecture 29 Tornadoes IV Outline Definition, life cycle, & climatology of tornadoes Tornado formation within supercells Tornado formation within nonsupercell thunderstorms Fujita scale Tornado

More information

A Preliminary Climatology of Tornado Events with Closed Cold Core 500 mb Lows in the Central and Eastern United States

A Preliminary Climatology of Tornado Events with Closed Cold Core 500 mb Lows in the Central and Eastern United States 7B.4 A Preliminary Climatology of Tornado Events with Closed Cold Core 500 mb Lows in the Central and Eastern United States Jonathan M. Davies* Private Meteorologist, Wichita, Kansas Jared L. Guyer Storm

More information

William E. Togstad 1*, Sarah J. Taylor 2, and Jeffrey Peters Introduction. 2. Vertically Integrated Liquid (VIL) time series

William E. Togstad 1*, Sarah J. Taylor 2, and Jeffrey Peters Introduction. 2. Vertically Integrated Liquid (VIL) time series J 2.5 AN EXAMINATION OF SEVERE THUNDERSTORM DISCRIMINATION SKILLS FROM TRADITIONAL DOPPLER RADAR PARAMETERS AND NEAR STORM ENVIRONMENT (NSE) FACTORS AT LARGE RADAR RANGE William E. Togstad 1*, Sarah J.

More information

Using Convection-Allowing Models to Produce Forecast Guidance For Severe Thunderstorm Hazards via a Surrogate-Severe Approach!

Using Convection-Allowing Models to Produce Forecast Guidance For Severe Thunderstorm Hazards via a Surrogate-Severe Approach! Using Convection-Allowing Models to Produce Forecast Guidance For Severe Thunderstorm Hazards via a Surrogate-Severe Approach! Ryan Sobash! University of Oklahoma, School of Meteorology, Norman, OK! J.

More information

MET Lecture 26 Tornadoes I

MET Lecture 26 Tornadoes I MET 4300 Lecture 26 Tornadoes I A Large Tornado approaches Lyndon, Kansas, on May 8, 2003 Outline Definition, life cycle Tornado formation within supercells Tornado formation within nonsupercell thunderstorms

More information

Department of Earth & Climate Sciences Spring 2016 Meteorology 260

Department of Earth & Climate Sciences Spring 2016 Meteorology 260 Department of Earth & Climate Sciences Spring 2016 Meteorology 260 Name Laboratory #9 Key: Joplin Tornado Day Subsynoptic, Thermodynamic, and Wind Shear Setting Part A: 1600 UTC Surface Chart Subsynoptic

More information

A Climatology of supercells in Romania

A Climatology of supercells in Romania A Climatology of supercells in Romania Bogdan Antonescu, Daniel Carbunaru, Monica Sasu, Sorin Burcea, and Aurora Bell National Meteorological Administration, Sos. Bucuresti-Ploiesti 97, Bucharest-013686,

More information

Appalachian Lee Troughs and their Association with Severe Thunderstorms

Appalachian Lee Troughs and their Association with Severe Thunderstorms Appalachian Lee Troughs and their Association with Severe Thunderstorms Daniel B. Thompson, Lance F. Bosart and Daniel Keyser Department of Atmospheric and Environmental Sciences University at Albany/SUNY,

More information

Tornado Probability of Detection and Lead Time as a Function of Convective Mode and Environmental Parameters

Tornado Probability of Detection and Lead Time as a Function of Convective Mode and Environmental Parameters OCTOBER 2013 B R O T Z G E E T A L. 1261 Tornado Probability of Detection and Lead Time as a Function of Convective Mode and Environmental Parameters JERALD A. BROTZGE Center for Analysis and Prediction

More information

An Examination of how Manitoba Lake Breezes may Influence. Convective Storms

An Examination of how Manitoba Lake Breezes may Influence. Convective Storms An Examination of how Manitoba Lake Breezes may Influence Convective Storms by Scott Kehler A report submitted to the Department of Environment and Geography, University of Manitoba, In partial fulfillment

More information

Investigating the Environment of the Indiana and Ohio Tornado Outbreak of 24 August 2016 Using a WRF Model Simulation 1.

Investigating the Environment of the Indiana and Ohio Tornado Outbreak of 24 August 2016 Using a WRF Model Simulation 1. Investigating the Environment of the Indiana and Ohio Tornado Outbreak of 24 August 2016 Using a WRF Model Simulation Kevin Gray and Jeffrey Frame Department of Atmospheric Sciences, University of Illinois

More information

Meteorology. Chapter 10 Worksheet 2

Meteorology. Chapter 10 Worksheet 2 Chapter 10 Worksheet 2 Meteorology Name: Circle the letter that corresponds to the correct answer 1) Downdrafts totally dominate the in the development of a thunderstorm. a) dissipating stage b) mature

More information

Synoptic Environments Associated with Significant Tornadoes in the Contiguous United States

Synoptic Environments Associated with Significant Tornadoes in the Contiguous United States Synoptic Environments Associated with Significant Tornadoes in the Contiguous United States JAYSON A. PRENTICE Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA Mentor:

More information

Environmental Characteristics Associated with Nighttime Tornadoes

Environmental Characteristics Associated with Nighttime Tornadoes National Weather Association, Electronic Journal of Operational Meteorology, 2009-EJ3 Environmental Characteristics Associated with Nighttime Tornadoes Jonathan M. Davies Private Meteorologist, Trimble/Kansas

More information

Thunderstorm: a cumulonimbus cloud or collection of cumulonimbus clouds featuring vigorous updrafts, precipitation and lightning

Thunderstorm: a cumulonimbus cloud or collection of cumulonimbus clouds featuring vigorous updrafts, precipitation and lightning Thunderstorm: a cumulonimbus cloud or collection of cumulonimbus clouds featuring vigorous updrafts, precipitation and lightning Thunderstorm: a cumulonimbus cloud or collection of cumulonimbus clouds

More information

Joshua M. Boustead *1, and Barbara E. Mayes NOAA/NWS WFO Omaha/Valley, NE. William Gargan, George Phillips, and Jared Leighton NOAA/NWS WFO Topeka, KS

Joshua M. Boustead *1, and Barbara E. Mayes NOAA/NWS WFO Omaha/Valley, NE. William Gargan, George Phillips, and Jared Leighton NOAA/NWS WFO Topeka, KS 7B.3 Composite Analysis of Environmental Conditions Favorable for Significant Tornadoes across Eastern Kansas Joshua M. Boustead *1, and Barbara E. Mayes NOAA/NWS WFO Omaha/Valley, NE William Gargan, George

More information

A Comparison of Tornado Warning Lead Times with and without NEXRAD Doppler Radar

A Comparison of Tornado Warning Lead Times with and without NEXRAD Doppler Radar MARCH 1996 B I E R I N G E R A N D R A Y 47 A Comparison of Tornado Warning Lead Times with and without NEXRAD Doppler Radar PAUL BIERINGER AND PETER S. RAY Department of Meteorology, The Florida State

More information

The Role of Topography on the 7 June 2012 Tornadic Supercell near Wheatland, WY

The Role of Topography on the 7 June 2012 Tornadic Supercell near Wheatland, WY The College at Brockport: State University of New York Digital Commons @Brockport Senior Honors Theses Master's Theses and Honors Projects 5-9-2013 The Role of Topography on the 7 June 2012 Tornadic Supercell

More information

THUNDERSTORMS Brett Ewing October, 2003

THUNDERSTORMS Brett Ewing October, 2003 THUNDERSTORMS Brett Ewing October, 2003 A natural hazard that occurs often on a daily basis in the lower and mid-latitudes is thunderstorms. Thunderstorms is a weather system that can produce lightning,tornadoes,

More information

Thunderstorms. Ordinary Cell Thunderstorms. Ordinary Cell Thunderstorms. Ordinary Cell Thunderstorms 5/2/11

Thunderstorms. Ordinary Cell Thunderstorms. Ordinary Cell Thunderstorms. Ordinary Cell Thunderstorms 5/2/11 A storm containing lightning and thunder; convective storms Chapter 14 Severe thunderstorms: At least one: large hail wind gusts greater than or equal to 50 kt Tornado 1 2 Ordinary Cell Ordinary Cell AKA

More information

The Impact of the Typhoon to East Malaysia on Orographic Effect

The Impact of the Typhoon to East Malaysia on Orographic Effect Proceeding of the 2011 IEEE International Conference on Space Science and Communication (IconSpace) 12-13 July 2011, Penang, Malaysia The Impact of the Typhoon to East Malaysia on Orographic Effect Tan

More information

NOTES AND CORRESPONDENCE. Aspects of a Tornadic Left-Moving Thunderstorm of 25 May 1999

NOTES AND CORRESPONDENCE. Aspects of a Tornadic Left-Moving Thunderstorm of 25 May 1999 614 WEATHER AND FORECASTING NOTES AND CORRESPONDENCE Aspects of a Tornadic Left-Moving Thunderstorm of 25 May 1999 JOHN F. DOSTALEK Cooperative Institute for Research in the Atmosphere, Colorado State

More information

Chapter 3 Convective Dynamics Part VI. Supercell Storms. Supercell Photos

Chapter 3 Convective Dynamics Part VI. Supercell Storms. Supercell Photos Chapter 3 Convective Dynamics Part VI. Supercell Storms Photographs Todd Lindley (This part contains materials taken from UCAR MCS training module) Supercell Photos 1 Introduction A supercel storm is defined

More information

P1.3 Tornadoes in a Deceptively Small CAPE Environment: The 4/20/04 Outbreak in Illinois and Indiana

P1.3 Tornadoes in a Deceptively Small CAPE Environment: The 4/20/04 Outbreak in Illinois and Indiana P1.3 Tornadoes in a Deceptively Small CAPE Environment: The 4/20/04 Outbreak in Illinois and Indiana Albert E. Pietrycha* Jonathan M. Davies #, Mark Ratzer*, and Paul Merzlock* *National Weather Service,

More information

P12.6 Multiple Modes of Convection in Moderate to High Wind Shear Environments

P12.6 Multiple Modes of Convection in Moderate to High Wind Shear Environments P12.6 Multiple Modes of Convection in Moderate to High Wind Shear Environments Adam J. French and Matthew D. Parker North Carolina State University, Raleigh, North Carolina 1. INTRODUCTION A principle

More information

Severe Weather Event of 13 July 2014

Severe Weather Event of 13 July 2014 Severe Weather Event of 13 July 2014 By Richard H. Grumm and Elyse M. Colbert National Weather Service State College, PA 1. Overview Severe weather affected the eastern United States (Fig. 1) from northwestern

More information

Tornadoes forecasting, dynamics and genesis. Mteor 417 Iowa State University Week 12 Bill Gallus

Tornadoes forecasting, dynamics and genesis. Mteor 417 Iowa State University Week 12 Bill Gallus Tornadoes forecasting, dynamics and genesis Mteor 417 Iowa State University Week 12 Bill Gallus Tools to diagnose severe weather risks Definition of tornado: A vortex (rapidly rotating column of air) associated

More information

15.3A TORNADO VISUALIZATION AND DOPPLER RADAR ANALYSIS PROJECT. Thomas Dolan * Independent Geographer, Rocklin, CA

15.3A TORNADO VISUALIZATION AND DOPPLER RADAR ANALYSIS PROJECT. Thomas Dolan * Independent Geographer, Rocklin, CA 15.3A TORNADO VISUALIZATION AND DOPPLER RADAR ANALYSIS PROJECT Thomas Dolan * Independent Geographer, Rocklin, CA 1. INTRODUCTION Tornadoes play a significant role in the weather of the United States and

More information

5B.2 VARIABILITY IN THE KINEMATIC STRUCTURE OF SUPER TUESDAY STORMS

5B.2 VARIABILITY IN THE KINEMATIC STRUCTURE OF SUPER TUESDAY STORMS 5B.2 VARIABILITY IN THE KINEMATIC STRUCTURE OF SUPER TUESDAY STORMS Todd A. Murphy* & Kevin R. Knupp University of Alabama in Huntsville, Huntsville, Alabama 1. INTRODUCTION Since the advent of multiple

More information

Meteorology Lecture 19

Meteorology Lecture 19 Meteorology Lecture 19 Robert Fovell rfovell@albany.edu 1 Important notes These slides show some figures and videos prepared by Robert G. Fovell (RGF) for his Meteorology course, published by The Great

More information

Dave Patrick* Hydrometeorological and Arctic Lab, Meteorological Service of Canada Environment Canada

Dave Patrick* Hydrometeorological and Arctic Lab, Meteorological Service of Canada Environment Canada 16B.3 IMPROVED THUNDERSTORM DETECTION, TRACKING AND ASSESSMENT PRODUCTS FOR ENVIRONMENT CANADA RADARS Dave Patrick* Hydrometeorological and Arctic Lab, Meteorological Service of Canada Environment Canada

More information

P10.1 TORNADOGENESIS IN A SIMULATED HP SUPERCELL

P10.1 TORNADOGENESIS IN A SIMULATED HP SUPERCELL Preprints, 21 st Conference on Severe Local Storms 12-16 August 2002, San Antonio, Texas P10.1 TORNADOGENESIS IN A SIMULATED HP SUPERCELL 1. INTRODUCTION Catherine A. Finley * Department of Earth Sciences

More information

P10.18 ORIGINS OF THE GRANITE FALLS, MN TORNADO, JULY 25, 2000 REVISITED

P10.18 ORIGINS OF THE GRANITE FALLS, MN TORNADO, JULY 25, 2000 REVISITED P10.18 ORIGINS OF THE GRANITE FALLS, MN TORNADO, JULY 25, 2000 REVISITED Doug Dokken, Rich Naistat, Bill Togstad, and Kurt Scholz. Keenan Weise, John Nelson, Luke Edholm, and Pat Shanahan. 1. INTRODUCTION

More information

2/27/2015. Big questions. What can we say about causes? Bottom line. Severe Thunderstorms, Tornadoes, and Climate Change: What We Do and Don t Know

2/27/2015. Big questions. What can we say about causes? Bottom line. Severe Thunderstorms, Tornadoes, and Climate Change: What We Do and Don t Know Severe Thunderstorms, Tornadoes, and Climate Change: What We Do and Don t Know Big questions How and why are weather hazards distributed? Are things changing in time and will they? HAROLD BROOKS NOAA/NSSL

More information

DOPPLER RADAR AND STORM ENVIRONMENT OBSERVATIONS OF A MARITIME TORNADIC SUPERCELL IN SYDNEY, AUSTRALIA

DOPPLER RADAR AND STORM ENVIRONMENT OBSERVATIONS OF A MARITIME TORNADIC SUPERCELL IN SYDNEY, AUSTRALIA 155 DOPPLER RADAR AND STORM ENVIRONMENT OBSERVATIONS OF A MARITIME TORNADIC SUPERCELL IN SYDNEY, AUSTRALIA Harald Richter *, Alain Protat Research and Development Branch, Bureau of Meteorology, Melbourne,

More information

P4.9 THE SEVERE THUNDERSTORM OUTBREAK IN FINLAND ON 5 JULY 2002

P4.9 THE SEVERE THUNDERSTORM OUTBREAK IN FINLAND ON 5 JULY 2002 P4.9 THE SEVERE THUNDERSTORM OUTBREAK IN FINLAND ON 5 JULY 2002 Ari-Juhani Punkka* and Jenni Teittinen Finnish Meteorological Institute, Helsinki, Finland 1. INTRODUCTION On 5 July 2002 a fast propagating

More information

9D.3 THE INFLUENCE OF VERTICAL WIND SHEAR ON DEEP CONVECTION IN THE TROPICS

9D.3 THE INFLUENCE OF VERTICAL WIND SHEAR ON DEEP CONVECTION IN THE TROPICS 9D.3 THE INFLUENCE OF VERTICAL WIND SHEAR ON DEEP CONVECTION IN THE TROPICS Ulrike Wissmeier, Robert Goler University of Munich, Germany 1 Introduction One does not associate severe storms with the tropics

More information

Determining Environmental Parameters Most Important for Significant Cool Season Tornadoes across the Gulf Coastal States

Determining Environmental Parameters Most Important for Significant Cool Season Tornadoes across the Gulf Coastal States Determining Environmental Parameters Most Important for Significant Cool Season Tornadoes across the Gulf Coastal States Kar retta Venable Jackson State University, Jackson, MS Mentors David Imy NOAA/NWS/NCEP/Storm

More information

Tornadoes forecasting, dynamics and genesis. Mteor 417 Iowa State University Week 12 Bill Gallus

Tornadoes forecasting, dynamics and genesis. Mteor 417 Iowa State University Week 12 Bill Gallus Tornadoes forecasting, dynamics and genesis Mteor 417 Iowa State University Week 12 Bill Gallus Tools to diagnose severe weather risks Definition of tornado: A vortex (rapidly rotating column of air) associated

More information

Hurricanes and Tropical Weather Systems:

Hurricanes and Tropical Weather Systems: Hurricanes and Tropical Weather Systems: An influence on weather in parts of the USA Meteorology 411 Iowa State University Week 2 Bill Gallus Classification/Terminology Tropical Disturbance enhanced convection

More information

Charles A. Doswell III, Harold E. Brooks, and Robert A. Maddox

Charles A. Doswell III, Harold E. Brooks, and Robert A. Maddox Charles A. Doswell III, Harold E. Brooks, and Robert A. Maddox Flash floods account for the greatest number of fatalities among convective storm-related events but it still remains difficult to forecast

More information