CMB. Suggested Reading: Ryden, Chapter 9

Size: px
Start display at page:

Download "CMB. Suggested Reading: Ryden, Chapter 9"

Transcription

1 CMB Suggested Reading: Ryden, Chapter 9

2 1934, Richard Tolman, blackbody radiation in an expanding universe cools but retains its thermal distribution and remains a blackbody 1941, Andrew McKellar, excitation of interstellar CN doublet absorption lines gives an effective temperature of space of ~2.3K Flux McKellar, PDAO, 7, 251 (1941) Wavelength (Å)

3 1946, Gamow, to match observed abundance, nuclei should be built up out of equilibrium in hot early universe (high expansion rate, assume matter domination) 1948, Gamow, T~10 9 K when deuterium formed, argues for radiation domination in early universe; the existence of CMB 1948, Alpher, Bethe, & Gamow (αβγ paper), element synthesis in an expanding universe; calculations based on previous ideas 1948, Alpher & Herman, make corrections to previous results; state that present radiation temperature should be ~5K (close! but largely a coincidence; incorrect assumptions - neutron dominated initial state); no mention of the observability.

4 1957, Shmaonov, horn antenna at 3.2cm, find the absolute effective temperature of radio emission background 4±3K, independent of time and direction Early 1960s, Zel dovich, Doroshkevich, Novikov, estimate expected background temperature from helium abundance; realize Bell Labs telescope can constrain 1964, Hoyle & Tayler, essentially correct version of primordial helium abundance calculation (no longer pure neutron initial state; weak interaction for neutron vs proton) 1965, Dicke, Peebles, Roll, & Wilkinson, realize oscillating or singular universe might have thermal background; build detector to search; then they hear about the discovery of...

5 1965, Penzias & Wilson, antenna has isotropic noise of 3.5±1.0K at wavelength of 7.35cm; careful experiment (e.g., shooed away pigeons roosted in the antenna; cleaned up the usual white dielectric generated by pigeons); explanation could be that of Dicke et al. Nobel Prize in Physics (1978)

6 1965, Roll & Wilkinson, detect the radiation background at 3.2cm, with amplitude consistent with Penzias & Wilson for blackbody spectrum; isotropic to 10% (fl V) QJ I- e CL lo '4- K O O ~lo l6 ta 0 E lo-is XxtO O pg) Z~ 0 O-20 l P R I NC E TON (3.5 (3.i Roll & Wilkinson, PRL (1965) l lo' IO IO I WAVELENGTH (c m )!0 ' FIG. 2. Measurements to date of the microwave background radiation. The galactic radio background is extrapolated with a spectral index of n =0.5. This figure due to P. J. E. Peebles.

7 , Field & Hitchcock, Shklovsky, Thaddeus & Clauser, Thaddeus (following a suggestion by Woolf) independently show that the excitation of interstellar CN is caused by CMB (McKellar s 1941 observation explained!) 1970s, 1980s, ground, balloon, satellite observations 1990, NASA s COsmic Background Explorer (COBE) satellite confirms CMB as nearly perfect isotropic blackbody and discovers the anisotropies. John Mather & George Smoot Nobel Prize in Physics (2006)

8 CMB - Main Observational Results 1. nearly perfect blackbody spectrum of temperature T=2.73K Blackbody spectrum of CMB measured by COBE (1990) [error bars enlarged by 400x!]

9 CMB - Main Observational Results 1. nearly perfect blackbody spectrum of temperature T=2.73K Scott 1999 CMB dominates the energy density of radiation backgrounds Blackbody spectrum of CMB measured by COBE (1990) [error bars enlarged by 400x!]

10 CMB - Main Observational Results 2. isotropic, better than ~10-3

11 CMB - Main Observational Results 3. anisotropy, 10-3 level, dipole, kinetic effect v~370km/s our motion w.r.t. the CMB frame

12 CMB - Main Observational Results 4. anisotropy, 10-5 level, primordial Planck Satellite COBE WMAP (Wilkinson Microwave Anisotropy Probe)

13 CMB - Main Observational Results 5. weak polarization, 10-7 level primordial (grav. waves) [not detected yet/bicep2?]+reionization COBE WMAP (Wilkinson Microwave Anisotropy Probe)

1920s 1990s (from Friedmann to Freedman)

1920s 1990s (from Friedmann to Freedman) 20 th century cosmology 1920s 1990s (from Friedmann to Freedman) theoretical technology available, but no data 20 th century: birth of observational cosmology Hubble s law ~1930 Development of astrophysics

More information

Model Universe Including Pressure

Model Universe Including Pressure Model Universe Including Pressure The conservation of mass within the expanding shell was described by R 3 ( t ) ρ ( t ) = ρ 0 We now assume an Universe filled with a fluid (dust) of uniform density ρ,

More information

Physics Nobel Prize 2006

Physics Nobel Prize 2006 Physics Nobel Prize 2006 Ghanashyam Date The Institute of Mathematical Sciences, Chennai http://www.imsc.res.in shyam@imsc.res.in Nov 4, 2006. Organization of the Talk Organization of the Talk Nobel Laureates

More information

INTRODUCTION TO THE COSMIC MICROWAVE BACKGROUND (CMB)

INTRODUCTION TO THE COSMIC MICROWAVE BACKGROUND (CMB) INTRODUCTION TO THE COSMIC MICROWAVE BACKGROUND (CMB) JAMES G. O BRIEN Abstract. The goal of this short paper is to provide a working reference and brief introduction to the history, foundation and formulation

More information

Astro-2: History of the Universe

Astro-2: History of the Universe Astro-2: History of the Universe Lecture 7; May 2 2013 Previously on astro-2 A scientific theory is a logically self-consistent model or framework for describing the behavior of a related set of natural

More information

John Mather Visit Nobel Prize in Physics 2006 for Cosmic Microwave Background measurements

John Mather Visit Nobel Prize in Physics 2006 for Cosmic Microwave Background measurements John Mather Visit Nobel Prize in Physics 006 for Cosmic Microwave Background measurements NEXT WEEK Wednesday :0-:00 BPS 00 BS session with astro students & faculty. Wednesday 8PM BPS 0 (refreshments at

More information

Physics 133: Extragalactic Astronomy ad Cosmology

Physics 133: Extragalactic Astronomy ad Cosmology Physics 133: Extragalactic Astronomy ad Cosmology Lecture 2; January 8 2014 Previously on PHYS133 Units in astrophysics Olbers paradox The night sky is dark. Inconsistent with and eternal, static and infinite

More information

Astroparticle physics

Astroparticle physics Timo Enqvist University of Oulu Oulu Southern institute lecture cource on Astroparticle physics 15.09.2009 15.12.2009 10 Cosmic microwave background Content 10.0 Small introduction 10.1 Cosmic microwave

More information

Lecture 03. The Cosmic Microwave Background

Lecture 03. The Cosmic Microwave Background The Cosmic Microwave Background 1 Photons and Charge Remember the lectures on particle physics Photons are the bosons that transmit EM force Charged particles interact by exchanging photons But since they

More information

The Big Bang Theory was first proposed in the late 1920 s. This singularity was incredibly dense and hot.

The Big Bang Theory was first proposed in the late 1920 s. This singularity was incredibly dense and hot. The Big Bang Theory was first proposed in the late 1920 s. It states that there was an infinitely small, infinitely dense point that contained everything that is the universe. This singularity was incredibly

More information

Lecture 32: Astronomy 101

Lecture 32: Astronomy 101 Lecture 32: Evidence for the Big Bang Astronomy 101 The Three Pillars of the Big Bang Threefundamental pieces of evidence: Expansion of the Universe: Explains Hubble s Law Primordial Nucleosynthesis: Formation

More information

Hie-Joon Kim. Professor Emeritus Seoul National University. Experience. Representative Publications

Hie-Joon Kim. Professor Emeritus Seoul National University. Experience. Representative Publications Hie-Joon Kim Professor Emeritus Seoul National University B.S. Chemistry, Seoul National University, Korea, 1970 Ph.D. Chemistry, University of Chicago, USA, 1977 Experience Professor, Department of Chemistry

More information

PHY1033C/HIS3931/IDH 3931 : Discovering Physics: The Universe and Humanity s Place in It Fall 2016

PHY1033C/HIS3931/IDH 3931 : Discovering Physics: The Universe and Humanity s Place in It Fall 2016 PHY1033C/HIS3931/IDH 3931 : Discovering Physics: The Universe and Humanity s Place in It Fall 2016 Online evaluations open Announcements Final Exam Thursday, 15 December, 10am - 12, noon In-class NPB 1002

More information

Astronomy 162, Week 10 Cosmology Patrick S. Osmer Spring, 2006

Astronomy 162, Week 10 Cosmology Patrick S. Osmer Spring, 2006 Astronomy 162, Week 10 Cosmology Patrick S. Osmer Spring, 2006 Information Makeup quiz Wednesday, May 31, 5-6PM, Planetarium Review Session, Monday, June 5 6PM, Planetarium Cosmology Study of the universe

More information

A brief history of cosmological ideas

A brief history of cosmological ideas A brief history of cosmological ideas Cosmology: Science concerned with the origin and evolution of the universe, using the laws of physics. Cosmological principle: Our place in the universe is not special

More information

Lecture 17: the CMB and BBN

Lecture 17: the CMB and BBN Lecture 17: the CMB and BBN As with all course material (including homework, exams), these lecture notes are not be reproduced, redistributed, or sold in any form. Peering out/back into the Universe As

More information

This week at Astro 3303

This week at Astro 3303 This week at Astro 3303 First, we have the in-class presentations Then I will return the test I will collect HW#5 HW#6 is posted and due next Wednesday Includes elements from the test Soon, we will get

More information

Cosmology and the Cosmic Microwave Background

Cosmology and the Cosmic Microwave Background 3 October 2006 Advanced information on the Nobel Prize in Physics 2006 Cosmology and the Cosmic Microwave Background Information Department, Box 50005, SE-104 05 Stockholm, Sweden Phone: +46 8 673 95 00,

More information

Chapter 21 Evidence of the Big Bang. Expansion of the Universe. Big Bang Theory. Age of the Universe. Hubble s Law. Hubble s Law

Chapter 21 Evidence of the Big Bang. Expansion of the Universe. Big Bang Theory. Age of the Universe. Hubble s Law. Hubble s Law Chapter 21 Evidence of the Big Bang Hubble s Law Universal recession: Slipher (1912) and Hubble found that all galaxies seem to be moving away from us: the greater the distance, the higher the redshift

More information

Cosmology. Thornton and Rex, Ch. 16

Cosmology. Thornton and Rex, Ch. 16 Cosmology Thornton and Rex, Ch. 16 Expansion of the Universe 1923 - Edwin Hubble resolved Andromeda Nebula into separate stars. 1929 - Hubble compared radial velocity versus distance for 18 nearest galaxies.

More information

Astronomy 422. Lecture 20: Cosmic Microwave Background

Astronomy 422. Lecture 20: Cosmic Microwave Background Astronomy 422 Lecture 20: Cosmic Microwave Background Key concepts: The CMB Recombination Radiation and matter eras Next time: Astro 422 Peer Review - Make sure to read all 6 proposals and send in rankings

More information

Joel Meyers Canadian Institute for Theoretical Astrophysics

Joel Meyers Canadian Institute for Theoretical Astrophysics Cosmological Probes of Fundamental Physics Joel Meyers Canadian Institute for Theoretical Astrophysics SMU Physics Colloquium February 5, 2018 Image Credits: Planck, ANL The Cosmic Microwave Background

More information

(Astro)Physics 343 Lecture # 13: cosmic microwave background (and cosmic reionization!)

(Astro)Physics 343 Lecture # 13: cosmic microwave background (and cosmic reionization!) (Astro)Physics 343 Lecture # 13: cosmic microwave background (and cosmic reionization!) Welcome back! (four pictures on class website; add your own to http://s304.photobucket.com/albums/nn172/rugbt/) Results:

More information

V. The Thermal Beginning of the Universe

V. The Thermal Beginning of the Universe V. The Thermal Beginning of the Universe I. Aretxaga Jan 2014 CMB discovery time-line -1947-1948 Gamow, Alpher and Hermans model of nucleosynthesis predicts relic millimeter radiation, but the models have

More information

4 The Big Bang, the genesis of the Universe, the origin of the microwave background

4 The Big Bang, the genesis of the Universe, the origin of the microwave background 4 The Big Bang, the genesis of the Universe, the origin of the microwave background a(t) = 0 The origin of the universe: a(t) = 0 Big Bang coined by Fred Hoyle he calculated the ratio of elements created

More information

The Cosmic Microwave Background

The Cosmic Microwave Background The Cosmic Microwave Background Our probe of the birth of the universe Will Handley wh260@cam.ac.uk Astrophysics Department Cavendish Laboratory University of Cambridge 20 th March 2013 Overview Light

More information

Chapter 22 Lecture. The Cosmic Perspective. Seventh Edition. The Birth of the Universe Pearson Education, Inc.

Chapter 22 Lecture. The Cosmic Perspective. Seventh Edition. The Birth of the Universe Pearson Education, Inc. Chapter 22 Lecture The Cosmic Perspective Seventh Edition The Birth of the Universe The Birth of the Universe 22.1 The Big Bang Theory Our goals for learning: What were conditions like in the early universe?

More information

Lecture 19 Big Bang Nucleosynthesis

Lecture 19 Big Bang Nucleosynthesis Lecture 19 Big Bang Nucleosynthesis As with all course material (including homework, exams), these lecture notes are not be reproduced, redistributed, or sold in any form. The CMB as seen by the WMAP satellite.!2

More information

Astr 102: Introduction to Astronomy. Lecture 16: Cosmic Microwave Background and other evidence for the Big Bang

Astr 102: Introduction to Astronomy. Lecture 16: Cosmic Microwave Background and other evidence for the Big Bang Astr 102: Introduction to Astronomy Fall Quarter 2009, University of Washington, Željko Ivezić Lecture 16: Cosmic Microwave Background and other evidence for the Big Bang 1 Outline Observational Cosmology:

More information

Astronomy 1 Winter Lecture 24; March

Astronomy 1 Winter Lecture 24; March Astronomy 1 Winter 2011 Lecture 24; March 7 2011 Previously on Astro-1 Introduction to special relativity Introduction to general relativity Introduction to black holes, stellar and supermassive Today..

More information

Cosmology and the Evolution of the Universe. Implications of the Hubble Law: - Universe is changing (getting bigger!) - it is not static, unchanging

Cosmology and the Evolution of the Universe. Implications of the Hubble Law: - Universe is changing (getting bigger!) - it is not static, unchanging Cosmology and the Evolution of the Edwin Hubble, 1929: -almost all galaxies have a redshift -moving away from us -exceptions in Local Group -with distance measurements - found a relationship greater distance

More information

Implications of the Hubble Law: - it is not static, unchanging - Universe had a beginning!! - could not have been expanding forever HUBBLE LAW:

Implications of the Hubble Law: - it is not static, unchanging - Universe had a beginning!! - could not have been expanding forever HUBBLE LAW: Cosmology and the Evolution of the Universe Edwin Hubble, 1929: -almost all galaxies have a redshift -moving away from us -greater distance greater redshift Implications of the Hubble Law: - Universe is

More information

THE COSMIC MICROWAVE BACKGROUND RADIATION

THE COSMIC MICROWAVE BACKGROUND RADIATION THE COSMIC MICROWAVE BACKGROUND RADIATION Nobel Lecture, 8 December, 1978 by ROBERT W. WILSON Bell Laboratories Holmdel, N.J. U.S.A. 1. I N T R O D U C T I O N Radio Astronomy has added greatly to our

More information

The Big Bang. Olber s Paradox. Hubble s Law. Why is the night sky dark? The Universe is expanding and We cannot see an infinite Universe

The Big Bang. Olber s Paradox. Hubble s Law. Why is the night sky dark? The Universe is expanding and We cannot see an infinite Universe The Big Bang Olber s Paradox Why is the night sky dark? The Universe is expanding and We cannot see an infinite Universe Hubble s Law v = H0 d v = recession velocity in km/sec d = distance in Mpc H 0 =

More information

Cosmology: An Introduction. Eung Jin Chun

Cosmology: An Introduction. Eung Jin Chun Cosmology: An Introduction Eung Jin Chun Cosmology Hot Big Bang + Inflation. Theory of the evolution of the Universe described by General relativity (spacetime) Thermodynamics, Particle/nuclear physics

More information

Lecture 38: Announcements

Lecture 38: Announcements Lecture 38: Announcements The Universe: How it all Began and Possible Fates -- Unifying Fundamental Forces as Electroweak, GUT, and Super forces -- The Beginning of Time: From 10-43 s to to the First Second

More information

Today in Astronomy 142: the Big Bang

Today in Astronomy 142: the Big Bang Today in Astronomy 142: the Big Bang The Universe: expanding, isotropic, and homogeneous. Big-Bang and Steady- State cosmology. Alpher, Herman and decoupling. Penzias and Wilson and the detection of the

More information

Galaxy A has a redshift of 0.3. Galaxy B has a redshift of 0.6. From this information and the existence of the Hubble Law you can conclude that

Galaxy A has a redshift of 0.3. Galaxy B has a redshift of 0.6. From this information and the existence of the Hubble Law you can conclude that Galaxy A has a redshift of 0.3. Galaxy B has a redshift of 0.6. From this information and the existence of the Hubble Law you can conclude that A) Galaxy B is two times further away than Galaxy A. B) Galaxy

More information

Midterm. 16 Feb Feb 2012

Midterm. 16 Feb Feb 2012 16 Feb 2012 21 Feb 2012 è Outline è Midterm è Why is the cosmic background radiation important for the history of the universe è Important events in the history of the universe è Anisotropies in the cosmic

More information

9.2 The Universe. p. 368

9.2 The Universe. p. 368 9.2 The Universe p. 368 Cosmology the study of the universe, including its origin, how it is changing, and its future. The Hubble Space Telescope (HST) The American astronomer Edwin Hubble (1889-1953)

More information

Cosmic Microwave Background. Eiichiro Komatsu Guest Lecture, University of Copenhagen, May 19, 2010

Cosmic Microwave Background. Eiichiro Komatsu Guest Lecture, University of Copenhagen, May 19, 2010 Cosmic Microwave Background Eiichiro Komatsu Guest Lecture, University of Copenhagen, May 19, 2010 1 Cosmology: The Questions How much do we understand our Universe? How old is it? How big is it? What

More information

Cosmology. Big Bang and Inflation

Cosmology. Big Bang and Inflation Cosmology Big Bang and Inflation What is the Universe? Everything we can know about is part of the universe. Everything we do know about is part of the universe. Everything! The Universe is expanding If

More information

Today in Astronomy 102: the Big Bang

Today in Astronomy 102: the Big Bang Today in Astronomy 102: the Big Bang Cosmological models: Big Bang and Steady State. Observational tests of the models, and direct observation of the Big Bang. The cosmic microwave background: the appearance

More information

The first 400,000 years

The first 400,000 years The first 400,000 years All about the Big Bang Temperature Chronology of the Big Bang The Cosmic Microwave Background (CMB) The VERY early universe Our Evolving Universe 1 Temperature and the Big Bang

More information

v = H o d Hubble s Law: Distant galaxies move away fastest Velocity (v) is proportional to Distance (d):

v = H o d Hubble s Law: Distant galaxies move away fastest Velocity (v) is proportional to Distance (d): Hubble s Law: Distant galaxies move away fastest Velocity (v) is proportional to Distance (d): v = H o d The Hubble Constant was measured after decades of observation: H 0 = 70 km/s/mpc Velocity (km/s)

More information

Taking the Measure of the Universe. Gary Hinshaw University of British Columbia TRIUMF Saturday Series 24 November 2012

Taking the Measure of the Universe. Gary Hinshaw University of British Columbia TRIUMF Saturday Series 24 November 2012 Taking the Measure of the Universe Gary Hinshaw University of British Columbia TRIUMF Saturday Series 24 November 2012 The Big Bang Theory What is wrong with this picture? The Big Bang Theory The Big bang

More information

Island Universes. Up to 1920 s, many thought that Milky Way encompassed entire universe.

Island Universes. Up to 1920 s, many thought that Milky Way encompassed entire universe. Island Universes Up to 1920 s, many thought that Milky Way encompassed entire universe. Observed three types of nebulas (clouds): - diffuse, spiral, elliptical - many were faint, indistinct - originally

More information

2.2 The Discovery of the CMB

2.2 The Discovery of the CMB Discovery of the CMB 1 2.2 The Discovery of the CMB Scientific discoveries seem to have a natural time to emerge, which is proved by the way that they are often made independently by several people at

More information

Introduction. How did the universe evolve to what it is today?

Introduction. How did the universe evolve to what it is today? Cosmology 8 1 Introduction 8 2 Cosmology: science of the universe as a whole How did the universe evolve to what it is today? Based on four basic facts: The universe expands, is isotropic, and is homogeneous.

More information

Lecture #24: Plan. Cosmology. Expansion of the Universe Olber s Paradox Birth of our Universe

Lecture #24: Plan. Cosmology. Expansion of the Universe Olber s Paradox Birth of our Universe Lecture #24: Plan Cosmology Expansion of the Universe Olber s Paradox Birth of our Universe Reminder: Redshifts and the Expansion of the Universe Early 20 th century astronomers noted: Spectra from most

More information

Estimation of the Cosmic Microwave Background Radiation

Estimation of the Cosmic Microwave Background Radiation S.P.Spirydovich Abstract Estimation of the Cosmic Microwave Background Radiation The author discusses some aspects of experiment, which was built to measure temperature of cosmic microwave background (CMB)

More information

How Can We Know What Happened almost 14 Billion Years Ago

How Can We Know What Happened almost 14 Billion Years Ago How Can We Know What Happened almost 14 Billion Years Ago May 30th, 2014 Amber Miller Columbia University Evidence: ev-i-dence noun : Something which shows that something else exists or is true --- Webster

More information

Cosmology II: The thermal history of the Universe

Cosmology II: The thermal history of the Universe .. Cosmology II: The thermal history of the Universe Ruth Durrer Département de Physique Théorique et CAP Université de Genève Suisse August 6, 2014 Ruth Durrer (Université de Genève) Cosmology II August

More information

UNIT 3 The Study of the. Universe. Chapter 7: The Night Sky. Chapter 8: Exploring Our Stellar Neighbourhood. Chapter 9:The Mysterious.

UNIT 3 The Study of the. Universe. Chapter 7: The Night Sky. Chapter 8: Exploring Our Stellar Neighbourhood. Chapter 9:The Mysterious. UNIT 3 The Study of the Universe Chapter 7: The Night Sky Chapter 8: Exploring Our Stellar Neighbourhood Chapter 9:The Mysterious Universe CHAPTER 9 The Mysterious Universe In this chapter, you will: identify

More information

Cosmology. Jörn Wilms Department of Physics University of Warwick.

Cosmology. Jörn Wilms Department of Physics University of Warwick. Cosmology Jörn Wilms Department of Physics University of Warwick http://astro.uni-tuebingen.de/~wilms/teach/cosmo Contents 2 Old Cosmology Space and Time Friedmann Equations World Models Modern Cosmology

More information

Cosmology. An Analogy 11/28/2010. Cosmology Study of the origin, evolution and future of the Universe

Cosmology. An Analogy 11/28/2010. Cosmology Study of the origin, evolution and future of the Universe Cosmology Cosmology Study of the origin, evolution and future of the Universe Obler s Paradox If the Universe is infinite why is the sky dark at night? Newtonian Universe The Universe is infinite and unchanging

More information

Chapter 22 Back to the Beginning of Time

Chapter 22 Back to the Beginning of Time Chapter 22 Back to the Beginning of Time Expansion of Universe implies dense, hot start: Big Bang Back to the Big Bang The early Universe was both dense and hot. Equivalent mass density of radiation (E=mc

More information

The Cosmic Microwave Background Radiation

The Cosmic Microwave Background Radiation The Cosmic Microwave Background Radiation Magnus Axelsson November 11, 2005 Abstract Predicted in the mid-1940s and discovered in 1964, the cosmic microwave background (CMB) radiation has become a valuable

More information

Power spectrum exercise

Power spectrum exercise Power spectrum exercise In this exercise, we will consider different power spectra and how they relate to observations. The intention is to give you some intuition so that when you look at a microwave

More information

A100 Exploring the Universe Big Bang Theory and the Early Universe. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe Big Bang Theory and the Early Universe. Martin D. Weinberg UMass Astronomy A100 Exploring the Universe and the Martin D. Weinberg UMass Astronomy astron100-mdw@courses.umass.edu December 02, 2014 Read: Chap 23 12/04/14 slide 1 Assignment on Chaps 22 23, at the end of next week,

More information

Cosmic Background, Euler s E Natural Logarithm and the Substratum

Cosmic Background, Euler s E Natural Logarithm and the Substratum Cosmic Background, Euler s E Natural Logarithm and the Substratum By John Frederick Sweeney Abstract The Cosmic Microwave Background (CMB), rated at 2.7 degrees Kelvin, is nothing more than the activity

More information

The Nobel Prize in Physics 2006

The Nobel Prize in Physics 2006 I n f o r m a t i o n f o r t h e p u b l i c The Nobel Prize in Physics 2006 The Nobel Prize in Physics for 2006 is awarded to John C. Mather and George F. Smoot for their discovery of the basic form

More information

Galaxy Evolution. Part 5. Jochen Liske Hamburger Sternwarte

Galaxy Evolution. Part 5. Jochen Liske Hamburger Sternwarte Galaxy Evolution Part 5 Jochen Liske Hamburger Sternwarte jochen.liske@uni-hamburg.de 1. Introduction 2. Overview of galaxies and physical processes 2.1 What is a galaxy? 2.1.1 Constituents 2.1.2 Structure

More information

A100H Exploring the Universe: Big Bang Theory. Martin D. Weinberg UMass Astronomy

A100H Exploring the Universe: Big Bang Theory. Martin D. Weinberg UMass Astronomy A100H Exploring the : Martin D. Weinberg UMass Astronomy astron100h-mdw@courses.umass.edu April 21, 2016 Read: Chap 23 04/26/16 slide 1 Early Final Exam: Friday 29 Apr at 10:30 am 12:30 pm, here! Emphasizes

More information

Big Bang Theory. How did this theory develop, and what is the evidence for it?

Big Bang Theory. How did this theory develop, and what is the evidence for it? Big Bang Theory Big Bang Theory Big bang theory suggests that the universe began from a single point about 13.82 billion years ago. What existed before this event is completely unknown to science, but

More information

Brief Introduction to Cosmology

Brief Introduction to Cosmology Brief Introduction to Cosmology Matias Zaldarriaga Harvard University August 2006 Basic Questions in Cosmology: How does the Universe evolve? What is the universe made off? How is matter distributed? How

More information

What is the evidence that Big Bang really occurred

What is the evidence that Big Bang really occurred What is the evidence that Big Bang really occurred Hubble expansion of galaxies Microwave Background Abundance of light elements but perhaps most fundamentally... Darkness of the night sky!! The very darkness

More information

The Big Bang The Beginning of Time

The Big Bang The Beginning of Time The Big Bang The Beginning of Time What were conditions like in the early universe? The early universe must have been extremely hot and dense Photons converted into particle-antiparticle pairs and vice-versa

More information

Assignments. Read all (secs ) of DocOnotes-cosmology. HW7 due today; accepted till Thurs. w/ 5% penalty

Assignments. Read all (secs ) of DocOnotes-cosmology. HW7 due today; accepted till Thurs. w/ 5% penalty Assignments Read all (secs. 25-29) of DocOnotes-cosmology. HW7 due today; accepted till Thurs. w/ 5% penalty Term project due last day of class, Tues. May 17 Final Exam Thurs. May 19, 3:30 p.m. here Olber

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 11 Nov. 13, 2015 Today Cosmic Microwave Background Big Bang Nucleosynthesis Assignments This week: read Hawley and Holcomb,

More information

Najstarsze światło we Wszechświecie

Najstarsze światło we Wszechświecie Najstarsze światło we Wszechświecie mikrofalowe promieniowanie i i tła Stanisław Bajtlik Centrum Astronomiczne im. M. Kopernika, PAN, Warszawa CERN, 18 IV 2007 John C.Mather George F. Smoot ur. 1945 ur.

More information

PHYSICS FOR THE IB DIPLOMA CAMBRIDGE UNIVERSITY PRESS

PHYSICS FOR THE IB DIPLOMA CAMBRIDGE UNIVERSITY PRESS Learning objectives Understand Hubble s law. Understand the scale factor and red-shift. Understand the cosmic microwave background radiation. Understand the accelerating universe and red-shift. D3 Cosmology

More information

Cosmology: Building the Universe.

Cosmology: Building the Universe. Cosmology: Building the Universe. The term has several different meanings. We are interested in physical cosmology - the study of the origin and development of the physical universe, and all the structure

More information

The Big Bang. Mr. Mike Partridge Earth & Space Science J.H. Reagan High School, Houston, TX

The Big Bang. Mr. Mike Partridge Earth & Space Science J.H. Reagan High School, Houston, TX The Big Bang Mr. Mike Partridge Earth & Space Science J.H. Reagan High School, Houston, TX Notes Outlines Theories of the Universe Static Universe What is the Big Bang Theory What is the evidence supporting

More information

Unity in the Whole Structure Evolution of the Universe from 13 to 4 Billion Years Ago

Unity in the Whole Structure Evolution of the Universe from 13 to 4 Billion Years Ago Unity in the Whole Structure Evolution of the Universe from 13 to 4 Billion Years Ago Prof. Dr. Harold Geller hgeller@gmu.edu http://physics.gmu.edu/~hgeller/ Department of Physics and Astronomy George

More information

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. The Big Bang & Matter. Olber s Paradox. Cosmology. Olber s Paradox. Assumptions 4/20/18

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. The Big Bang & Matter. Olber s Paradox. Cosmology. Olber s Paradox. Assumptions 4/20/18 Astronomy 113 Dr. Joseph E. Pesce, Ph.D. The Big Bang & Matter Cosmology ³The study of the origins, structure, and evolution of the universe ³Key moments: ²Einstein General Theory of Relativity ²Hubble

More information

Astronomy 113. Dr. Joseph E. Pesce, Ph.D Joseph E. Pesce, Ph.D.

Astronomy 113. Dr. Joseph E. Pesce, Ph.D Joseph E. Pesce, Ph.D. Astronomy 113 Dr. Joseph E. Pesce, Ph.D. The Big Bang & Matter 17-2 Cosmology ³ The study of the origins, structure, and evolution of the universe ³ Key moments: ² Einstein General Theory of Relativity

More information

Formation of the Universe. What evidence supports current scientific theory?

Formation of the Universe. What evidence supports current scientific theory? Formation of the Universe What evidence supports current scientific theory? Cosmology Cosmology is the study of the Nature, Structure, Origin, And fate of the universe. How did it all begin? Astronomers

More information

arxiv:astro-ph/ v1 9 Dec 2001

arxiv:astro-ph/ v1 9 Dec 2001 XXX-XXXXX YYY-YYYYYY November 2, 2018 arxiv:astro-ph/0112205v1 9 Dec 2001 Archeops: CMB Anisotropies Measurement from Large to Small Angular Scale Alexandre Amblard, on behalf of the Archeops Collaboration

More information

Unity in the Whole Structure

Unity in the Whole Structure Cosmology II Unity in the Whole Structure How is it possible by any methods of observation yet known to the astronomer to learn anything about the universe as a whole? It is possible only because the universe,

More information

COSMOLOGY The Universe what is its age and origin?

COSMOLOGY The Universe what is its age and origin? COSMOLOGY The Universe what is its age and origin? REVIEW (SUMMARY) Oppenheimer Volkhoff limit: upper limit to mass of neutron star remnant more than 1.4 M à neutron degeneracy Supernova à extremely dense

More information

Hubble s Law. Our goals for learning. What is Hubble s Law? How do distance measurements tell us the age of the universe?

Hubble s Law. Our goals for learning. What is Hubble s Law? How do distance measurements tell us the age of the universe? Hubble s Law Our goals for learning What is Hubble s Law? How do distance measurements tell us the age of the universe? How does the universe s expansion affect our distance measurements? We measure speeds

More information

Cosmology: The History of the Universe

Cosmology: The History of the Universe Cosmology: The History of the Universe The Universe originated in an explosion called the Big Bang. Everything started out 13.7 billion years ago with zero size and infinite temperature. Since then, it

More information

Universal redshift, the Hubble constant The cosmic background radiation until COBE

Universal redshift, the Hubble constant The cosmic background radiation until COBE Universal redshift, the Hubble constant The cosmic background radiation until COBE Sylwester Radomski Gesellschaft fuer Schwerionenforschung November 11, 2004 1 1 Dimensions in the Universe The scale of

More information

CMB: the isotropic part

CMB: the isotropic part C. R. Physique 4 (2003) 833 839 The Cosmic Microwave Background/Le rayonnement fossile à 3K CMB: the isotropic part François R. Bouchet a,, Jean-Loup Puget b a Institut d astrophysique de Paris, CNRS,

More information

The Early Universe: A Journey into the Past

The Early Universe: A Journey into the Past The Early Universe A Journey into the Past Texas A&M University March 16, 2006 Outline Galileo and falling bodies Galileo Galilei: all bodies fall at the same speed force needed to accelerate a body is

More information

Evidence is Clear. Students consider observations and inferences about the Steady State and Big Bang theories.

Evidence is Clear. Students consider observations and inferences about the Steady State and Big Bang theories. The Evidence is Clear! Summary Students consider observations and inferences about the Steady State and Big Bang theories. Objectives Distinguish between data collected from empirical observations and

More information

Astronomy 210 Final. Astronomy: The Big Picture. Outline

Astronomy 210 Final. Astronomy: The Big Picture. Outline Astronomy 210 Final This Class (Lecture 40): The Big Bang Next Class: The end HW #11 Due next Weds. Final is May 10 th. Review session: May 6 th or May 9 th? Designed to be 2 hours long 1 st half is just

More information

Olbers Paradox. Lecture 14: Cosmology. Resolutions of Olbers paradox. Cosmic redshift

Olbers Paradox. Lecture 14: Cosmology. Resolutions of Olbers paradox. Cosmic redshift Lecture 14: Cosmology Olbers paradox Redshift and the expansion of the Universe The Cosmological Principle Ω and the curvature of space The Big Bang model Primordial nucleosynthesis The Cosmic Microwave

More information

The Cosmic Microwave Background

The Cosmic Microwave Background The Cosmic Microwave Background Class 22 Prof J. Kenney June 26, 2018 The Cosmic Microwave Background Class 22 Prof J. Kenney November 28, 2016 Cosmic star formation history inf 10 4 3 2 1 0 z Peak of

More information

The Early Universe: A Journey into the Past

The Early Universe: A Journey into the Past Gravity: Einstein s General Theory of Relativity The Early Universe A Journey into the Past Texas A&M University March 16, 2006 Outline Gravity: Einstein s General Theory of Relativity Galileo and falling

More information

i>clicker Quiz #14 Which of the following statements is TRUE?

i>clicker Quiz #14 Which of the following statements is TRUE? i>clicker Quiz #14 Which of the following statements is TRUE? A. Hubble s discovery that most distant galaxies are receding from us tells us that we are at the center of the Universe B. The Universe started

More information

Lecture 19 Nuclear Astrophysics. Baryons, Dark Matter, Dark Energy. Experimental Nuclear Physics PHYS 741

Lecture 19 Nuclear Astrophysics. Baryons, Dark Matter, Dark Energy. Experimental Nuclear Physics PHYS 741 Lecture 19 Nuclear Astrophysics Baryons, Dark Matter, Dark Energy Experimental Nuclear Physics PHYS 741 heeger@wisc.edu References and Figures from: - Haxton, Nuclear Astrophysics - Basdevant, Fundamentals

More information

COSMOLOGY. Cosmological Principle: The Universe is isotropic and homogeneous, appearing the same in all directions and at all locations.

COSMOLOGY. Cosmological Principle: The Universe is isotropic and homogeneous, appearing the same in all directions and at all locations. COSMOLOGY Cosmological Principle: The Universe is isotropic and homogeneous, appearing the same in all directions and at all locations. galaxy B To show the expansion is the same everywhere consider the

More information

II. The Universe Around Us. ASTR378 Cosmology : II. The Universe Around Us 23

II. The Universe Around Us. ASTR378 Cosmology : II. The Universe Around Us 23 II. The Universe Around Us ASTR378 Cosmology : II. The Universe Around Us 23 Some Units Used in Astronomy 1 parsec distance at which parallax angle is 1 ; 1 pc = 3.086 10 16 m ( 3.26 light years; 1 kpc

More information

History of Radioastronomy from 1800 to 2007

History of Radioastronomy from 1800 to 2007 History of Radioastronomy from 1800 to 2007 (a personal selection) Steve Torchinsky Observatoire de Paris History of radio astronomy, Steve Torchinsky Goutelas, 4 June 2007 1 Herschel discovers invisible

More information

Is cosmic microwave background relic radiation of Big Bang or thermal radiation of cosmic dust?

Is cosmic microwave background relic radiation of Big Bang or thermal radiation of cosmic dust? Is cosmic microwave background relic radiation of Big Bang or thermal radiation of cosmic dust? Václav Vavryčuk The Czech Academy of Sciences Institute of Geophysics www: https://www.ig.cas.cz/en/contact/staff/vaclav-vavrycuk/

More information

Astronomy 122 Outline

Astronomy 122 Outline Astronomy 122 Outline This Class (Lecture 26): The Primeval Fireball Next Class: Dark Matter & Dark Energy ICES Form!!! HW10 due Friday Hubble s Law implications An expanding Universe! Run in movie in

More information

HNRS 227 Lecture 18 October 2007 Chapter 12. Stars, Galaxies and the Universe presented by Dr. Geller

HNRS 227 Lecture 18 October 2007 Chapter 12. Stars, Galaxies and the Universe presented by Dr. Geller HNRS 227 Lecture 18 October 2007 Chapter 12 Stars, Galaxies and the Universe presented by Dr. Geller Recall from Chapters 1-11 Units of length, mass, density, time, and metric system The Scientific Method

More information

What forms AGN Jets? Magnetic fields are ferociously twisted in the disk.

What forms AGN Jets? Magnetic fields are ferociously twisted in the disk. What forms AGN Jets? Magnetic fields are ferociously twisted in the disk. Charged particles are pulled out of the disk and accelerated like a sling-shot. Particles are bound to the magnetic fields, focussed

More information