The Cosmic Microwave Background

Size: px
Start display at page:

Download "The Cosmic Microwave Background"

Transcription

1 The Cosmic Microwave Background Class 22 Prof J. Kenney June 26, 2018

2 The Cosmic Microwave Background Class 22 Prof J. Kenney November 28, 2016

3 Cosmic star formation history inf z Peak of star formation in universe z=2-4, t ABB = Byr Star formation begins in universe z~20, t ABB ~0.1 Byr

4 Emission of cosmic background radiation (380,000 yrs ABB) Era of Peak star, galaxy & black hole formation (~ 1-4 Byrs ABB) BIG BANG Cosmic Time NOW

5 Discovery of Cosmic Microwave Background (CMB) telescope used to discover CMB Radio horn at Bell Labs 1964 Penzias & Wilson with their telescope

6 Some TV static is CMB radiation!

7 Spectrum of cosmic microwave background Perfect blackbody! Peak of spectrum at λ = 1.1 millimeter

8 Spectra of stars NOT perfect blackbodies

9 Map of whole sky at millimeter wavelengths ( microwaves ) -- very nearly uniform! Where is center of Big Bang explosion?

10 Near isotropy & perfect blackbody spectrum of CMB indicate that CMB photons come from universe as a whole

11 Near isotropy & perfect blackbody spectrum of CMB indicate that CMB photons come from universe as a whole, not from individual, localized sources within it (like stars, galaxies, AGN)

12 Near isotropy & perfect blackbody spectrum of CMB indicate that CMB photons come from universe as a whole, not from individual, localized sources within it (like stars, galaxies, AGN)

13 CMB photons are: much older than those from stars and galaxies a relic from early universe, long before stars and galaxies existed, when universe was very smooth evidence of a Big Bang

14 Big Bang predicts CMB... why? if universe was once hot enough to ionize atoms, then collisions between electrons and nuclei would unavoidably make lots of photons (accelerating electrically-charged particles make EM waves) Photons inevitably produced in Big Bang predicted to cool due to expansion to T~3K by 13.7 Byr after Big Bang

15 How far could these photons have travelled through space? What happens to them as they go through space? What happens to these photons if they run into an atom in space?

16 How far could these photons have travelled through space? What happens to them as they go through space? What happens to these photons if they run into an atom in space? Think of 2 constituents of universe + how they interact: Atoms in space & Cosmic photons

17 A photon with a wavelength of 1 millimeter (10-3 m; radio) encounters an H atom. What happens? A. Nothing, the photon passes by B. The photon is absorbed by the atom C. The photon is scattered by the atom D. The photon and atom annihilate each other E. The atom ignores the photon

18 Energy level diagram of Hydrogen What does a photon with λ = 1mm do to an H atom?

19 Energy level diagram of Hydrogen What does a photon with λ = 1mm do to an H atom? NOTHING!

20 universe is now transparent to cosmic photons! zoom-in: Hydrogen atoms of gas cloud do not absorb cosmic photons since they are the wrong wavelength

21 observable universe universe is now transparent to cosmic photons! But it wasn t always like this

22 I thought that the Big Bang was hot! If the cosmic microwave background radiation is the radiation left over from the Big Bang, when did the universe cool down to about 3 K? A. one second after the Big Bang, when electronpositron pair production ceased B. three minutes after the start of the Big Bang, when primordial nuclear reactions ended C. 380,000 years after the Big Bang, when the universe became transparent to radiation D. 1 Byr after the big bang, after the peak of the quasar era E. just recently

23 why do CMB photons cool? expansion! photons are stretched out to longer wavelengths as space in universe expands galaxy A galaxy B time t 1 photon emitted λ 1 d(t 1 ) λ 2 time t 2 photon received d(t 2 ) for a photon emitted at time t 1 and detected at time t 2 λ 2 /λ 1 = 1 + z cos = d(t 2 )/d(t 1 )

24 Because of expansion, in the past not only were things closer together, but photons each had more energy so it was hotter in the past. Photons lose energy and cool continuously as universe expands. Think how expansion and cooling has changed interaction of CMB photons & matter If photons had more energy, how might interactions with matter change?

25 A photon with a wavelength of 0.1 microns (10-7 m; UV) encounters a H atom. What happens? A. Nothing, the photon passes by B. The photon is absorbed by the atom C. The photon is scattered by the atom D. The photon and atom annihilate each other E. The atom loves the photon and eats it right up

26 Energy level diagram of Hydrogen What energy and wavelength does a photon need to ionize an H atom?

27 Energy level diagram of Hydrogen What energy and wavelength does a photon need to ionize an H atom? E > 13.6eV λ < 0.1 µm

28 when the cosmic photons had shorter wavelengths (& higher energies) in the early universe, they interacted strongly with matter! They were absorbed or scattered by interactions with atoms and electrons. imagine running the expansion backwards cosmic photons NOW don t ionize atoms but AT MUCH EARLIER TIME cosmic photons had enough energy to ionize atoms this means the universe was opaque to cosmic photons!!

29 Before recombination: era of nuclei (or plasma) After recombination: era of atoms

30 Before recombination After recombination

31 Q: When did the Cosmic Background Radiation have enough energy to ionize all the H in the universe? (i.e., enough photons with λ<0.1 µm) log I Intensity blackbody spectra of CMB at z=0 and z=1100 T=3000 K CMB, z=1100 T=2.7 K CMB, z=0 0.1µm 1µm 10µm 100µm 1mm log λ these photons have enough energy to ionize H atoms A: When T(CMB)=3000 K

32 T=3000K is sufficient to ionize all H in the universe. WHY? Since there are 10 9 cosmic photons for each atom, There are enough photons in the high energy tail of a 3000K photon distribution to ionize all the H in the universe

33 what was redshift z when cosmic photons had enough energy to ionize H? temperature of CMB was T = 3000K when cosmic photons had enough energy to ionize H T then = 3000K T now = 2.7K -> T was 1100 x higher what was redshift z? (use Wiens law) λ max,em = 0.29 / T then λ max,obs = 0.29 / T now λ obs / λ em = T then / T now for CMB photons

34 what was redshift z when cosmic photons had enough energy to ionize H? λ obs / λ em = T then / T now for CMB photons but we also know: λ obs / λ em = 1 + z thus 1 + z = T then / T now for CMB photons since T then / T now = 1100, 1 + z = 1100 à z= so cosmic photons originate from z=1100

35 what was redshift z when cosmic photons had enough energy to ionize H? temperature of CMB was T = 3000K when cosmic photons had enough energy to ionize H T then = 3000K T now = 2.7K -> T was 1100 x higher what was redshift z? (use Wiens law) λ max,em = 0.29 / T then λ max,obs = 0.29 / T now λ obs / λ em = T then / T now for CMB photons but we also know: λ obs / λ em = 1 + z thus 1 + z = T then / T now for CMB photons since T then / T now = 1100, 1 + z = 1100 à z= so cosmic photons originate from z=1100

36 What time does at z=1100 correspond to? t = 380,000 yr after the Big Bang (ABB)

37 What time does at z=1100 correspond to? t = 380,000 yr after the Big Bang (ABB) How do we know this? We figure out what z had to be at time of decoupling in order for cosmic photons to ionize all H (what we just did ) then get t from z and the cosmological parameters (H o, Ω m, Ω Λ )

38 Before recombination Matter is in the form of plasma (p s & e s) Cosmic photons collide with p s and e s, scattering them changing energy & direction Atoms can form but are quickly destroyed (ionized) by cosmic photons Cosmic photons had enough energy to ionize atoms Universe opaque to cosmic photons Matter & energy (cosmic photons) tightly coupled

39 Universe AT z=1100, T=3000K, t ABB =380,000 yr Cosmic photons suddenly no longer have enough energy to ionize atoms (due to expansion) p s & e s combine to form atoms (not ionized) era of recombination (combination?) era of decoupling (of matter & cosmic photons) Moment when universe changed from being opaque to transparent (for cosmic photons) all cosmic photons we see now were created or last scattered (direction or energy changed) at this time

40 observable universe = cosmic light horizon universe is now transparent to cosmic photons!

41

42 Things we learn from CMB Universe was once much hotter and denser than now (evidence for BIG BANG)

43 Things we learn from CMB We are not in special location in universe Where is the center??? NO CENTER of expansion at any one location in space --> Big Bang occurred in all of space at the same time with same intensity (what Einstein says in GR)

44 Things we learn from CMB Universe was once much more uniform than now (almost) no substructure in universe at early times

45 Things we learn from CMB Universe was once much more uniform than now. So when did stars, planets, galaxies, clusters, black holes ("structure") begin to form? Growth of structure (stars, galaxies, clusters ) in universe began in earnest only after decoupling (when CMB photons were made)

46 Things we learn from CMB Evidence for dark energy & inflation

47 Things we learn from CMB How space of universe is curved Positive (spherical) Negative (saddle) Zero curvature (flat) Types of possible curvatures for universe in General Relativity

48 Things we learn from CMB Universe was once much hotter and denser than now (evidence for BIG BANG) Universe was once much more uniform than now When structure (stars, galaxies, clusters ) in universe began to form Evidence for dark energy Evidence for inflation We are not in special location in universe (BIG BANG occurred in all of space at same time) How space of universe is curved

49 Although CMB is pretty isotropic (uniform to 99.9%), there are 2 small but important anisotropies a. dipole anisotropy Doppler shift, caused by motion of earth through space (& wrt CMB)

50 Map of Cosmic Background Radiation over whole sky Map of Cosmic Background Radiation over whole sky

51 90% of average signal removed 90% of average signal removed

52 99% of average signal removed 90% of average signal removed

53 99.9% of average signal removed 99.9% of average signal removed a Dipole pattern remains!! a Dipole pattern remains!! (all of sky shown)

54 FULL RANGE K temperature of CMB photons 0 K position in sky

55 FULL RANGE K temperature of CMB photons zoom in 0 K position in sky

56 90% OF RANGE REMOVED K temperature of CMB photons 2.46 K position in sky

57 90% OF RANGE REMOVED K temperature of CMB photons zoom in 2.46 K position in sky

58 99% OF RANGE REMOVED K temperature of CMB photons K position in sky

59 99% OF RANGE REMOVED K temperature of CMB photons zoom in K position in sky

60 temperature of CMB photons 99.9% OF RANGE REMOVED K K K K position in sky sinusoidal variation across sky

61 temperature of CMB photons K 99.9% OF RANGE REMOVED red regions K K blue regions K position in sky sinusoidal variation across sky

62 K K 99.9% of average signal removed 99.9% of average signal removed a Dipole pattern remains!! a Dipole pattern remains!! (all of sky shown)

63 toward Aquarius toward Leo 180 apart on sky (opposite sides of sky) 99.9% of average signal removed 99.9% of average signal removed a Dipole pattern remains!! a Dipole pattern remains!! (all of sky shown)

64 Doppler shift origin of the dipole pattern in the CMB in direction of Aquarius in direction of Leo

65 temperature of CMB photons 99.9% OF RANGE REMOVED K K K K position in sky sinusoidal variation across sky exactly what is expected from Doppler shift

66 CMB spectrum slightly blueshifted toward Leo CMB spectrum slightly redshifted toward Aquarius log I Intensity Leo average Δλ Aquarius difference is exaggerated λ L λ av λ A log λ this is Doppler shift caused by motion of earth wrt CMB Δλ /λ avg = v / c = = 1.2x10-3 V earth,cmb = c = 370 km/sec

67 Dipole Anisotropy in CMB arises from earth s motion caused by gravitational pull of different objects Earth around sun 30 km/s

68 Dipole Anisotropy in CMB arises from earth s motion caused by gravitational pull of different objects Earth around sun Sun around center of MW 30 km/s 220 km/s In different directions!

69 Dipole Anisotropy in CMB arises from earth s motion caused by gravitational pull of different objects Earth around sun Sun around center of MW 30 km/s 220 km/s In different directions!

70 Dipole Anisotropy in CMB arises from earth s motion caused by gravitational pull of different objects Earth around sun Sun around center of MW MW toward Virgo cluster 30 km/s 220 km/s 350 km/s

71 Dipole Anisotropy in CMB arises from earth s motion caused by gravitational pull of different objects Earth around sun 30 km/s Sun around center of MW 220 km/s MW toward Virgo cluster 350 km/s MW+VC toward Great Attractor 620 km/s

72 Dipole Anisotropy in CMB arises from earth s motion caused by gravitational pull of different objects Earth around sun Sun around center of MW MW toward Virgo cluster 30 km/s 220 km/s 350 km/s MW+VC toward Great Attractor 620 km/s Pulls are in different directions so net motion is 370 km/s toward Leo (in between Virgo & Great Attractor)

73 Map of nearby galaxies showing Great Attractor (biggest nearby supercluster)

74 The density of nearby universe & The Great Attractor supercluster Red = more dense Blue = less dense Great Attractor is 150 MLY from earth

75 Dipole Anisotropy in CMB Perfect dipole pattern (sinusodial variation) across sky tells us this is due to our motion w.r.t. CMB

76 Dipole Anisotropy in CMB Perfect dipole pattern (sinusodial variation) across sky tells us this is due to our motion w.r.t. CMB Caused by our galaxy being pulled by gravity of nearby clusters & superclusters

77 Dipole Anisotropy in CMB Perfect dipole pattern (sinusodial variation) across sky tells us this is due to our motion w.r.t. CMB Caused by our galaxy being pulled by gravity of nearby clusters & superclusters Provide us with a way to measure our motion with respect to the absolute frame of reference of expanding space itself

78 Final Exam: Friday June 29 at 2-5pm in Watson A48 What the Final Exam will emphasize: Classroom lectures (starting FRI June 8 thru the end of the semester) Homeworks #5 - #10 Assigned Readings in Universe -- for lectures There is some overlap with the first exam. Topically, you are responsible for everything starting with the Milky Way Galaxy. While material from the first few weeks of the course will not be emphasized on the exam, you are responsible for knowing things from these first few weeks that become relevant for later material, e.g., Newton's Laws, properties of light, electromagnetic spectrum, blackbody radiation, atoms, HR diagram, mass-lifetime relation for stars. Try the Practice Exam! (on canvas & class website)

The Early Universe and the Big Bang

The Early Universe and the Big Bang The Early Universe and the Big Bang Class 24 Prof J. Kenney June 28, 2018 Final Exam: Friday June 29 at 2-5pm in Watson A48 What the Final Exam will emphasize: Classroom lectures 10-24 (starting FRI June

More information

Chapter 22 Lecture. The Cosmic Perspective. Seventh Edition. The Birth of the Universe Pearson Education, Inc.

Chapter 22 Lecture. The Cosmic Perspective. Seventh Edition. The Birth of the Universe Pearson Education, Inc. Chapter 22 Lecture The Cosmic Perspective Seventh Edition The Birth of the Universe The Birth of the Universe 22.1 The Big Bang Theory Our goals for learning: What were conditions like in the early universe?

More information

Olbers Paradox. Lecture 14: Cosmology. Resolutions of Olbers paradox. Cosmic redshift

Olbers Paradox. Lecture 14: Cosmology. Resolutions of Olbers paradox. Cosmic redshift Lecture 14: Cosmology Olbers paradox Redshift and the expansion of the Universe The Cosmological Principle Ω and the curvature of space The Big Bang model Primordial nucleosynthesis The Cosmic Microwave

More information

26. Cosmology. Significance of a dark night sky. The Universe Is Expanding

26. Cosmology. Significance of a dark night sky. The Universe Is Expanding 26. Cosmology Significance of a dark night sky The Universe is expanding The Big Bang initiated the expanding Universe Microwave radiation evidence of the Big Bang The Universe was initially hot & opaque

More information

Implications of the Hubble Law: - it is not static, unchanging - Universe had a beginning!! - could not have been expanding forever HUBBLE LAW:

Implications of the Hubble Law: - it is not static, unchanging - Universe had a beginning!! - could not have been expanding forever HUBBLE LAW: Cosmology and the Evolution of the Universe Edwin Hubble, 1929: -almost all galaxies have a redshift -moving away from us -greater distance greater redshift Implications of the Hubble Law: - Universe is

More information

Cosmology and the Evolution of the Universe. Implications of the Hubble Law: - Universe is changing (getting bigger!) - it is not static, unchanging

Cosmology and the Evolution of the Universe. Implications of the Hubble Law: - Universe is changing (getting bigger!) - it is not static, unchanging Cosmology and the Evolution of the Edwin Hubble, 1929: -almost all galaxies have a redshift -moving away from us -exceptions in Local Group -with distance measurements - found a relationship greater distance

More information

The Cosmic Microwave Background

The Cosmic Microwave Background The Cosmic Microwave Background The Cosmic Microwave Background Key Concepts 1) The universe is filled with a Cosmic Microwave Background (CMB). 2) The microwave radiation that fills the universe is nearly

More information

Astronomy 162, Week 10 Cosmology Patrick S. Osmer Spring, 2006

Astronomy 162, Week 10 Cosmology Patrick S. Osmer Spring, 2006 Astronomy 162, Week 10 Cosmology Patrick S. Osmer Spring, 2006 Information Makeup quiz Wednesday, May 31, 5-6PM, Planetarium Review Session, Monday, June 5 6PM, Planetarium Cosmology Study of the universe

More information

Homework 6 Name: Due Date: June 9, 2008

Homework 6 Name: Due Date: June 9, 2008 Homework 6 Name: Due Date: June 9, 2008 1. Where in the universe does the general expansion occur? A) everywhere in the universe, including our local space upon Earth, the solar system, our galaxy and

More information

The Expanding Universe

The Expanding Universe Announcements (this page posted as part of lecture notes on Angel) Homework 7 due late at night Monday April 23 (6:30AM Apr 24) Homework 8 now available on Angel Due late at night Friday April 27 (6:30AM

More information

Astronomy 210 Final. Astronomy: The Big Picture. Outline

Astronomy 210 Final. Astronomy: The Big Picture. Outline Astronomy 210 Final This Class (Lecture 40): The Big Bang Next Class: The end HW #11 Due next Weds. Final is May 10 th. Review session: May 6 th or May 9 th? Designed to be 2 hours long 1 st half is just

More information

Astronomy 113. Dr. Joseph E. Pesce, Ph.D Joseph E. Pesce, Ph.D.

Astronomy 113. Dr. Joseph E. Pesce, Ph.D Joseph E. Pesce, Ph.D. Astronomy 113 Dr. Joseph E. Pesce, Ph.D. The Big Bang & Matter 17-2 Cosmology ³ The study of the origins, structure, and evolution of the universe ³ Key moments: ² Einstein General Theory of Relativity

More information

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. The Big Bang & Matter. Olber s Paradox. Cosmology. Olber s Paradox. Assumptions 4/20/18

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. The Big Bang & Matter. Olber s Paradox. Cosmology. Olber s Paradox. Assumptions 4/20/18 Astronomy 113 Dr. Joseph E. Pesce, Ph.D. The Big Bang & Matter Cosmology ³The study of the origins, structure, and evolution of the universe ³Key moments: ²Einstein General Theory of Relativity ²Hubble

More information

Island Universes. Up to 1920 s, many thought that Milky Way encompassed entire universe.

Island Universes. Up to 1920 s, many thought that Milky Way encompassed entire universe. Island Universes Up to 1920 s, many thought that Milky Way encompassed entire universe. Observed three types of nebulas (clouds): - diffuse, spiral, elliptical - many were faint, indistinct - originally

More information

Astronomy 422. Lecture 20: Cosmic Microwave Background

Astronomy 422. Lecture 20: Cosmic Microwave Background Astronomy 422 Lecture 20: Cosmic Microwave Background Key concepts: The CMB Recombination Radiation and matter eras Next time: Astro 422 Peer Review - Make sure to read all 6 proposals and send in rankings

More information

The Expanding Universe

The Expanding Universe Cosmology Expanding Universe History of the Universe Cosmic Background Radiation The Cosmological Principle Cosmology and General Relativity Dark Matter and Dark Energy Primitive Cosmology If the universe

More information

Hubble's Law. H o = 71 km/s / Mpc. The further a galaxy is away, the faster it s moving away from us. V = H 0 D. Modern Data.

Hubble's Law. H o = 71 km/s / Mpc. The further a galaxy is away, the faster it s moving away from us. V = H 0 D. Modern Data. Cosmology Cosmology is the study of the origin and evolution of the Universe, addressing the grandest issues: How "big" is the Universe? Does it have an "edge"? What is its large-scale structure? How did

More information

Chapter 17 Cosmology

Chapter 17 Cosmology Chapter 17 Cosmology Over one thousand galaxies visible The Universe on the Largest Scales No evidence of structure on a scale larger than 200 Mpc On very large scales, the universe appears to be: Homogenous

More information

A100 Exploring the Universe Big Bang Theory and the Early Universe. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe Big Bang Theory and the Early Universe. Martin D. Weinberg UMass Astronomy A100 Exploring the Universe and the Martin D. Weinberg UMass Astronomy astron100-mdw@courses.umass.edu December 02, 2014 Read: Chap 23 12/04/14 slide 1 Assignment on Chaps 22 23, at the end of next week,

More information

II. The Universe Around Us. ASTR378 Cosmology : II. The Universe Around Us 23

II. The Universe Around Us. ASTR378 Cosmology : II. The Universe Around Us 23 II. The Universe Around Us ASTR378 Cosmology : II. The Universe Around Us 23 Some Units Used in Astronomy 1 parsec distance at which parallax angle is 1 ; 1 pc = 3.086 10 16 m ( 3.26 light years; 1 kpc

More information

Lecture #24: Plan. Cosmology. Expansion of the Universe Olber s Paradox Birth of our Universe

Lecture #24: Plan. Cosmology. Expansion of the Universe Olber s Paradox Birth of our Universe Lecture #24: Plan Cosmology Expansion of the Universe Olber s Paradox Birth of our Universe Reminder: Redshifts and the Expansion of the Universe Early 20 th century astronomers noted: Spectra from most

More information

Lecture 03. The Cosmic Microwave Background

Lecture 03. The Cosmic Microwave Background The Cosmic Microwave Background 1 Photons and Charge Remember the lectures on particle physics Photons are the bosons that transmit EM force Charged particles interact by exchanging photons But since they

More information

The Science Missions of Columbia

The Science Missions of Columbia The Science Missions of Columbia Tools for Viewing The Universe Tools for Viewing The Universe & Columbia Shuttle Added Corrective Optics to the Hubble Space Telescope Hubble Discovers a New View of The

More information

v = H o d Hubble s Law: Distant galaxies move away fastest Velocity (v) is proportional to Distance (d):

v = H o d Hubble s Law: Distant galaxies move away fastest Velocity (v) is proportional to Distance (d): Hubble s Law: Distant galaxies move away fastest Velocity (v) is proportional to Distance (d): v = H o d The Hubble Constant was measured after decades of observation: H 0 = 70 km/s/mpc Velocity (km/s)

More information

Five pieces of evidence for a Big Bang 1. Expanding Universe

Five pieces of evidence for a Big Bang 1. Expanding Universe Five pieces of evidence for a Big Bang 1. Expanding Universe More distant galaxies have larger doppler shifts to the red, so moving faster away from us redshift = z = (λ λ 0 )/λ 0 λ 0 = wavelength at rest

More information

Chapter 26: Cosmology

Chapter 26: Cosmology Chapter 26: Cosmology Cosmology means the study of the structure and evolution of the entire universe as a whole. First of all, we need to know whether the universe has changed with time, or if it has

More information

Galaxy A has a redshift of 0.3. Galaxy B has a redshift of 0.6. From this information and the existence of the Hubble Law you can conclude that

Galaxy A has a redshift of 0.3. Galaxy B has a redshift of 0.6. From this information and the existence of the Hubble Law you can conclude that Galaxy A has a redshift of 0.3. Galaxy B has a redshift of 0.6. From this information and the existence of the Hubble Law you can conclude that A) Galaxy B is two times further away than Galaxy A. B) Galaxy

More information

Modeling the Universe A Summary

Modeling the Universe A Summary Modeling the Universe A Summary Questions to Consider 1. What does the darkness of the night sky tell us about the nature of the universe? 2. As the universe expands, what, if anything, is it expanding

More information

The first 400,000 years

The first 400,000 years The first 400,000 years All about the Big Bang Temperature Chronology of the Big Bang The Cosmic Microwave Background (CMB) The VERY early universe Our Evolving Universe 1 Temperature and the Big Bang

More information

Early (Expanding) Universe. Average temperature decreases with expansion.

Early (Expanding) Universe. Average temperature decreases with expansion. Early (Expanding) Universe Average temperature decreases with expansion. Particles & Anti-Particles Very short wavelength photons collide and form electron-positron pairs. E=mc 2 electron=matter positron=antimatter

More information

Astronomy 114. Lecture35:TheBigBang. Martin D. Weinberg. UMass/Astronomy Department

Astronomy 114. Lecture35:TheBigBang. Martin D. Weinberg. UMass/Astronomy Department Astronomy 114 Lecture35:TheBigBang Martin D. Weinberg weinberg@astro.umass.edu UMass/Astronomy Department A114: Lecture 35 09 May 2005 Read: Ch. 28,29 Astronomy 114 1/18 Announcements PS#8 due Monday!

More information

COSMOLOGY The Universe what is its age and origin?

COSMOLOGY The Universe what is its age and origin? COSMOLOGY The Universe what is its age and origin? REVIEW (SUMMARY) Oppenheimer Volkhoff limit: upper limit to mass of neutron star remnant more than 1.4 M à neutron degeneracy Supernova à extremely dense

More information

The Beginning of the Universe 8/11/09. Astronomy 101

The Beginning of the Universe 8/11/09. Astronomy 101 The Beginning of the Universe 8/11/09 Astronomy 101 Astronomy Picture of the Day Astronomy 101 Outline for Today Astronomy Picture of the Day Return Lab 11 Astro News Q&A Session Dark Energy Cosmic Microwave

More information

Chapter 18. Cosmology in the 21 st Century

Chapter 18. Cosmology in the 21 st Century Chapter 18 Cosmology in the 21 st Century Guidepost This chapter marks a watershed in our study of astronomy. Since Chapter 1, our discussion has focused on learning to understand the universe. Our outward

More information

The Early Universe: A Journey into the Past

The Early Universe: A Journey into the Past Gravity: Einstein s General Theory of Relativity The Early Universe A Journey into the Past Texas A&M University March 16, 2006 Outline Gravity: Einstein s General Theory of Relativity Galileo and falling

More information

The Contents of the Universe (or/ what do we mean by dark matter and dark energy?)

The Contents of the Universe (or/ what do we mean by dark matter and dark energy?) The Contents of the Universe (or/ what do we mean by dark matter and dark energy?) Unseen Influences Dark Matter: An undetected form of mass that emits little or no light but whose existence we infer from

More information

The Early Universe: A Journey into the Past

The Early Universe: A Journey into the Past The Early Universe A Journey into the Past Texas A&M University March 16, 2006 Outline Galileo and falling bodies Galileo Galilei: all bodies fall at the same speed force needed to accelerate a body is

More information

Cosmology: The Origin and Evolution of the Universe Chapter Twenty-Eight. Guiding Questions

Cosmology: The Origin and Evolution of the Universe Chapter Twenty-Eight. Guiding Questions Cosmology: The Origin and Evolution of the Universe Chapter Twenty-Eight Guiding Questions 1. What does the darkness of the night sky tell us about the nature of the universe? 2. As the universe expands,

More information

Astronomy: The Big Picture. Outline. What does Hubble s Law mean?

Astronomy: The Big Picture. Outline. What does Hubble s Law mean? Last Homework is due Friday 11:50 am Honor credit need to have those papers this week! Estimated grades are posted. Does not include HW 8 or Extra Credit THE FINAL IS DECEMBER 15 th : 7-10pm! Astronomy:

More information

What is the evidence that Big Bang really occurred

What is the evidence that Big Bang really occurred What is the evidence that Big Bang really occurred Hubble expansion of galaxies Microwave Background Abundance of light elements but perhaps most fundamentally... Darkness of the night sky!! The very darkness

More information

Astronomy 150: Killer Skies Lecture 35, April 23

Astronomy 150: Killer Skies Lecture 35, April 23 Assignments: ICES available online Astronomy 150: Killer Skies Lecture 35, April 23 HW11 due next Friday: last homework! note: lowest HW score dropped but: HW11 material will be on Exam 3, so be sure to

More information

A100H Exploring the Universe: Big Bang Theory. Martin D. Weinberg UMass Astronomy

A100H Exploring the Universe: Big Bang Theory. Martin D. Weinberg UMass Astronomy A100H Exploring the : Martin D. Weinberg UMass Astronomy astron100h-mdw@courses.umass.edu April 21, 2016 Read: Chap 23 04/26/16 slide 1 Early Final Exam: Friday 29 Apr at 10:30 am 12:30 pm, here! Emphasizes

More information

Cosmology. An Analogy 11/28/2010. Cosmology Study of the origin, evolution and future of the Universe

Cosmology. An Analogy 11/28/2010. Cosmology Study of the origin, evolution and future of the Universe Cosmology Cosmology Study of the origin, evolution and future of the Universe Obler s Paradox If the Universe is infinite why is the sky dark at night? Newtonian Universe The Universe is infinite and unchanging

More information

Announcements. Homework. Set 8now open. due late at night Friday, Dec 10 (3AM Saturday Nov. 11) Set 7 answers on course web site.

Announcements. Homework. Set 8now open. due late at night Friday, Dec 10 (3AM Saturday Nov. 11) Set 7 answers on course web site. Homework. Set 8now. due late at night Friday, Dec 10 (3AM Saturday Nov. 11) Set 7 answers on course web site. Review for Final. In class on Thursday. Course Evaluation. https://rateyourclass.msu.edu /

More information

Lecture 17: the CMB and BBN

Lecture 17: the CMB and BBN Lecture 17: the CMB and BBN As with all course material (including homework, exams), these lecture notes are not be reproduced, redistributed, or sold in any form. Peering out/back into the Universe As

More information

Large Scale Structure in the Universe

Large Scale Structure in the Universe Large Scale Structure in the Universe We seem to be located at the edge of a Local Supercluster, which contains dozens of clusters and groups over a 40 Mpc region. Galaxies and clusters seem to congregate

More information

The Dawn of Time - II. A Cosmos is Born

The Dawn of Time - II. A Cosmos is Born The Dawn of Time - II. A Cosmos is Born Learning Objectives! Why does Olbers paradox show the Universe began?! How does Hubble s Law tell us the age of the Universe? If Hubble s Constant is large, is the

More information

The Big Bang. Olber s Paradox. Hubble s Law. Why is the night sky dark? The Universe is expanding and We cannot see an infinite Universe

The Big Bang. Olber s Paradox. Hubble s Law. Why is the night sky dark? The Universe is expanding and We cannot see an infinite Universe The Big Bang Olber s Paradox Why is the night sky dark? The Universe is expanding and We cannot see an infinite Universe Hubble s Law v = H0 d v = recession velocity in km/sec d = distance in Mpc H 0 =

More information

Energy Source for Active Galactic Nuclei

Energy Source for Active Galactic Nuclei Quasars Quasars are small, extremely luminous, extremely distant galactic nuclei Bright radio sources Name comes from Quasi-Stellar Radio Source, as they appeared to be stars! Can have clouds of gas near

More information

Cosmology. Chapter 18. Cosmology. Observations of the Universe. Observations of the Universe. Motion of Galaxies. Cosmology

Cosmology. Chapter 18. Cosmology. Observations of the Universe. Observations of the Universe. Motion of Galaxies. Cosmology Cosmology Chapter 18 Cosmology Cosmology is the study of the structure and evolution of the Universe as a whole How big is the Universe? What shape is it? How old is it? How did it form? What will happen

More information

Astronomy 122 Outline

Astronomy 122 Outline Astronomy 122 Outline This Class (Lecture 26): The Primeval Fireball Next Class: Dark Matter & Dark Energy ICES Form!!! HW10 due Friday Hubble s Law implications An expanding Universe! Run in movie in

More information

Expanding Universe. 1) Hubble s Law 2) Expanding Universe 3) Fate of the Universe. Final Exam will be held in Ruby Diamond Auditorium

Expanding Universe. 1) Hubble s Law 2) Expanding Universe 3) Fate of the Universe. Final Exam will be held in Ruby Diamond Auditorium Expanding Universe November 20, 2002 1) Hubble s Law 2) Expanding Universe 3) Fate of the Universe Final Exam will be held in Ruby Diamond Auditorium NOTE THIS!!! not UPL Dec. 11, 2002 10am-noon Review

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 10 Nov. 11, 2015 Today Hot Big Bang I: Cosmic Microwave Background Assignments This week: read Hawley and Holcomb, Chapter

More information

Introduction and Fundamental Observations

Introduction and Fundamental Observations Notes for Cosmology course, fall 2005 Introduction and Fundamental Observations Prelude Cosmology is the study of the universe taken as a whole ruthless simplification necessary (e.g. homogeneity)! Cosmology

More information

ASTR 101 General Astronomy: Stars & Galaxies

ASTR 101 General Astronomy: Stars & Galaxies ASTR 101 General Astronomy: Stars & Galaxies ANNOUNCEMENTS MIDTERM III: Tuesday, Nov 24 th Midterm alternate day: Fri, Nov 20th, 11am, ESS 450 At LAST: In the very Beginning BIG BANG: beginning of Time

More information

FURTHER COSMOLOGY Book page T H E M A K E U P O F T H E U N I V E R S E

FURTHER COSMOLOGY Book page T H E M A K E U P O F T H E U N I V E R S E FURTHER COSMOLOGY Book page 675-683 T H E M A K E U P O F T H E U N I V E R S E COSMOLOGICAL PRINCIPLE Is the Universe isotropic or homogeneous? There is no place in the Universe that would be considered

More information

The Big Bang Theory. Rachel Fludd and Matthijs Hoekstra

The Big Bang Theory. Rachel Fludd and Matthijs Hoekstra The Big Bang Theory Rachel Fludd and Matthijs Hoekstra Theories from Before the Big Bang came from a black hole from another universe? our universe is part of a multiverse? just random particles? The Big

More information

Astronomy Hour Exam 2 March 10, 2011 QUESTION 1: The half-life of Ra 226 (radium) is 1600 years. If you started with a sample of 100 Ra 226

Astronomy Hour Exam 2 March 10, 2011 QUESTION 1: The half-life of Ra 226 (radium) is 1600 years. If you started with a sample of 100 Ra 226 Astronomy 101.003 Hour Exam 2 March 10, 2011 QUESTION 1: The half-life of Ra 226 (radium) is 1600 years. If you started with a sample of 100 Ra 226 atoms, approximately how many Ra 226 atoms would be left

More information

Big Bang Theory PowerPoint

Big Bang Theory PowerPoint Big Bang Theory PowerPoint Name: # Period: 1 2 3 4 5 6 Recombination Photon Epoch Big Bang Nucleosynthesis Hadron Epoch Hadron Epoch Quark Epoch The Primordial Era Electroweak Epoch Inflationary Epoch

More information

n=0 l (cos θ) (3) C l a lm 2 (4)

n=0 l (cos θ) (3) C l a lm 2 (4) Cosmic Concordance What does the power spectrum of the CMB tell us about the universe? For that matter, what is a power spectrum? In this lecture we will examine the current data and show that we now have

More information

Today. life the university & everything. Reminders: Review Wed & Fri Eyes to the web Final Exam Tues May 3 Check in on accomodations

Today. life the university & everything. Reminders: Review Wed & Fri Eyes to the web Final Exam Tues May 3 Check in on accomodations life the university & everything Phys 2130 Day 41: Questions? The Universe Reminders: Review Wed & Fri Eyes to the web Final Exam Tues May 3 Check in on accomodations Today Today: - how big is the universe?

More information

John Mather Visit Nobel Prize in Physics 2006 for Cosmic Microwave Background measurements

John Mather Visit Nobel Prize in Physics 2006 for Cosmic Microwave Background measurements John Mather Visit Nobel Prize in Physics 006 for Cosmic Microwave Background measurements NEXT WEEK Wednesday :0-:00 BPS 00 BS session with astro students & faculty. Wednesday 8PM BPS 0 (refreshments at

More information

Light. Transverse electromagnetic wave, or electromagnetic radiation. Includes radio waves, microwaves, infra-red, visible, UV, X-rays, and gamma rays

Light. Transverse electromagnetic wave, or electromagnetic radiation. Includes radio waves, microwaves, infra-red, visible, UV, X-rays, and gamma rays Light Transverse electromagnetic wave, or electromagnetic radiation Includes radio waves, microwaves, infra-red, visible, UV, X-rays, and gamma rays The type of light is determined purely by wavelength.

More information

Origin, early history, and fate of the Universe Does the Universe have a beginning? An end? What physics processes caused the Universe to be what it

Origin, early history, and fate of the Universe Does the Universe have a beginning? An end? What physics processes caused the Universe to be what it Cosmology Origin, early history, and fate of the Universe Does the Universe have a beginning? An end? What physics processes caused the Universe to be what it is? Are other universes possible? Would they

More information

The Classification of Galaxies

The Classification of Galaxies Admin. 11/9/17 1. Class website http://www.astro.ufl.edu/~jt/teaching/ast1002/ 2. Optional Discussion sections: Tue. ~11.30am (period 5), Bryant 3; Thur. ~12.30pm (end of period 5 and period 6), start

More information

Lecture 37 Cosmology [not on exam] January 16b, 2014

Lecture 37 Cosmology [not on exam] January 16b, 2014 1 Lecture 37 Cosmology [not on exam] January 16b, 2014 2 Structure of the Universe Does clustering of galaxies go on forever? Looked at very narrow regions of space to far distances. On large scales the

More information

Cosmology: The History of the Universe

Cosmology: The History of the Universe Cosmology: The History of the Universe The Universe originated in an explosion called the Big Bang. Everything started out 13.7 billion years ago with zero size and infinite temperature. Since then, it

More information

Brief Introduction to Cosmology

Brief Introduction to Cosmology Brief Introduction to Cosmology Matias Zaldarriaga Harvard University August 2006 Basic Questions in Cosmology: How does the Universe evolve? What is the universe made off? How is matter distributed? How

More information

AST Cosmology and extragalactic astronomy. Lecture 1. Introduction/Background

AST Cosmology and extragalactic astronomy. Lecture 1. Introduction/Background AST4320 - Cosmology and extragalactic astronomy Lecture 1 Introduction/Background 1 Relevant information: Pre-Midterm Schedule Week 1 (22/8-26/8) Week 2 (29/8-02/9) Lecture 1,2 Week 3 (05/9-09/9) Lecture

More information

i>clicker Quiz #14 Which of the following statements is TRUE?

i>clicker Quiz #14 Which of the following statements is TRUE? i>clicker Quiz #14 Which of the following statements is TRUE? A. Hubble s discovery that most distant galaxies are receding from us tells us that we are at the center of the Universe B. The Universe started

More information

Class 5 Cosmology Large-Scale Structure of the Universe What do we see? Big Bang Cosmology What model explains what we see?

Class 5 Cosmology Large-Scale Structure of the Universe What do we see? Big Bang Cosmology What model explains what we see? Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

More information

The expansion of the Universe, and the big bang

The expansion of the Universe, and the big bang The expansion of the Universe, and the big bang Q: What is Hubble s law? A. The larger the galaxy, the faster it is moving way from us. B. The farther away the galaxy, the faster it is moving away from

More information

Hubble s Law. Our goals for learning. What is Hubble s Law? How do distance measurements tell us the age of the universe?

Hubble s Law. Our goals for learning. What is Hubble s Law? How do distance measurements tell us the age of the universe? Hubble s Law Our goals for learning What is Hubble s Law? How do distance measurements tell us the age of the universe? How does the universe s expansion affect our distance measurements? We measure speeds

More information

Cosmology. Clusters of galaxies. Redshift. Late 1920 s: Hubble plots distances versus velocities of galaxies. λ λ. redshift =

Cosmology. Clusters of galaxies. Redshift. Late 1920 s: Hubble plots distances versus velocities of galaxies. λ λ. redshift = Cosmology Study of the structure and origin of the universe Observational science The large-scale distribution of galaxies Looking out to extremely large distances The motions of galaxies Clusters of galaxies

More information

BROCK UNIVERSITY. Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015

BROCK UNIVERSITY. Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015 BROCK UNIVERSITY Page 1 of 9 Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015 Number of hours: 50 min Time of Examination: 18:00 18:50

More information

What forms AGN Jets? Magnetic fields are ferociously twisted in the disk.

What forms AGN Jets? Magnetic fields are ferociously twisted in the disk. What forms AGN Jets? Magnetic fields are ferociously twisted in the disk. Charged particles are pulled out of the disk and accelerated like a sling-shot. Particles are bound to the magnetic fields, focussed

More information

Cosmology: Building the Universe.

Cosmology: Building the Universe. Cosmology: Building the Universe. The term has several different meanings. We are interested in physical cosmology - the study of the origin and development of the physical universe, and all the structure

More information

Cosmology. Big Bang and Inflation

Cosmology. Big Bang and Inflation Cosmology Big Bang and Inflation What is the Universe? Everything we can know about is part of the universe. Everything we do know about is part of the universe. Everything! The Universe is expanding If

More information

The Universe: What We Know and What we Don t. Fundamental Physics Cosmology Elementary Particle Physics

The Universe: What We Know and What we Don t. Fundamental Physics Cosmology Elementary Particle Physics The Universe: What We Know and What we Don t Fundamental Physics Cosmology Elementary Particle Physics 1 Cosmology Study of the universe at the largest scale How big is the universe? Where What Are did

More information

Chapter 23 The Beginning of Time. Agenda. Presentation Tips. What were conditions like in the early universe? 23.1 The Big Bang.

Chapter 23 The Beginning of Time. Agenda. Presentation Tips. What were conditions like in the early universe? 23.1 The Big Bang. Chapter 23 The Beginning of Time Agenda Announce: Observation April 19 Thursday 8pm APS Meeting April 17 no class (instead Fate of the Universe tutorial Presentation Tips Ch. 23 Presentation Tips Limit

More information

ASTR 1120 General Astronomy: Stars & Galaxies. OUR Universe: Accelerating Universe

ASTR 1120 General Astronomy: Stars & Galaxies. OUR Universe: Accelerating Universe ASTR 1120 General Astronomy: Stars & Galaxies FINAL: Saturday, Dec 12th, 7:30pm, HERE ALTERNATE FINAL: Monday, Dec 7th, 5:30pm in Muenzinger E131 Last OBSERVING session, Tue, Dec.8th, 7pm Please check

More information

Astro-2: History of the Universe

Astro-2: History of the Universe Astro-2: History of the Universe Lecture 13; May 30 2013 Previously on astro-2 Energy and mass are equivalent through Einstein s equation and can be converted into each other (pair production and annihilations)

More information

The Big Bang. Mr. Mike Partridge Earth & Space Science J.H. Reagan High School, Houston, TX

The Big Bang. Mr. Mike Partridge Earth & Space Science J.H. Reagan High School, Houston, TX The Big Bang Mr. Mike Partridge Earth & Space Science J.H. Reagan High School, Houston, TX Notes Outlines Theories of the Universe Static Universe What is the Big Bang Theory What is the evidence supporting

More information

Lecture 32: Astronomy 101

Lecture 32: Astronomy 101 Lecture 32: Evidence for the Big Bang Astronomy 101 The Three Pillars of the Big Bang Threefundamental pieces of evidence: Expansion of the Universe: Explains Hubble s Law Primordial Nucleosynthesis: Formation

More information

Chapter 21 Evidence of the Big Bang. Expansion of the Universe. Big Bang Theory. Age of the Universe. Hubble s Law. Hubble s Law

Chapter 21 Evidence of the Big Bang. Expansion of the Universe. Big Bang Theory. Age of the Universe. Hubble s Law. Hubble s Law Chapter 21 Evidence of the Big Bang Hubble s Law Universal recession: Slipher (1912) and Hubble found that all galaxies seem to be moving away from us: the greater the distance, the higher the redshift

More information

The Big Bang The Beginning of Time

The Big Bang The Beginning of Time The Big Bang The Beginning of Time What were conditions like in the early universe? The early universe must have been extremely hot and dense Photons converted into particle-antiparticle pairs and vice-versa

More information

If there is an edge to the universe, we should be able to see our way out of the woods. Olber s Paradox. This is called Olber s Paradox

If there is an edge to the universe, we should be able to see our way out of the woods. Olber s Paradox. This is called Olber s Paradox Suppose the Universe were not expanding, but was in some kind of steady state. How should galaxy recession velocities correlate with distance? They should a) be directly proportional to distance. b) reverse

More information

Cosmic Microwave Background

Cosmic Microwave Background Cosmic Microwave Background Following recombination, photons that were coupled to the matter have had very little subsequent interaction with matter. Now observed as the cosmic microwave background. Arguably

More information

OUSSEP Final Week. If we run out of time you can look at uploaded slides Pearson Education, Inc.

OUSSEP Final Week. If we run out of time you can look at uploaded slides Pearson Education, Inc. OUSSEP Final Week Last week hopefully read Holiday-Week 23rd November Lecture notes Hand in your Hubble Deep Field Reports today! (If not today then in my mail box @ International College.) Today we will

More information

Lecture Outlines. Chapter 26. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 26. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 26 Astronomy Today 8th Edition Chaisson/McMillan Chapter 26 Cosmology Units of Chapter 26 26.1 The Universe on the Largest Scales 26.2 The Expanding Universe 26.3 The Fate of the

More information

The Universe. Unit 3 covers the following framework standards: ES 8 and 12. Content was adapted the following:

The Universe. Unit 3 covers the following framework standards: ES 8 and 12. Content was adapted the following: Unit 3 The Universe Chapter 4 ~ The Formation of the Universe o Section 1 ~ The Scale of the Universe o Section 2 ~ The Formation of the Universe o Section 3 ~ The Future of the Universe Chapter 5 ~ Galaxies

More information

Inflationary Universe and. Quick survey about iclickers Review of Big Bang model of universe Review of Evidence for Big Bang Examining Inflation

Inflationary Universe and. Quick survey about iclickers Review of Big Bang model of universe Review of Evidence for Big Bang Examining Inflation Inflationary Universe and Quick survey about iclickers Review of Big Bang model of universe Review of Evidence for Big Bang Examining Inflation Survey questions 1. The iclickers used in class encouraged

More information

Survey questions. Inflationary Universe and. Survey Questions. Survey questions. Survey questions

Survey questions. Inflationary Universe and. Survey Questions. Survey questions. Survey questions Inflationary Universe and Quick survey about iclickers Review of Big Bang model of universe Review of Evidence for Big Bang Examining Inflation Survey questions 1. The iclickers used in class encouraged

More information

Testing the Big Bang Idea

Testing the Big Bang Idea Reading: Chapter 29, Section 29.2-29.6 Third Exam: Tuesday, May 1 12:00-2:00 COURSE EVALUATIONS - please complete these online (recitation and lecture) Last time: Cosmology I - The Age of the & the Big

More information

(Astronomy for Dummies) remark : apparently I spent more than 1 hr giving this lecture

(Astronomy for Dummies) remark : apparently I spent more than 1 hr giving this lecture (Astronomy for Dummies) remark : apparently I spent more than 1 hr giving this lecture A.D. 125? Ptolemy s geocentric model Planets ( ) wander among stars ( ) For more info: http://aeea.nmns.edu.tw/aeea/contents_list/universe_concepts.html

More information

Introduction. How did the universe evolve to what it is today?

Introduction. How did the universe evolve to what it is today? Cosmology 8 1 Introduction 8 2 Cosmology: science of the universe as a whole How did the universe evolve to what it is today? Based on four basic facts: The universe expands, is isotropic, and is homogeneous.

More information

Assignments. Read all (secs ) of DocOnotes-cosmology. HW7 due today; accepted till Thurs. w/ 5% penalty

Assignments. Read all (secs ) of DocOnotes-cosmology. HW7 due today; accepted till Thurs. w/ 5% penalty Assignments Read all (secs. 25-29) of DocOnotes-cosmology. HW7 due today; accepted till Thurs. w/ 5% penalty Term project due last day of class, Tues. May 17 Final Exam Thurs. May 19, 3:30 p.m. here Olber

More information

Chapter 18. Cosmology. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 18. Cosmology. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 18 Cosmology Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Cosmology Cosmology is the study of the structure and evolution of the Universe as a whole

More information

Inflation; the Concordance Model

Inflation; the Concordance Model Duke Physics 55 Spring 2007 Inflation; the Concordance Model Lecture #31: OUTLINE BDSV Chapter 23.3, 23.4 Inflation of the Early Universe: Solving the structure problem Solving the horizon problem Solving

More information

Era of Atoms 5/3/18. Our Schedule and Topics

Era of Atoms 5/3/18. Our Schedule and Topics 5/3/18 ASTR 1040: Stars & Galaxies Cosmic Web Prof. Juri Toomre TAs: Peri Johnson, Ryan Horton Lecture 30 Thur 3 May 2018 zeus.colorado.edu/astr1040-toomre Our Schedule and Topics Final Exam on Wed May

More information