MAJOR FIGURES OF THE SCIENTIFIC REVOLUTION Condensed version of Dr Robert A. Hatch s notes - University of Florida

Size: px
Start display at page:

Download "MAJOR FIGURES OF THE SCIENTIFIC REVOLUTION Condensed version of Dr Robert A. Hatch s notes - University of Florida"

Transcription

1 MAJOR FIGURES OF THE SCIENTIFIC REVOLUTION Condensed version of Dr Robert A. Hatch s notes - University of Florida Nicolas Copernicus ( ) o The Copernican System Introduced 3 celestial motions Rotation of the earth on its axis The earth and the planets, revolve around the sun. A conical axial motion of earth to explain the fixed orientation of earth in space. A mathematical, not an observational, astronomer, his system was as complex as Ptolemy's. Sought to purify ancient astronomy, not to overthrow Ptolemy. o Motivation Copernicus was educated in a critical atmosphere that called for the reform of Ptolemaic astronomy and cosmology. o The Copernican 'Revolution' Its revolutionary aspect lay in its violation of Aristotelian physics and the implicit requirement of a 'new' physics, which caused natural philosophers to think, and look, in a new astronomical frame of reference. II. Johannes Kepler ( ) A. Background of Keplerian Astronomy 1. Platonic and Pythagorean elements, especially a mystical sense of mathematical harmony in the cosmos, for example, the use of the five regular polyhedra to account for the planetary orbits, The Cosmographic Mystery (1596). 2. The heliocentric Copernican cosmos with uniform circular motion. 3. The mechanical ideas of the Renaissance, particularly "clockwork" as a suggestive conceptual model for celestial physics. 4. Existence of 'powers' such as magnetism and light which could be used to account for the physical force necessary to drive the celestial machine. 5. Kepler was a highly competent mathematician. B. Kepler and the Tychonic System. 1. Brahe provided Kepler with the best collection of observational (empirical) data in existence.

2 2. He set Kepler to work on the problem of the orbit of Mars, that is, the planet's nonuniform motion with respect to the center of its orbit: a. Disregarded the use of equants and epicycles as a solution. b. Formulated the Area Law: in equal time intervals a planet will sweep out equal areas (Second Law). c. Kepler settled on the ellipse as an orbital path, that is, planetary orbits are elliptical (First Law). C. Synopsis of Keplerian Astronomy. 1. A nonempirical, mathematical commitment to the area law and the geometrical cosmos of elliptical orbits--the data were observational but the commitment was philosophical. 2. Introduced a type of 'physical' unity, that is, a solar 'power' or 'virtue' moves the planets in their orbits. 3. The account of elliptical orbits was based on the assumption that the sun and the planets were magnets, an action between "animate souls" which served to attract, or be attracted by, the sun thus drawing the planets into elliptical paths. 4. No quantitative elements have been introduced--a qualitative analysis expressed in terms of mathematical harmonies, for example, the square of a planetary period is proportional to the planet's mean distance from the sun, T [squared] is proportional R [cubed] (Kepler's Third Law ). 5. Kepler thought he had penetrated the structural reality of the cosmos and in so doing, was forced to seek a 'new' celestial physics. III. Galileo Galilei ( ) A. Intellectual Roots of Galileo's Science. 1. Copernican astronomy and the implicit necessity of a 'new' physics to replace Aristotelian mechanics. 2. A long tradition in mechanics extending from the ancient world and middle ages through the Renaissance (for example, Aristotle, Philoponus, Avempace, the Merton and Parisian schools, Padua), and especially the works of Archimedes. B. Galileo and Astronomy. 1. Galileo was a confirmed Copernican and given to the concept of circular motion. 2. Galileo wrote for a literate but nontechnical reader in his defense of Copernicus, and not as a professional astronomer--his arguments and evidence were polemical and perhaps propagandistic. 3. Galileo's 'facts' differed from the traditional data of astronomy in that they were derived from qualitative telescopic observations.

3 4. Observational data obtained with the telescope: a. Stellar 'population explosion' implying an expanded cosmos. b. The topography of the moon was similar to, or more pronounced than, that of the earth; the earth-like moon moves around the earth--why can't the earth move around the sun? c. The phases of Venus were inexplicable in terms of Ptolemaic cosmology; Ptolemaic scheme no longer viable. d. The satellites of Jupiter, moving with, and approximately in the same plane as the planet, suggested more than one center of rotation in the solar system and, by analogy, the earth's rotation around the sun. e. Sun spots implied that the heavens are not perfect (to reinforce the argument of the moon's topography); these data were obviously unknown to Aristotle or Ptolemy. C. The Problem of Falling Bodies. 1. His early work in the 1 590s dealt with falling bodies as a problem in dynamics approached in terms of the self-expending impetus theory of Oresme and Avempace, V is proportional to W-R. 2. Inspired by Archimedes and Benedetti, Galileo used hydrostatics as a model for his science. 3. In his later work, Galileo abandoned the dynamical approach in favor of kinematics. 4. He proceeded to clarify, restate, and systematize medieval problems in kinematics while giving them a more complete mathematical expression, for example, problems suggested by the Odd Numbers Law relating distance to time (S proportional to t squared) and velocity to distance (V proportional to S), out of which he came to relate velocity to time (V proportional to T), and eventually, S = 1/2at [squared]. 5. After 1609, Galileo's kinematic treatment of an idealized model identified falling bodies as a case of uniformly accelerated motion and thereafter demonstrated it with his inclined plane experiment. D. Projectile Motion. 1. Galileo's work developed out of the impetus theories of contemporary physics, especially those of Tartaglia and Benedetti. 2. In his later theory (1632), no force is necessary to keep a body moving on a level (frictionless) plane; a body, as such, has no inclination to move or remain at rest, it is indifferent. 3. Thus, if a body is indifferent to motion, no mover is required to sustain movement once a body is in motion.

4 4. Motion is now a state rather than a process, and rest is motion of zero speed in a continuum. 5. Galileo's conception of inertia as circular motion was an attempt to save Copernican circularity, particularly in the absence of any known force which could 'bend' rectilinear motion into an orbit. E. Galileo's Method. 1. Galileo argued that theoretical conclusions required experimental verification even if the experimentation was mental rather than empirical. 2. He was a thinker about nature and thought in terms of ideal situations rather than the complexities of the sensate world. 3. Expressed confidence in deductive, reasoned conclusions: Archimedean mathematics applied to physical problems rather than extensive experimental programs. IV. René Descartes ( ) and the Mechanical Philosophy A. Background of the Mechanical Philosophy. 1. Derived from ancient atomism but reworked by 17th century thinkers such as Descartes, Gassendi, Huygens, Hooke, and Boyle. 2. Reaction against the animistic philosophies of the Renaissance, notably Hermetism. 3. Conceived as an alternative to existing Aristotelian metaphysics. B. Basic Tenets of the Mechanical Philosophy. 1. Viewed nature as composed of inert (without quality) matter in motion. 2. All causality involved matter in contact with matter--no action at-adistance. C. Cartesian Mechanical Philosophy. 1. Descartes, reacting against Renaissance skepticism, sought to affirm the existence of certain knowledge. 2. The conclusions of mathematics, especially those of geometry, are demonstrable, that is, start with true premises (clear and distinct ideas) and proceed deductively to certain conclusions. 3. Mathematics accepted as a model, though not the essence, of knowledge. 4. Descartes' methodical doubt reduces existing substances to two types: a. Res cogitans (thinking stuff): immaterial thought or mind. b. Res extensa (extended stuff): geometrical extension or matter.

5 5. All that exists outside the mind is matter: only primary qualities exist, that is, motion, size, shape, number, location, place; secondary qualities are illusory (soft, hard, hot, cold, wet, dry, etc.). 6. The universe is a plenum, that is, it is 'full' with no void possible. 7. Matter is of three types, classified as to size: First matter, fine (chips); second matter, medium (spheres); and third matter, gross (chunks), that is, respectively, material light, aether, and ordinary, visible matter. 8. The interaction between the various forms of matter occur as the result of vortex action; the universe is composed of vortices or whirlpools of matter. Vortices explain the varying periods and uniform orbital directions and inclinations of the planets. 9. Formulated the concepts of rectilinear inertia and the conservation of motion. V. Francis Bacon ( ) and the Baconian Method A. Opposition to Scholastic and Renaissance Philosophy: The Idols. 1. The Tribe: weaknesses of human nature, that is, prejudice, passions, limited mental and sensory faculties. 2. The Cave: weaknesses of environment, that is, education, habit, prejudice, predisposition of approach to philosophical-scientific questions. 3. The Market Place: semantic difficulties arising from confusing words with things. 4. The Theatre: philosophical systems or theories which direct the mind beyond the data of experience to unsupported generalities. B. Basic Assumption: The Simplicity of Nature. 1. Scientific progress is a matter of finding the correct method, that is, the correct method is equivalent to truth: a. If nature is approached in the appropriate manner, the truth can be found. b. Error is the result of defective methods. 2. The ultimate goal of science is practical utility for the benefit of mankind. 3. The method is the 'tool' of the intellect: it enables the mind to overcome its weaknesses, and can compensate for disparity of mental ability. 4. The function of method is to collect data from the natural world and refashion it (the bee)--it is not just empirical cataloguing (the ant) and it is not a matter of pure speculation (the spider). C. The Baconian Method.

6 1. The basic premise: observe nature with the senses--proceed inductively from observations (data) to generalities (axioms), and form deductive conclusions which can be tested by experimental evidence. 2. The method of exclusion: a. Tabulate all possible causes of an observed effect. b. Observe nature to see what causes actually exist in the given physical circumstances. c. Exclude all but one, that is, the result of the crucial experiment. VI. Isaac Newton ( ) and the Newtonian Synthesis A. Elements of the Synthetic, "New" Physics. 1. Galileo's idealized formulation of the law of freely falling bodies, d = 1 /2at [squared]. 2. Galileo's analysis of terrestrial inertia: a body is indifferent to uniform rectilinear motion and is as 'natural' as rest. 3. Descartes' conception of rectilinear inertia existing in Euclidean space and the implied rejection of privileged spatial position. 4. Kepler's 'discovery' of his three laws of celestial motion, especially the The Third Law, T squared is proportional to the mean Radius cubed. 5. Huygens' and Borelli's work on centrifugal forces, terrestrial and celestial respectively, suggested an inverse square relationship, as well as the analogy from light made explicit by Boulliau. B. The Problem and the Test Case: Lunar Motion. 1. Lunar motion was essential to both Aristotle and Newton: a. The lunar orbit was the demarcation line for the Aristotelian two-world system (sublunar/superlunar regions). b. The connection of lunar-terrestrial motion under the same principle was the crux of the Newtonian argument. 2. Newtonian assumptions: a. The Copernican hypothesis: the earth is a planet. b. The hypothesis that inter-planetary space is empty, that is, free space. 3. The problem was to explain the configuration of planetary orbits, that is, what mechanism or force can account for the orbital alteration of a planet's rectilinear path. C. The Moon's Orbit and the Unification of Terrestrial-Celestial Physics.

7 1. Problem of translating the moon's rectilinear acceleration into the centripetal acceleration necessary to account for the lunar orbit--assume circular Copernican orbits. 2. Problem of demonstrating that lunar acceleration represents a ratio equivalent to that of free fall on the earth, implying the same gravitational force: the inverse square law.

8 3. Problem of justifying the mathematical treatment of the earth's total mass as concentrated in a single mass point at the earth's center; Newton's solution rested upon his invention of the calculus, his "fluxions", which could be used to consider the intricacies of the problem. 4. The final stage was to transfer the concept of force for a planetary orbit in relation to the sun, based on the moon-earth test case to a universal, reciprocal gravitational relationship which applied to all matter D. Components of Newtonian Physics.

9 1. Matter: an infinite number of separate, hard, and unchangeable particles which are not identical. 2. Motion: the relational state which moves particles from place to place in an infinite void of free space without affecting them. 3. Space: the infinite homogeneous void in which the particles, and the bodies they form, move. 4. Attraction: the undefined unifying force which is not a constructive element but rather a "hyperphysical" power or mathematical statement describing how the universal components are connected. E. The Destruction of the Aristotelian Cosmos. 1. Considerations of such concepts as perfection, harmony, teleology, formal and final causality, and value are removed from scientific discussion. 2. The world was no longer viewed as finite and hierarchically ordered: quantitative considerations replace qualitative ones. 3. The celestial and terrestrial worlds are no longer philosophically and scientifically distinct; astronomy and physics have been geometrically unified. F. The Mathematical Generation of Homogeneous, Abstract Euclidean Space. 1. The common sense world of the pre-galilean cosmos is replaced by an idealized mathematical universe. 2. Newtonian science attempted to synthesize mathematics and experiment: the integration of theory and experience under the 'direction' of the inverse square law. 3. The Newtonian pattern of empirical-deductive knowledge provided both physical and intellectual unity for the 18th-century universe. Alexander Pope suggested: Nature and nature's laws Lay hid in night, And God said 'Let Newton be' And all was light. The Enlightenment is sometimes called 'Newton's Century.'

http://radicalart.info/physics/vacuum/index.html The Scientific Revolution In the 1500s and 1600s the Scientific Revolution changed the way Europeans looked at the world. People began to make conclusions

More information

Revolution and Enlightenment. The scientific revolution

Revolution and Enlightenment. The scientific revolution Revolution and Enlightenment The scientific revolution Background in Revolution In the middle ages, educated europeans relied on ancient authorities like Aristotle for scientific knowledge. By the 15th

More information

The Scientific Revolution

The Scientific Revolution The Scientific Revolution What is a Revolution? A Revolution is a complete change, or an overthrow of a government, a social system, etc. The Scientific Revolution In the 1500s and 1600s the Scientific

More information

What is a Revolution? A Revolution is a complete change, or an overthrow of a government, a social system, etc.

What is a Revolution? A Revolution is a complete change, or an overthrow of a government, a social system, etc. CW10 p374 Vocab What is a Revolution? A Revolution is a complete change, or an overthrow of a government, a social system, etc. The Scientific Revolution In the 1500s and 1600s the Scientific Revolution

More information

The Scientific Revolution Learning Target

The Scientific Revolution Learning Target The Scientific Revolution Learning Target Explain how new discoveries in astronomy changed the way people viewed the universe. Understand the new scientific method and how it developed. Analyze the contributions

More information

SCIENTIFIC REVOLUTION

SCIENTIFIC REVOLUTION SCIENTIFIC REVOLUTION What IS Science? What IS Science? a branch of knowledge or study dealing with a body of facts or truths systematically arranged and showing the operation of general laws: the mathematical

More information

Section 5. Objectives

Section 5. Objectives Objectives Explain how new discoveries in astronomy changed the way people viewed the universe. Understand the new scientific method and how it developed. Analyze the contributions that Newton and other

More information

Development of Thought continued. The dispute between rationalism and empiricism concerns the extent to which we

Development of Thought continued. The dispute between rationalism and empiricism concerns the extent to which we Development of Thought continued The dispute between rationalism and empiricism concerns the extent to which we are dependent upon sense experience in our effort to gain knowledge. Rationalists claim that

More information

The Scientific Revolution

The Scientific Revolution The Scientific Revolution Consider the following. Put them in order from most true to least true. 1. That house is on fire. 2. God exists. 3. The earth moves around the sun. 4. 2 + 2 = 4 5. Michelangelo

More information

Humanities 3 V. The Scientific Revolution

Humanities 3 V. The Scientific Revolution Humanities 3 V. The Scientific Revolution Lecture 19 Reading the Book of Nature Outline Bacon s Four Idols Galileo s Scientific Achievements Dialogue Concerning the Two Chief World Systems Friday movie

More information

Announcements. Topics To Be Covered in this Lecture

Announcements. Topics To Be Covered in this Lecture Announcements! Tonight s observing session is cancelled (due to clouds)! the next one will be one week from now, weather permitting! The 2 nd LearningCurve activity was due earlier today! Assignment 2

More information

Occam s Razor: William of Occam, 1340(!)

Occam s Razor: William of Occam, 1340(!) Reading: OpenStax, Chapter 2, Section 2.2 &2.4, Chapter 3, Sections 3.1-3.3 Chapter 5, Section 5.1 Last time: Scales of the Universe Astro 150 Spring 2018: Lecture 2 page 1 The size of our solar system,

More information

Chapter 4. The Origin Of Modern Astronomy. Is okay to change your phone? From ios to Android From Android to ios

Chapter 4. The Origin Of Modern Astronomy. Is okay to change your phone? From ios to Android From Android to ios Chapter 4 The Origin Of Modern Astronomy Slide 14 Slide 15 14 15 Is Change Good or Bad? Do you like Homer to look like Homer or with hair? Does it bother you when your schedule is changed? Is it okay to

More information

Gravitation and the Motion of the Planets

Gravitation and the Motion of the Planets Gravitation and the Motion of the Planets 1 Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets go around

More information

Claudius Ptolemaeus Second Century AD. Jan 5 7:37 AM

Claudius Ptolemaeus Second Century AD. Jan 5 7:37 AM Claudius Ptolemaeus Second Century AD Jan 5 7:37 AM Copernicus: The Foundation Nicholas Copernicus (Polish, 1473 1543): Proposed the first modern heliocentric model, motivated by inaccuracies of the Ptolemaic

More information

Galileo Galilei. Trial of Galileo before the papal court

Galileo Galilei. Trial of Galileo before the papal court Rene Descartes Rene Descartes was a French philosopher who was initially preoccupied with doubt and uncertainty. The one thing he found beyond doubt was his own experience. Emphasizing the importance of

More information

Models of the Solar System. The Development of Understanding from Ancient Greece to Isaac Newton

Models of the Solar System. The Development of Understanding from Ancient Greece to Isaac Newton Models of the Solar System The Development of Understanding from Ancient Greece to Isaac Newton Aristotle (384 BC 322 BC) Third in line of Greek thinkers: Socrates was the teacher of Plato, Plato was the

More information

Gravitation and the Waltz of the Planets

Gravitation and the Waltz of the Planets Gravitation and the Waltz of the Planets Chapter Four Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets

More information

Gravitation and the Waltz of the Planets. Chapter Four

Gravitation and the Waltz of the Planets. Chapter Four Gravitation and the Waltz of the Planets Chapter Four Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets

More information

ASTR 1010 Spring 2016 Study Notes Dr. Magnani

ASTR 1010 Spring 2016 Study Notes Dr. Magnani The Copernican Revolution ASTR 1010 Spring 2016 Study Notes Dr. Magnani The Copernican Revolution is basically how the West intellectually transitioned from the Ptolemaic geocentric model of the Universe

More information

History of Astronomy. PHYS 1411 Introduction to Astronomy. Tycho Brahe and Exploding Stars. Tycho Brahe ( ) Chapter 4. Renaissance Period

History of Astronomy. PHYS 1411 Introduction to Astronomy. Tycho Brahe and Exploding Stars. Tycho Brahe ( ) Chapter 4. Renaissance Period PHYS 1411 Introduction to Astronomy History of Astronomy Chapter 4 Renaissance Period Copernicus new (and correct) explanation for retrograde motion of the planets Copernicus new (and correct) explanation

More information

Competing Models. The Ptolemaic system (Geocentric) The Copernican system (Heliocentric)

Competing Models. The Ptolemaic system (Geocentric) The Copernican system (Heliocentric) Competing Models The Ptolemaic system (Geocentric) The Copernican system (Heliocentric) How did Galileo solidify the Copernican revolution? Galileo overcame major objections to the Copernican view. Three

More information

Use of reason, mathematics, and technology to understand the physical universe. SCIENTIFIC REVOLUTION

Use of reason, mathematics, and technology to understand the physical universe. SCIENTIFIC REVOLUTION Use of reason, mathematics, and technology to understand the physical universe. SCIENTIFIC REVOLUTION Background Info Scientific rev gradually overturned centuries of scientific ideas Medieval scientists

More information

Day 4: Scientific Ideas Change the World

Day 4: Scientific Ideas Change the World Day 4: Scientific Ideas Change the World Learning Goal 4: Describe how the ideas of Copernicus, Galileo, Newton and Boyle and the invention of the printing press contributed to the Scientific Revolution

More information

Historical Evaluation of Scientific Methods and Tradition in Science

Historical Evaluation of Scientific Methods and Tradition in Science 1 of 5 2/12/2016 4:43 PM Year-1 Issue-1 Continuous issue-1 June-July 2012 Introduction:::: Historical Evaluation of Scientific Methods and Tradition in Science The root of science, method and scientific

More information

The Birth of Astronomy. Lecture 3 1/24/2018

The Birth of Astronomy. Lecture 3 1/24/2018 The Birth of Astronomy Lecture 3 1/24/2018 Fundamental Questions of Astronomy (life?) What is the shape of the Earth? How big is the planet we live on? Why do the stars move across the sky? Where is Earth

More information

BROCK UNIVERSITY. 1. The observation that the intervals of time between two successive quarter phases of the Moon are very nearly equal implies that

BROCK UNIVERSITY. 1. The observation that the intervals of time between two successive quarter phases of the Moon are very nearly equal implies that BROCK UNIVERSITY Page 1 of 10 Test 1: November 2014 Number of pages: 10 Course: ASTR 1P01, Section 2 Number of students: 961 Examination date: 7 November 2014 Time limit: 50 min Time of Examination: 17:00

More information

Enlightenment and Revolution. Section 1

Enlightenment and Revolution. Section 1 Main Idea Ch 5.1-- The Scientific Revolution New ways of thinking led to remarkable discoveries during the Scientific Revolution. Content Statement 5 /Learning Goal (Ch 5-1) Describe how the Scientific

More information

Evidence that the Earth does not move: Greek Astronomy. Aristotelian Cosmology: Motions of the Planets. Ptolemy s Geocentric Model 2-1

Evidence that the Earth does not move: Greek Astronomy. Aristotelian Cosmology: Motions of the Planets. Ptolemy s Geocentric Model 2-1 Greek Astronomy Aristotelian Cosmology: Evidence that the Earth does not move: 1. Stars do not exhibit parallax: 2-1 At the center of the universe is the Earth: Changeable and imperfect. Above the Earth

More information

BROCK UNIVERSITY. 1. The observation that the intervals of time between two successive quarter phases of the Moon are very nearly equal implies that

BROCK UNIVERSITY. 1. The observation that the intervals of time between two successive quarter phases of the Moon are very nearly equal implies that BROCK UNIVERSITY Page 1 of 10 Test 1: November 2014 Number of pages: 10 Course: ASTR 1P01, Section 2 Number of students: 30 Examination date: 10 November 2014 Time limit: 50 min Time of Examination: 9:00

More information

THE RISE OF MODERN SCIENCE CHAPTER 20, SECTION 2

THE RISE OF MODERN SCIENCE CHAPTER 20, SECTION 2 THE RISE OF MODERN SCIENCE CHAPTER 20, SECTION 2 ORIGINS OF THE SCIENTIFIC REVOLUTION 335 BCE-1687 CE A New View of the Universe Scientists of the 1500s asked same questions as Greeks: What is the universe

More information

Physics 107 Ideas of Modern Physics. Goals of the course. How is this done? What will we cover? Where s the math?

Physics 107 Ideas of Modern Physics. Goals of the course. How is this done? What will we cover? Where s the math? Physics 107 Ideas of Modern Physics (uw.physics.wisc.edu/~rzchowski/phy107) Modern Physics: essentially post-1900 Why 1900? Two radical developments: Relativity & Quantum Mechanics Both changed the way

More information

January 19, notes.notebook. Claudius Ptolemaeus Second Century AD. Jan 5 7:37 AM

January 19, notes.notebook. Claudius Ptolemaeus Second Century AD. Jan 5 7:37 AM 8.1 notes.notebook Claudius Ptolemaeus Second Century AD Jan 5 7:7 AM Copernicus: The Foundation Nicholas Copernicus (Polish, 147 154): Proposed the first modern heliocentric model, motivated by inaccuracies

More information

STATION #1: NICOLAUS COPERNICUS

STATION #1: NICOLAUS COPERNICUS STATION #1: NICOLAUS COPERNICUS Nicolaus Copernicus was a Polish astronomer who is best known for the astronomical theory that the Sun was near the center of the universe and that the Earth and other planets

More information

Monday, October 3, 2011

Monday, October 3, 2011 We do not ask for what useful purpose the birds do sing, for song is their pleasure since they were created for singing. Similarly, we ought not ask why the human mind troubles to fathom the secrets of

More information

History of Astronomy. Historical People and Theories

History of Astronomy. Historical People and Theories History of Astronomy Historical People and Theories Plato Believed he could solve everything through reasoning. Circles and Spheres are good because they are perfect (never ending) and pleasing to the

More information

Tycho Brahe and Johannes Kepler

Tycho Brahe and Johannes Kepler Tycho Brahe and Johannes Kepler The Music of the Spheres 1 Tycho Brahe 1546-1601 Motivated by astronomy's predictive powers. Saw and reported the Nova of 1572. Considered poor observational data to be

More information

9/12/2010. The Four Fundamental Forces of Nature. 1. Gravity 2. Electromagnetism 3. The Strong Nuclear Force 4. The Weak Nuclear Force

9/12/2010. The Four Fundamental Forces of Nature. 1. Gravity 2. Electromagnetism 3. The Strong Nuclear Force 4. The Weak Nuclear Force The Four Fundamental Forces of Nature 1. Gravity 2. Electromagnetism 3. The Strong Nuclear Force 4. The Weak Nuclear Force The Universe is made of matter Gravity the force of attraction between matter

More information

cosmogony geocentric heliocentric How the Greeks modeled the heavens

cosmogony geocentric heliocentric How the Greeks modeled the heavens Cosmogony A cosmogony is theory about ones place in the universe. A geocentric cosmogony is a theory that proposes Earth to be at the center of the universe. A heliocentric cosmogony is a theory that proposes

More information

Reading Essentials and Study Guide

Reading Essentials and Study Guide Lesson 1 The Scientific Revolution ESSENTIAL QUESTIONS Why do new ideas often spark change? How do new ways of thinking affect the way people respond to their surroundings? Reading HELPDESK Academic Vocabulary

More information

Humanities 3 V. The Scientific Revolution

Humanities 3 V. The Scientific Revolution Humanities 3 V. The Scientific Revolution Lecture 21 Two World Systems Outline The Significance of the Debate Two Systems: Ptolomeic vs. Copernican Dialogue Concerning the Two Chief World Systems, Ptolemaic

More information

Astronomy- The Original Science

Astronomy- The Original Science Astronomy- The Original Science Imagine that it is 5,000 years ago. Clocks and modern calendars have not been invented. How would you tell time or know what day it is? One way to tell the time is to study

More information

Test Bank for Life in the Universe, Third Edition Chapter 2: The Science of Life in the Universe

Test Bank for Life in the Universe, Third Edition Chapter 2: The Science of Life in the Universe 1. The possibility of extraterrestrial life was first considered A) after the invention of the telescope B) only during the past few decades C) many thousands of years ago during ancient times D) at the

More information

21 Evolution of the Scientific Method

21 Evolution of the Scientific Method Birth of the Scientific Method By three methods we may learn wisdom: First, by reflection, which is noblest; Second, by imitation, which is easiest; and third by experience, which is the bitterest. Confucius

More information

Physics 107 Ideas of Modern Physics (uw.physics.wisc.edu/~rzchowski/phy107) Goals of the course. What will we cover? How do we do this?

Physics 107 Ideas of Modern Physics (uw.physics.wisc.edu/~rzchowski/phy107) Goals of the course. What will we cover? How do we do this? Physics 107 Ideas of Modern Physics (uw.physics.wisc.edu/~rzchowski/phy107) Main emphasis is Modern Physics: essentially post-1900 Why 1900? Two radical developments: Relativity & Quantum Mechanics Both

More information

towards the modern view

towards the modern view Brief review of last time: Og through Tycho Brahe Early Science 1 Reading: Chap. 2, Sect.2.4, Ch. 3, Sect. 3.1 Homework 3: Due Tomorrow and Mon. Homework 4: Now available, due next recitation cycle, or

More information

Early Theories. Early astronomers believed that the sun, planets and stars orbited Earth (geocentric model) Developed by Aristotle

Early Theories. Early astronomers believed that the sun, planets and stars orbited Earth (geocentric model) Developed by Aristotle Planetary Motion Early Theories Early astronomers believed that the sun, planets and stars orbited Earth (geocentric model) Developed by Aristotle Stars appear to move around Earth Observations showed

More information

Philosophical Issues of Computer Science Historical and philosophical analysis of science

Philosophical Issues of Computer Science Historical and philosophical analysis of science Philosophical Issues of Computer Science Historical and philosophical analysis of science Instructor: Viola Schiaffonati March, 17 th 2016 Science: what about the history? 2 Scientific Revolution (1550-1700)

More information

Scientific Revolution

Scientific Revolution Chapter 8 Scientific Rev Page 1 Scientific Revolution Monday, October 31, 2005 11:02 Background "Intellectual Revolution" 17th century age of genius About Ideas, not technology Science before the Scientific

More information

Natural Questions. About 2000 years ago Greek scientists were confused about motion. and developed a theory of motion

Natural Questions. About 2000 years ago Greek scientists were confused about motion. and developed a theory of motion Natural Questions First natural question: Next question: What these things made of? Why and how things move? About 2000 years ago Greek scientists were confused about motion. Aristotle --- First to study

More information

Shattering the Celestial Sphere

Shattering the Celestial Sphere Shattering the Celestial Sphere Shattering the Celestial Sphere Key Concepts 1) Thomas Digges discarded the celestial sphere, advocating an infinite universe. 2) Johannes Kepler discarded epicycles, and

More information

Astronomy 1 Fall 2016

Astronomy 1 Fall 2016 Astronomy 1 Fall 2016 Comet Halley Edmund Halley, a friend of Newton s used Newton s math to predict the return of a comet seen at intervals of 76 years. Lecture 3; September 29, 2016 Previously on Astro-1

More information

In so many and such important. ways, then, do the planets bear witness to the earth's mobility. Nicholas Copernicus

In so many and such important. ways, then, do the planets bear witness to the earth's mobility. Nicholas Copernicus In so many and such important ways, then, do the planets bear witness to the earth's mobility Nicholas Copernicus What We Will Learn Today What did it take to revise an age old belief? What is the Copernican

More information

Module 3: Astronomy The Universe Topic 6 Content: The Age of Astronomy Presentation Notes

Module 3: Astronomy The Universe Topic 6 Content: The Age of Astronomy Presentation Notes Module 3: Astronomy The Universe The Age of Astronomy was marked by the struggle to understand the placement of Earth in the universe and the effort to understand planetary motion. Behind this struggle

More information

Ch. 3: The Solar System

Ch. 3: The Solar System 1 Ch. 3: The Solar System Brief outline: Ideas of Copernicus >> Galileo >> Kepler >> Isaac Newton This chapter discusses how the scientific contributions by Copernicus, Galileo and Kepler led to Newton's

More information

Lecture #5: Plan. The Beginnings of Modern Astronomy Kepler s Laws Galileo

Lecture #5: Plan. The Beginnings of Modern Astronomy Kepler s Laws Galileo Lecture #5: Plan The Beginnings of Modern Astronomy Kepler s Laws Galileo Geocentric ( Ptolemaic ) Model Retrograde Motion: Apparent backward (= East-to-West) motion of a planet with respect to stars Ptolemy

More information

Simply Einstein A Mini-Course in Relativity

Simply Einstein A Mini-Course in Relativity Simply Einstein A Mini-Course in Relativity Rich Wolfson Prof of Physics Middlebury College Scientific American Travel Bright Horizons 32 July-August 2017 Simply Einstein A Mini-Course in Relativity Rich

More information

Spacecraft Dynamics and Control

Spacecraft Dynamics and Control Spacecraft Dynamics and Control Matthew M. Peet Arizona State University Lecture 1: In the Beginning Introduction to Spacecraft Dynamics Overview of Course Objectives Determining Orbital Elements Know

More information

some center of the Universe (he mentions the Pythagorean central fire ) and that the

some center of the Universe (he mentions the Pythagorean central fire ) and that the Fragmentary Notes on Aristotle s On the Heavens Aristotle had considered and rejected both the proposition that the Earth revolves about some center of the Universe (he mentions the Pythagorean central

More information

Gravitation Part I. Ptolemy, Copernicus, Galileo, and Kepler

Gravitation Part I. Ptolemy, Copernicus, Galileo, and Kepler Gravitation Part I. Ptolemy, Copernicus, Galileo, and Kepler Celestial motions The stars: Uniform daily motion about the celestial poles (rising and setting). The Sun: Daily motion around the celestial

More information

The Copernican Revolution

The Copernican Revolution The Copernican Revolution The Earth moves and Science is no longer common sense 1 Nicholas Copernicus 1473-1543 Studied medicine at University of Crakow Discovered math and astronomy. Continued studies

More information

Learning Objectives. one night? Over the course of several nights? How do true motion and retrograde motion differ?

Learning Objectives. one night? Over the course of several nights? How do true motion and retrograde motion differ? Kepler s Laws Learning Objectives! Do the planets move east or west over the course of one night? Over the course of several nights? How do true motion and retrograde motion differ?! What are geocentric

More information

The Scientific Method

The Scientific Method Chapter 1 The Scientific Method http://www.mhhe.com/physsci/physical/bookpage/ Chapter 1 Outline: Main Ideas Scientists make science work The Scientific Method Science is a process Exploring Nature An

More information

Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields

Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields Gravity Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields Simulation Synchronous Rotation https://www.youtube.com/watch?v=ozib_l eg75q Sun-Earth-Moon System https://vimeo.com/16015937

More information

Today. Planetary Motion. Tycho Brahe s Observations. Kepler s Laws Laws of Motion. Laws of Motion

Today. Planetary Motion. Tycho Brahe s Observations. Kepler s Laws Laws of Motion. Laws of Motion Today Planetary Motion Tycho Brahe s Observations Kepler s Laws Laws of Motion Laws of Motion In 1633 the Catholic Church ordered Galileo to recant his claim that Earth orbits the Sun. His book on the

More information

PLANETS, STARS, AND ORBS

PLANETS, STARS, AND ORBS PLANETS, STARS, AND ORBS The Medieval Cosmos, 1200 1687 EDWARD GRANT Indiana University v CAMBRIDGE UNIVERSITY PRESS Contents Illustrations Preface Acknowledgments Abbreviations INTRODUCTION: SCOPE, SOURCES,

More information

Introduction To Modern Astronomy I

Introduction To Modern Astronomy I ASTR 111 003 Fall 2006 Lecture 03 Sep. 18, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17) Ch1: Astronomy and the Universe Ch2: Knowing the Heavens

More information

The History of Astronomy

The History of Astronomy The History of Astronomy http://www.phys.uu.nl/~vgent/babylon/babybibl_intro.htm http://mason.gmu.edu/~jmartin6/howe/images/pythagoras.jpg http://www.russellcottrell.com/greek/aristarchus.htm http://www.mesopotamia.co.uk/astronomer/homemain.html

More information

Origins of the Universe

Origins of the Universe Cosmology Origins of the Universe The study of the universe, its current nature, its origin, and evolution 1 2 The Theory Theory Expansion indicates a denser, hotter past uniform, hot gas that cools as

More information

Chapter 2. The Rise of Astronomy. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 2. The Rise of Astronomy. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 2 The Rise of Astronomy Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Periods of Western Astronomy Western astronomy divides into 4 periods Prehistoric

More information

Name Class Date. Ptolemy alchemy Scientific Revolution

Name Class Date. Ptolemy alchemy Scientific Revolution Name Class Date The Scientific Revolution Vocabulary Builder Section 1 DIRECTIONS Look up the vocabulary terms in the word bank in a dictionary. Write the dictionary definition of the word that is closest

More information

MUSICA UNIVERSALIS OR MUSIC OF THE SPHERES FROM THE ROSICRUCIAN FORUM, FEBRUARY 1951, PAGE 88.

MUSICA UNIVERSALIS OR MUSIC OF THE SPHERES FROM THE ROSICRUCIAN FORUM, FEBRUARY 1951, PAGE 88. MUSICA UNIVERSALIS OR MUSIC OF THE SPHERES FROM THE ROSICRUCIAN FORUM, FEBRUARY 1951, PAGE 88. The allusive phrase, the music of the spheres, has intrigued generation after generation. In this response

More information

Cosmology is the study of the universe. What is it s structure? How did it originate? How is it evolving? What is its eventual fate?

Cosmology is the study of the universe. What is it s structure? How did it originate? How is it evolving? What is its eventual fate? Cosmology Cosmology is the study of the universe. What is it s structure? How did it originate? How is it evolving? What is its eventual fate? ANCIENT COSMOLOGIES The Ptolemaic Universe Claudius Ptolemy

More information

SSWH13 The student will examine the intellectual, political, social, and economic factors that changed the world view of Europeans.

SSWH13 The student will examine the intellectual, political, social, and economic factors that changed the world view of Europeans. SSWH13 The student will examine the intellectual, political, social, and economic factors that changed the world view of Europeans. a. Explain the scientific contributions of Copernicus, Galileo, Kepler,

More information

Space Notes Covers Objectives 1 & 2

Space Notes Covers Objectives 1 & 2 Space Notes Covers Objectives 1 & 2 Space Introduction Space Introduction Video Celestial Bodies Refers to a natural object out in space 1) Stars 2) Comets 3) Moons 4) Planets 5) Asteroids Constellations

More information

Scientific Revolution. 16 th -18 th centuries

Scientific Revolution. 16 th -18 th centuries Scientific Revolution 16 th -18 th centuries As we go through this information Write two quiz questions for review at the end of class. If you don t want to write quiz questions, you can write haikus about

More information

Ptolemy (125 A.D.) Ptolemy s Model. Ptolemy s Equant. Ptolemy s Model. Copernicus Model. Copernicus ( )

Ptolemy (125 A.D.) Ptolemy s Model. Ptolemy s Equant. Ptolemy s Model. Copernicus Model. Copernicus ( ) Ptolemy (125 A.D.) Designed a complete geometrical model of the universe that accurately predicted planetary motions with errors within 5 0 Most of the geometric devices and basic foundations of his model

More information

Lesson 2 - The Copernican Revolution

Lesson 2 - The Copernican Revolution Lesson 2 - The Copernican Revolution READING ASSIGNMENT Chapter 2.1: Ancient Astronomy Chapter 2.2: The Geocentric Universe Chapter 2.3: The Heliocentric Model of the Solar System Discovery 2-1: The Foundations

More information

Johannes Kepler ( ) German Mathematician and Astronomer Passionately convinced of the rightness of the Copernican view. Set out to prove it!

Johannes Kepler ( ) German Mathematician and Astronomer Passionately convinced of the rightness of the Copernican view. Set out to prove it! Johannes Kepler (1571-1630) German Mathematician and Astronomer Passionately convinced of the rightness of the Copernican view. Set out to prove it! Kepler s Life Work Kepler sought a unifying principle

More information

Chapter 21: The Enlightenment & Revolutions, Lesson 1: The Scientific Revolution

Chapter 21: The Enlightenment & Revolutions, Lesson 1: The Scientific Revolution Chapter 21: The Enlightenment & Revolutions, 1550 1800 Lesson 1: The Scientific Revolution World History Bell Ringer #58 3-7-18 What does the word science mean to you? It Matters Because Of all the changes

More information

Earth Science, 13e Tarbuck & Lutgens

Earth Science, 13e Tarbuck & Lutgens Earth Science, 13e Tarbuck & Lutgens Origins of Modern Astronomy Earth Science, 13e Chapter 21 Stanley C. Hatfield Southwestern Illinois College Early history of astronomy Ancient Greeks Used philosophical

More information

Universal Gravitation

Universal Gravitation Universal Gravitation Johannes Kepler Johannes Kepler was a German mathematician, astronomer and astrologer, and key figure in the 17th century Scientific revolution. He is best known for his laws of planetary

More information

The Copernican System: A Detailed Synopsis

The Copernican System: A Detailed Synopsis Oglethorpe Journal of Undergraduate Research Volume 5 Issue 1 Article 2 April 2015 The Copernican System: A Detailed Synopsis John Cramer Dr. jcramer@oglethorpe.edu Follow this and additional works at:

More information

Days of the week: - named after 7 Power (moving) objects in the sky (Sun, Moon, 5 planets) Models of the Universe:

Days of the week: - named after 7 Power (moving) objects in the sky (Sun, Moon, 5 planets)   Models of the Universe: Motions of the Planets ( Wanderers ) Planets move on celestial sphere - change RA, Dec each night - five are visible to naked eye Mercury, Venus, Mars, Jupiter, Saturn Days of the week: - named after 7

More information

Planetary Mechanics:

Planetary Mechanics: Planetary Mechanics: Satellites A satellite is an object or a body that revolves around another body due to the gravitational attraction to the greater mass. Ex: The planets are natural satellites of the

More information

THE SCIENTIFIC REVOLUTION

THE SCIENTIFIC REVOLUTION THE SCIENTIFIC REVOLUTION Presentation Topics 1. The Medieval View (189) 2. A New Way of Thinking (189-190) 3. Copernicus and the Heliocentric Theory (190) 4. Tycho Brahe and Johannes Kepler (190) 5. Galileo's

More information

Chapter 1 The Copernican Revolution

Chapter 1 The Copernican Revolution Chapter 1 The Copernican Revolution The Horse Head nebula in the Orion constellation (Reading assignment: Chapter 1) Learning Outcomes How the geocentric model accounts for the retrograde motion of planets?

More information

Ch. 22 Origin of Modern Astronomy Pretest

Ch. 22 Origin of Modern Astronomy Pretest Ch. 22 Origin of Modern Astronomy Pretest Ch. 22 Origin of Modern Astronomy Pretest 1. True or False: Early Greek astronomers (600 B.C. A.D. 150) used telescopes to observe the stars. Ch. 22 Origin of

More information

Tycho. Topics: Tycho's Earth-centered universe Kepler s solution to the problem of the planets. Galileo s overthrow of Aristotle s physics (part 1).

Tycho. Topics: Tycho's Earth-centered universe Kepler s solution to the problem of the planets. Galileo s overthrow of Aristotle s physics (part 1). Tycho Themes for today: The effect of a world view on interpretation of the evidence. The relation between physics and cosmology. Which mathematical constructs stand for real entities? Topics: Tycho's

More information

Chapter. Origin of Modern Astronomy

Chapter. Origin of Modern Astronomy Chapter Origin of Modern Astronomy 22.1 Early Astronomy Ancient Greeks Astronomy is the science that studies the universe. It includes the observation and interpretation of celestial bodies and phenomena.

More information

This Week... Week 3: Chapter 3 The Science of Astronomy. 3.1 The Ancient Roots of Science. How do humans employ scientific thinking?

This Week... Week 3: Chapter 3 The Science of Astronomy. 3.1 The Ancient Roots of Science. How do humans employ scientific thinking? Week 3: Chapter 3 The Science of Astronomy This Week... The Copernican Revolution The Birth of Modern Science Chapter 2 Walkthrough Discovering the solar system Creating a clockwork Universe 3.1 The Ancient

More information

The Project Physics Course Tests 2

The Project Physics Course Tests 2 The Project Physics Course Tests 2 Motion in the Heavens 'H^^^^I^^K> Digitized by the Internet Archive in 2010 with funding from F. James Rutherford http://www.archive.org/details/testbool

More information

2 THE SCIENTIFIC REVOLUTION IN ENGLAND AND EUROPE, Lesson Title: The Scientific Revolution in England and Europe,

2 THE SCIENTIFIC REVOLUTION IN ENGLAND AND EUROPE, Lesson Title: The Scientific Revolution in England and Europe, 2 THE SCIENTIFIC REVOLUTION IN ENGLAND AND EUROPE, 1500-1700 FOR TEACHERS Lesson Title: The Scientific Revolution in England and Europe, 1500-1700 Area of Learning: states of affairs; change Aims: Pupils

More information

Astronomy I Exam I Sample Name: Read each question carefully, and choose the best answer.

Astronomy I Exam I Sample Name: Read each question carefully, and choose the best answer. Name: Read each question carefully, and choose the best answer. 1. During a night in Schuylkill Haven, most of the stars in the sky (A) are stationary through the night. (B) the actual motion depends upon

More information

The History of Astronomy. Theories, People, and Discoveries of the Past

The History of Astronomy. Theories, People, and Discoveries of the Past The History of Astronomy Theories, People, and Discoveries of the Past Early man recorded very little history. Left some clues in the form of petrographs. Stone drawings that show eclipses, comets, supernovae.

More information

THE SCIENTIFIC REVOLUTION

THE SCIENTIFIC REVOLUTION THE SCIENTIFIC REVOLUTION REVOLUTION: a sudden, extreme, or complete change in the way people live, work, etc. (Merriam-Webster) THE SCIENTIFIC REVOLUTION Time of advancements in math and science during

More information

Ancient Cosmology: A Flat Earth. Alexandria

Ancient Cosmology: A Flat Earth. Alexandria Today Competing Cosmologies Geocentric vs. Heliocentric Ptolemy vs. copernicus Retrograde Motion Phases of Venus Galileo FIRST HOMEWORK DUE How d it work? Ancient Cosmology: A Flat Earth Here there be

More information

b. Remember, Sun is a second or third generation star the nebular cloud of dust and gases was created by a supernova of a preexisting

b. Remember, Sun is a second or third generation star the nebular cloud of dust and gases was created by a supernova of a preexisting 1. Evolution of the Solar System Nebular hypothesis, p 10 a. Cloud of atoms, mostly hydrogen and helium b. Gravitational collapse contracted it into rotating disc c. Heat of conversion of gravitational

More information

The History of Astronomy. Please pick up your assigned transmitter.

The History of Astronomy. Please pick up your assigned transmitter. The History of Astronomy Please pick up your assigned transmitter. When did mankind first become interested in the science of astronomy? 1. With the advent of modern computer technology (mid-20 th century)

More information

The History and Philosophy of Astronomy

The History and Philosophy of Astronomy Astronomy 350L (Fall 2006) The History and Philosophy of Astronomy (Lecture 3: Antiquity I) Instructor: Volker Bromm TA: Jarrett Johnson The University of Texas at Austin Astronomy and Cosmology in Antiquity:

More information