Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields"

Transcription

1 Gravity Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields

2 Simulation Synchronous Rotation eg75q Sun-Earth-Moon System

3 Newton s Law of Gravitation r m 2 m 1 There is a force of gravity between any pair of objects anywhere. The force is proportional to each mass and inversely proportional to the square of the distance between the two objects. Its equation is: F G = G m 1 m 2 r 2 The constant of proportionality is G, the universal gravitation constant. G = N m 2 / kg 2. Note how the units of G all cancel out except for the Newtons, which is the unit needed on the left side of the equation.

4 F G = G m 1 m 2 r 2 Gravity Example How hard do two planets pull on each other if their masses are kg and kg and they 230 million kilometers apart? = ( N m 2 / kg 2 ) ( kg) ( kg) ( m) 2 = N This is the force each planet exerts on the other. Note the denominator is has a factor of 10 3 to convert to meters and a factor of 10 6 to account for the million. It doesn t matter which way or how fast the planets are moving.

5 3rd Law: Action-Reaction In the last example the force on each planet is the same. This is due to to Newton s third law of motion: the force on Planet 1 due to Planet 2 is just as strong but in the opposite direction as the force on Planet 2 due to Planet 1. The effects of these forces are not the same, however, since the planets have different masses. For the big planet: a = ( N) / ( kg) = m/s 2. For the little planet: a = ( N) / ( kg) = m/s kg N N kg

6 Inverse Square Law The law of gravitation is called an inverse square law because the magnitude of the force is inversely proportional to the square of the separation. If the masses are moved twice as far apart, the force of gravity between is cut by a factor of four. Triple the separation and the force is nine times weaker. F G = G m 1 m 2 r 2 What if each mass and the separation were all quadrupled? answer: no change in the force

7 Calculating the Gravitational Constant In 1798 Sir Henry Cavendish suspended a rod with two small masses (red) from a thin wire. Two larger mass (green) attract the small masses and cause the wire to twist slightly, since each force of attraction produces a torque in the same direction. By varying the masses and measuring the separations and the amount of twist, Cavendish was the first to calculate G. Since G is only N m 2 / kg 2, the measurements had to be very precise.

8 Calculating the mass of the Earth Knowing G, we can now actually calculate the mass of the Earth. All we do is write the weight of any object in two different ways and equate them. Its weight is the force of gravity between it and the Earth, which is F G in the equation below. M E is the mass of the Earth, R E is the radius of the Earth, and m is the mass of the object. The object s weight can also be written as mg. F G = G m 1 m 2 r 2 = G M E m R E 2 = mg The m s cancel in the last equation. g can be measured experimentally; Cavendish determined G s value; and R E can be calculated at m (see next slide). M E is the only unknown. Solving for M E we have: M E = g R E 2 G = kg

9 Calculating the radius of the Earth This is similar to the way the Greeks approximated Earth s radius over 2000 years ago: R E s Earth is also the central angle of the arc. s = R E R E = s / m

10 Net Force Gravity Problem 40 m kg 3 asteroids are positioned as shown, forming a right triangle. Find the net force on the 2.5 million kg asteroid kg kg 60 m Steps: 1. Find each force of gravity on it and draw in the vectors. 2. Find the angle at the lower right. 3. One force vector is to the left; break the other one down into components. 4. Find the resultant vector: magnitude via Pythagorean theorem; direction via inverse tangent. answer: N at 14.6 above horizontal (N of W)

11 Falling Around the Earth y = 0.5 g t 2 { x = vt v Newton imagined a cannon ball fired horizontally from a mountain top at a speed v. In a time t it falls a distance y = 0.5 g t 2 while moving horizontally a distance x = vt. If fired fast enough (about 8 km/s), the Earth would curve downward the same amount the cannon ball falls downward. Thus, the projectile would never hit the ground, and it would be in orbit. The moon falls around Earth in the exact same way but at a much greater altitude.. continued on next slide

12 Necessary Launch Speed for Orbit R = Earth s radius t = small amount of time after launch x = horiz. distance traveled in time t y = vertical distance fallen in time t (If t is very small, the red segment is nearly vertical.) y = gt 2 / 2 x = vt x 2 + R 2 = (R + y) 2 = R 2 + 2R y + y 2 Since y << R, x 2 + R 2 R 2 + 2R y x 2 2R y v 2 t 2 2R(g t 2 / 2) v 2 R g. So, R R v ( m 9.8 m/s 2 ) ½ v 7900 m/s

13 Early Astronomers In the 2 nd century AD the Alexandrian astronomer Ptolemy put forth a theory that Earth is stationary and at the center of the universe and that the sun, moon, and planets revolve around it. Though incorrect, it was accepted for centuries. In the early 1500 s the Polish astronomer Nicolaus Copernicus boldly rejected Ptolemy s geocentric model for a heliocentric one. His theory put the sun stated that the planets revolve around the sun in circular orbits and that Earth rotates daily on its axis. In the late 1500 s the Danish astronomer Tycho Brahe made better measurements of the planets and stars than anyone before him. The telescope had yet to be invented. He believed in a Ptolemaic-Coperican hybrid model in which the planets revolve around the sun, which in turn revolves around the Earth.

14 Early Astronomers Both Galileo and Kepler contributed greatly to work of the English scientist Sir Isaac Newton a generation later. In the late 1500 s and early 1600 s the Italian scientist Galileo was one of the very few people to advocate the Copernican view, for which the Church eventually had him placed under house arrest. After hearing about the invention of a spyglass in Holland, Galileo made a telescope and discovered four moons of Jupiter, craters on the moon, and the phases of Venus. The German astronomer Johannes Kepler was a contemporary of Galileo and an assistant to Tycho Brahe. Like Galileo, Kepler believed in the heliocentric system of Copernicus, but using Brahe s planetary data he deduced that the planets move in ellipses rather than circles. This is the first of three planetary laws that Kepler formulated based on Brahe s data.

15 Kepler s Laws of Planetary Motion Here is a summary of Kepler s 3 Laws: 1. Planets move around the sun in elliptical paths with the sun at one focus of the ellipse. 2. While orbiting, a planet sweep out equal areas in equal times. 3. The square of a planet s period (revolution time) is proportional to the cube of its mean distance from the sun: T 2 R 3 These laws apply to any satellite orbiting a much larger body.

16 Kepler s First Law Planets move around the sun in elliptical paths with the sun at one focus of the ellipse. F 1 F 2 Sun Planet An ellipse has two foci, F 1 and F 2. For any point P on the ellipse, F 1 P + F 2 P is a constant. The orbits of the planets are nearly circular (F 1 and F 2 are close together), but not perfect circles. A circle is a an ellipse with both foci at the same point--the center. Comets have very eccentric (highly elliptical) orbits. P

17 Kepler s Second Law (proven in advanced physics) While orbiting, a planet sweep out equal areas in equal times. A D Sun C B The blue shaded sector has the same area as the red shaded sector. Thus, a planet moves from C to D in the same amount of time as it moves from A to B. This means a planet must move faster when it s closer to the sun. For planets this affect is small, but for comets it s quite noticeable, since a comet s orbit is has much greater eccentricity.

18 Kepler s Third Law The square of a planet s period is proportional to the cube of its mean distance from the sun: T 2 R 3 Assuming that a planet s orbit is circular (which is not exactly correct but is a good approximation in most cases), then the mean distance from the sun is a constant--the radius. F is the force of gravity on the planet. F is also the centripetal force. If the orbit is circular, the planet s speed is constant, and v = 2 R / T. Therefore, M Sun F R m Planet G M m m v 2 R 2 = R Cancel m s and simplify: Rearrange: = m [2 R / T] 2 R G M R 2 = 4 T 2 = 2 R 3 G M 4 2 R T 2 Since G, M, and are constants, T 2 R 3.

19 Third Law Analysis 4 2 We just derived T 2 = R 3 GM It also shows that the orbital period depends on the mass of the central body (which for a planet is its star) but not on the mass of the orbiting body. In other words, if Mars had a companion planet the same distance from the sun, it would have the same period as Mars, regardless of its size. This shows that the farther away a planet is from its star, the longer it takes to complete an orbit. Likewise, an artificial satellite circling Earth from a great distance has a greater period than a satellite orbiting closer. There are two reasons for this: 1. The farther away the satellite is, the farther it must travel to complete an orbit; 2. The farther out its orbit is, the slower it moves, as shown: G M m m v 2 R 2 = G M R v = R

20 Third Law Example One astronomical unit (AU) is the distance between Earth and the sun (about 93 million miles). Jupiter is 5.2 AU from the sun. How long is a Jovian year? answer: Kepler s 3 rd Law says T 2 R 3, so T 2 = k R 3, where k is the constant of proportionality. Thus, for Earth and Jupiter we have: T E 2 = k R E 3 and T J2 = k R J 3 k s value matters not; since both planets are orbiting the same central body (the sun), k is the same in both equations. T E = 1 year, and R J / R E = 5.2, so dividing equations: T J 2 T E 2 R 3 J = R 3 T 2 J = (5.2) 3 T J = 11.9 years E continued on next slide

21 Third Law Example (cont.) What is Jupiter s orbital speed? answer: Since it s orbital is approximately circular, and it s speed is approximately constant: Jupiter is 5.2 AU from the sun (5.2 times farther than Earth is). v = d t = 2 (5.2)( miles) 1 year 11.9 years 365 days 1 day 24 hours 29,000 mph. Jupiter s period from last slide This means Jupiter is cruising through the solar system at about 13,000 m/s! Even at this great speed, though, Jupiter is so far away that when we observe it from Earth, we don t notice it s motion. Planets closer to the sun orbit even faster. Mercury, the closest planet, is traveling at about 48,000 m/s!

22 Third Law Practice Problem Venus is about AU from the sun, Mars AU. Venus takes days to circle the sun. Figure out how long a Martian year is. answer: 686 days

23 Uniform Gravitational Fields We live in what is essentially a uniform gravitational field. This means that the force of gravity near the surface of the Earth is pretty much constant in magnitude and direction. The green lines are gravitational field lines. They show the direction of the gravitational force on any object in the region (straight down). In a uniform field, the lines are parallel and evenly spaced. Near Earth s surface the magnitude of the gravitational field is 9.8 N/kg. That is, every kilogram of mass an object has experiences 9.8 N of force. Since a Newton is a kilogram meter per second squared, 1 N/kg = 1 m/s 2. So, the gravitational field strength is just the acceleration due to gravity, g. continued on next slide Earth s surface

24 Uniform Gravitational Fields (cont.) A 10 kg mass is near the surface of the Earth. Since the field strength is 9.8 N/ kg, each of the ten kilograms feels a 9.8 N force, for a total of 98 N. So, we can calculate the force of gravity by multiply mass and field strength. This is the same as calculating its weight (W = mg). 98 N 10 kg Earth s surface

25 Nonuniform Gravitational Fields Near Earth s surface the gravitational field is approximately uniform. Far from the surface it looks more like a sea urchin. The field lines are radial, rather than parallel, and point toward center of Earth. Earth get farther apart farther from the surface, meaning the field is weaker there. get closer together closer to the surface, meaning the field is stronger there.

Planetary Mechanics:

Planetary Mechanics: Planetary Mechanics: Satellites A satellite is an object or a body that revolves around another body due to the gravitational attraction to the greater mass. Ex: The planets are natural satellites of the

More information

Gravitation and the Motion of the Planets

Gravitation and the Motion of the Planets Gravitation and the Motion of the Planets 1 Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets go around

More information

7.4 Universal Gravitation

7.4 Universal Gravitation Circular Motion Velocity is a vector quantity, which means that it involves both speed (magnitude) and direction. Therefore an object traveling at a constant speed can still accelerate if the direction

More information

Universal Gravitation

Universal Gravitation Universal Gravitation Johannes Kepler Johannes Kepler was a German mathematician, astronomer and astrologer, and key figure in the 17th century Scientific revolution. He is best known for his laws of planetary

More information

Lecture 13. Gravity in the Solar System

Lecture 13. Gravity in the Solar System Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

More information

AP Physics-B Universal Gravitation Introduction: Kepler s Laws of Planetary Motion: Newton s Law of Universal Gravitation: Performance Objectives:

AP Physics-B Universal Gravitation Introduction: Kepler s Laws of Planetary Motion: Newton s Law of Universal Gravitation: Performance Objectives: AP Physics-B Universal Gravitation Introduction: Astronomy is the oldest science. Practical needs and imagination acted together to give astronomy an early importance. For thousands of years, the motions

More information

Astronomy- The Original Science

Astronomy- The Original Science Astronomy- The Original Science Imagine that it is 5,000 years ago. Clocks and modern calendars have not been invented. How would you tell time or know what day it is? One way to tell the time is to study

More information

9/12/2010. The Four Fundamental Forces of Nature. 1. Gravity 2. Electromagnetism 3. The Strong Nuclear Force 4. The Weak Nuclear Force

9/12/2010. The Four Fundamental Forces of Nature. 1. Gravity 2. Electromagnetism 3. The Strong Nuclear Force 4. The Weak Nuclear Force The Four Fundamental Forces of Nature 1. Gravity 2. Electromagnetism 3. The Strong Nuclear Force 4. The Weak Nuclear Force The Universe is made of matter Gravity the force of attraction between matter

More information

Planetary Orbits: Kepler s Laws 1/18/07

Planetary Orbits: Kepler s Laws 1/18/07 Planetary Orbits: Kepler s Laws Announcements The correct link for the course webpage http://www.lpl.arizona.edu/undergrad/classes/spring2007/giacalone_206-2 The first homework due Jan 25 (available for

More information

AP Physics Multiple Choice Practice Gravitation

AP Physics Multiple Choice Practice Gravitation AP Physics Multiple Choice Practice Gravitation 1. Each of five satellites makes a circular orbit about an object that is much more massive than any of the satellites. The mass and orbital radius of each

More information

PHYS 155 Introductory Astronomy

PHYS 155 Introductory Astronomy PHYS 155 Introductory Astronomy - observing sessions: Sunday Thursday, 9pm, weather permitting http://www.phys.uconn.edu/observatory - Exam - Tuesday March 20, - Review Monday 6:30-9pm, PB 38 Marek Krasnansky

More information

Gravitation Part I. Ptolemy, Copernicus, Galileo, and Kepler

Gravitation Part I. Ptolemy, Copernicus, Galileo, and Kepler Gravitation Part I. Ptolemy, Copernicus, Galileo, and Kepler Celestial motions The stars: Uniform daily motion about the celestial poles (rising and setting). The Sun: Daily motion around the celestial

More information

Early Theories. Early astronomers believed that the sun, planets and stars orbited Earth (geocentric model) Developed by Aristotle

Early Theories. Early astronomers believed that the sun, planets and stars orbited Earth (geocentric model) Developed by Aristotle Planetary Motion Early Theories Early astronomers believed that the sun, planets and stars orbited Earth (geocentric model) Developed by Aristotle Stars appear to move around Earth Observations showed

More information

Johannes Kepler ( ) German Mathematician and Astronomer Passionately convinced of the rightness of the Copernican view. Set out to prove it!

Johannes Kepler ( ) German Mathematician and Astronomer Passionately convinced of the rightness of the Copernican view. Set out to prove it! Johannes Kepler (1571-1630) German Mathematician and Astronomer Passionately convinced of the rightness of the Copernican view. Set out to prove it! Kepler s Life Work Kepler sought a unifying principle

More information

History of Astronomy. PHYS 1411 Introduction to Astronomy. Tycho Brahe and Exploding Stars. Tycho Brahe ( ) Chapter 4. Renaissance Period

History of Astronomy. PHYS 1411 Introduction to Astronomy. Tycho Brahe and Exploding Stars. Tycho Brahe ( ) Chapter 4. Renaissance Period PHYS 1411 Introduction to Astronomy History of Astronomy Chapter 4 Renaissance Period Copernicus new (and correct) explanation for retrograde motion of the planets Copernicus new (and correct) explanation

More information

Unit 3 Lesson 2 Gravity and the Solar System. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 3 Lesson 2 Gravity and the Solar System. Copyright Houghton Mifflin Harcourt Publishing Company Florida Benchmarks SC.8.N.1.4 Explain how hypotheses are valuable if they lead to further investigations, even if they turn out not to be supported by the data. SC.8.N.1.5 Analyze the methods used to develop

More information

How big is the Universe and where are we in it?

How big is the Universe and where are we in it? Announcements Results of clicker questions from Monday are on ICON. First homework is graded on ICON. Next homework due one minute before midnight on Tuesday, September 6. Labs start this week. All lab

More information

Eclipses and Forces. Jan 21, ) Review 2) Eclipses 3) Kepler s Laws 4) Newton s Laws

Eclipses and Forces. Jan 21, ) Review 2) Eclipses 3) Kepler s Laws 4) Newton s Laws Eclipses and Forces Jan 21, 2004 1) Review 2) Eclipses 3) Kepler s Laws 4) Newton s Laws Review Lots of motion The Moon revolves around the Earth Eclipses Solar Lunar the Sun, Earth and Moon must all be

More information

Space Notes Covers Objectives 1 & 2

Space Notes Covers Objectives 1 & 2 Space Notes Covers Objectives 1 & 2 Space Introduction Space Introduction Video Celestial Bodies Refers to a natural object out in space 1) Stars 2) Comets 3) Moons 4) Planets 5) Asteroids Constellations

More information

By; Jarrick Serdar, Michael Broberg, Trevor Grey, Cameron Kearl, Claire DeCoste, and Kristian Fors

By; Jarrick Serdar, Michael Broberg, Trevor Grey, Cameron Kearl, Claire DeCoste, and Kristian Fors By; Jarrick Serdar, Michael Broberg, Trevor Grey, Cameron Kearl, Claire DeCoste, and Kristian Fors What is gravity? Gravity is defined as the force of attraction by which terrestrial bodies tend to fall

More information

Exam #1 Study Guide (Note this is not all the information you need to know for the test, these are just SOME of the main points)

Exam #1 Study Guide (Note this is not all the information you need to know for the test, these are just SOME of the main points) Exam #1 Study Guide (Note this is not all the information you need to know for the test, these are just SOME of the main points) Moon Phases Moon is always ½ illuminated by the Sun, and the sunlit side

More information

Chapter 2. The Rise of Astronomy. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 2. The Rise of Astronomy. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 2 The Rise of Astronomy Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Periods of Western Astronomy Western astronomy divides into 4 periods Prehistoric

More information

Chapter 02 The Rise of Astronomy

Chapter 02 The Rise of Astronomy Chapter 02 The Rise of Astronomy Multiple Choice Questions 1. The moon appears larger when it rises than when it is high in the sky because A. You are closer to it when it rises (angular-size relation).

More information

Section 37 Kepler's Rules

Section 37 Kepler's Rules Section 37 Kepler's Rules What is the universe made out of and how do the parts interact? That was our goal in this course While we ve learned that objects do what they do because of forces, energy, linear

More information

Chapter. Origin of Modern Astronomy

Chapter. Origin of Modern Astronomy Chapter Origin of Modern Astronomy 22.1 Early Astronomy Ancient Greeks Astronomy is the science that studies the universe. It includes the observation and interpretation of celestial bodies and phenomena.

More information

Projectile Motion. Conceptual Physics 11 th Edition. Projectile Motion. Projectile Motion. Projectile Motion. This lecture will help you understand:

Projectile Motion. Conceptual Physics 11 th Edition. Projectile Motion. Projectile Motion. Projectile Motion. This lecture will help you understand: Conceptual Physics 11 th Edition Projectile motion is a combination of a horizontal component, and Chapter 10: PROJECTILE AND SATELLITE MOTION a vertical component. This lecture will help you understand:

More information

Today. Planetary Motion. Tycho Brahe s Observations. Kepler s Laws of Planetary Motion. Laws of Motion. in physics

Today. Planetary Motion. Tycho Brahe s Observations. Kepler s Laws of Planetary Motion. Laws of Motion. in physics Planetary Motion Today Tycho Brahe s Observations Kepler s Laws of Planetary Motion Laws of Motion in physics Page from 1640 text in the KSL rare book collection That the Earth may be a Planet the seeming

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 10: PROJECTILE AND SATELLITE MOTION This lecture will help you understand: Projectile Motion Fast-Moving Projectiles Satellites Circular Satellite Orbits Elliptical

More information

Basics of Kepler and Newton. Orbits of the planets, moons,

Basics of Kepler and Newton. Orbits of the planets, moons, Basics of Kepler and Newton Orbits of the planets, moons, Kepler s Laws, as derived by Newton. Kepler s Laws Universal Law of Gravity Three Laws of Motion Deriving Kepler s Laws Recall: The Copernican

More information

Astronomy Section 2 Solar System Test

Astronomy Section 2 Solar System Test is really cool! 1. The diagram below shows one model of a portion of the universe. Astronomy Section 2 Solar System Test 4. Which arrangement of the Sun, the Moon, and Earth results in the highest high

More information

Motion in the Heavens

Motion in the Heavens Motion in the Heavens Most ancient cultures believed that the earth was the centre of the universe. Most felt that the planets, stars, moon and sun revolved around the earth. This is known as a geocentric

More information

Chapter 5 Part 2. Newton s Law of Universal Gravitation, Satellites, and Weightlessness

Chapter 5 Part 2. Newton s Law of Universal Gravitation, Satellites, and Weightlessness Chapter 5 Part 2 Newton s Law of Universal Gravitation, Satellites, and Weightlessness Newton s ideas about gravity Newton knew that a force exerted on an object causes an acceleration. Most forces occurred

More information

Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws

Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws Craig Lage New York University - Department of Physics craig.lage@nyu.edu February 24, 2014 1 / 21 Tycho Brahe s Equatorial

More information

Test Bank for Life in the Universe, Third Edition Chapter 2: The Science of Life in the Universe

Test Bank for Life in the Universe, Third Edition Chapter 2: The Science of Life in the Universe 1. The possibility of extraterrestrial life was first considered A) after the invention of the telescope B) only during the past few decades C) many thousands of years ago during ancient times D) at the

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are primarily conceptual questions that are designed to see if you have understood the main concepts of the chapter. Treat all balls with mass as point masses. 1.

More information

October 19, NOTES Solar System Data Table.notebook. Which page in the ESRT???? million km million. average.

October 19, NOTES Solar System Data Table.notebook. Which page in the ESRT???? million km million. average. Celestial Object: Naturally occurring object that exists in space. NOT spacecraft or man-made satellites Which page in the ESRT???? Mean = average Units = million km How can we find this using the Solar

More information

Physics Mechanics. Lecture 29 Gravitation

Physics Mechanics. Lecture 29 Gravitation 1 Physics 170 - Mechanics Lecture 29 Gravitation Newton, following an idea suggested by Robert Hooke, hypothesized that the force of gravity acting on the planets is inversely proportional to their distances

More information

Gravitation. Luis Anchordoqui

Gravitation. Luis Anchordoqui Gravitation Kepler's law and Newton's Synthesis The nighttime sky with its myriad stars and shinning planets has always fascinated people on Earth. Towards the end of the XVI century the astronomer Tycho

More information

Chapter 2 The Science of Life in the Universe

Chapter 2 The Science of Life in the Universe In ancient times phenomena in the sky were not understood! Chapter 2 The Science of Life in the Universe The Ancient Greeks The Scientific Method Our ideas must always be consistent with our observations!

More information

Nm kg. The magnitude of a gravitational field is known as the gravitational field strength, g. This is defined as the GM

Nm kg. The magnitude of a gravitational field is known as the gravitational field strength, g. This is defined as the GM Copyright FIST EDUCATION 011 0430 860 810 Nick Zhang Lecture 7 Gravity and satellites Newton's Law of Universal Gravitation Gravitation is a force of attraction that acts between any two masses. The gravitation

More information

Ast ch 4-5 practice Test Multiple Choice

Ast ch 4-5 practice Test Multiple Choice Ast ch 4-5 practice Test Multiple Choice 1. The distance from Alexandria to Syene is about 500 miles. On the summer solstice the sun is directly overhead at noon in Syene. At Alexandria on the summer solstice,

More information

Lecture 4: Kepler and Galileo. Astronomy 111 Wednesday September 6, 2017

Lecture 4: Kepler and Galileo. Astronomy 111 Wednesday September 6, 2017 Lecture 4: Kepler and Galileo Astronomy 111 Wednesday September 6, 2017 Reminders Online homework #2 due Monday at 3pm Johannes Kepler (1571-1630): German Was Tycho s assistant Used Tycho s data to discover

More information

Evidence that the Earth does not move: Greek Astronomy. Aristotelian Cosmology: Motions of the Planets. Ptolemy s Geocentric Model 2-1

Evidence that the Earth does not move: Greek Astronomy. Aristotelian Cosmology: Motions of the Planets. Ptolemy s Geocentric Model 2-1 Greek Astronomy Aristotelian Cosmology: Evidence that the Earth does not move: 1. Stars do not exhibit parallax: 2-1 At the center of the universe is the Earth: Changeable and imperfect. Above the Earth

More information

Satellites and Kepler's Laws: An Argument for Simplicity

Satellites and Kepler's Laws: An Argument for Simplicity OpenStax-CNX module: m444 Satellites and Kepler's Laws: An Argument for Simplicity OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License.0 Abstract

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Chapter 13. Newton s Theory of Gravity The beautiful rings of Saturn consist of countless centimeter-sized ice crystals, all orbiting the planet under the influence of gravity. Chapter Goal: To use Newton

More information

AP Physics C Textbook Problems

AP Physics C Textbook Problems AP Physics C Textbook Problems Chapter 13 Pages 412 416 HW-16: 03. A 200-kg object and a 500-kg object are separated by 0.400 m. Find the net gravitational force exerted by these objects on a 50.0-kg object

More information

Chapter 3 - Gravity and Motion. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 3 - Gravity and Motion. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 3 - Gravity and Motion Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. In 1687 Isaac Newton published the Principia in which he set out his concept

More information

Earth Science, 11e. Origin of Modern Astronomy Chapter 21. Early history of astronomy. Early history of astronomy. Early history of astronomy

Earth Science, 11e. Origin of Modern Astronomy Chapter 21. Early history of astronomy. Early history of astronomy. Early history of astronomy 2006 Pearson Prentice Hall Lecture Outlines PowerPoint Chapter 21 Earth Science 11e Tarbuck/Lutgens This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

ASTR 150. Planetarium Shows begin Sept 9th. Register your iclicker! Last time: The Night Sky Today: Motion and Gravity. Info on course website

ASTR 150. Planetarium Shows begin Sept 9th. Register your iclicker! Last time: The Night Sky Today: Motion and Gravity. Info on course website Planetarium Shows begin Sept 9th Info on course website Register your iclicker! Last time: The Night Sky Today: Motion and Gravity ASTR 150 Hang on tight! Most math all semester-- get it over with right

More information

Observing the Solar System 20-1

Observing the Solar System 20-1 Observing the Solar System 20-1 Ancient Observations The ancient Greeks observed the sky and noticed that the moon, sun, and stars seemed to move in a circle around the Earth. It seemed that the Earth

More information

Radial Acceleration. recall, the direction of the instantaneous velocity vector is tangential to the trajectory

Radial Acceleration. recall, the direction of the instantaneous velocity vector is tangential to the trajectory Radial Acceleration recall, the direction of the instantaneous velocity vector is tangential to the trajectory 1 Radial Acceleration recall, the direction of the instantaneous velocity vector is tangential

More information

Astronomy Lesson 8.1 Astronomy s Movers and Shakers

Astronomy Lesson 8.1 Astronomy s Movers and Shakers 8 Astronomers.notebook Astronomy Lesson 8.1 Astronomy s Movers and Shakers Aristotle 384 322 BCE Heavenly objects must move on circular paths at constant speeds. Earth is motionless at the center of the

More information

Kepler's Laws and Newton's Laws

Kepler's Laws and Newton's Laws Kepler's Laws and Newton's Laws Kepler's Laws Johannes Kepler (1571-1630) developed a quantitative description of the motions of the planets in the solar system. The description that he produced is expressed

More information

Chapter 9 Lecture. Pearson Physics. Gravity and Circular Motion. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 9 Lecture. Pearson Physics. Gravity and Circular Motion. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 9 Lecture Pearson Physics Gravity and Circular Motion Prepared by Chris Chiaverina Chapter Contents Newton's Law of Universal Gravity Applications of Gravity Circular Motion Planetary Motion and

More information

2010 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

2010 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion: Examples from Daily Life Some of the topics we will explore: How do we describe motion? (Speed,

More information

Student: Ms. Elbein & Ms. Townsend Physics, Due Date: Unit 5: Gravity 1. HW5.1 Gravity Reading p. 1

Student: Ms. Elbein & Ms. Townsend Physics, Due Date: Unit 5: Gravity 1. HW5.1 Gravity Reading p. 1 Unit 5: Gravity 1 p. 1 Section 5.1: Gravity is More Than a Name Nearly every child knows of the word gravity. Gravity is the name associated with the mishaps of the milk spilled from the breakfast table

More information

4. Gravitation & Planetary Motion. Mars Motion: 2005 to 2006

4. Gravitation & Planetary Motion. Mars Motion: 2005 to 2006 4. Gravitation & Planetary Motion Geocentric models of ancient times Heliocentric model of Copernicus Telescopic observations of Galileo Galilei Systematic observations of Tycho Brahe Three planetary laws

More information

The Scientific Method

The Scientific Method Chapter 1 The Scientific Method http://www.mhhe.com/physsci/physical/bookpage/ Chapter 1 Outline: Main Ideas Scientists make science work The Scientific Method Science is a process Exploring Nature An

More information

1. The Moon appears larger when it rises than when it is high in the sky because

1. The Moon appears larger when it rises than when it is high in the sky because 2-1 Copyright 2016 All rights reserved. No reproduction or distribution without the prior written consent of 1. The Moon appears larger when it rises than when it is high in the sky because A. you are

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 6: GRAVITY, PROJECTILES, AND SATELLITES This lecture will help you understand: The Universal Law of Gravity The Universal Gravitational Constant, G Gravity and Distance:

More information

You should have finished reading Chapter 3, and started on chapter 4 for next week.

You should have finished reading Chapter 3, and started on chapter 4 for next week. Announcements Homework due on Sunday at 11:45pm. Thank your classmate! You should have finished reading Chapter 3, and started on chapter 4 for next week. Don t forget your out of class planetarium show

More information

Name Period Date Earth and Space Science. Solar System Review

Name Period Date Earth and Space Science. Solar System Review Name Period Date Earth and Space Science Solar System Review 1. is the spinning a planetary object on its axis. 2. is the backward motion of planets. 3. The is a unit less number between 0 and 1 that describes

More information

Reading Preview. Models of the Universe What is a geocentric model?

Reading Preview. Models of the Universe What is a geocentric model? Section 1 Observing the Solar System 1 Observing the Solar System Objectives After this lesson, students will be able to J.3.1.1 Identify the geocentric and heliocentric systems. J.3.1.2 Recognize how

More information

Unit: Planetary Science

Unit: Planetary Science Orbital Motion Kepler s Laws GETTING AN ACCOUNT: 1) go to www.explorelearning.com 2) click on Enroll in a class (top right hand area of screen). 3) Where it says Enter class Code enter the number: MLTWD2YAZH

More information

Gravitation. Objectives. The apple and the Moon. Equations 6/2/14. Describe the historical development of the concepts of gravitational force.

Gravitation. Objectives. The apple and the Moon. Equations 6/2/14. Describe the historical development of the concepts of gravitational force. Gravitation Objectives Describe the historical development of the concepts of gravitational force. Describe and calculate how the magnitude of the gravitational force between two objects depends on their

More information

Episode 403: Orbital motion

Episode 403: Orbital motion Episode 40: Orbital motion In this episode, students will learn how to combine concepts learned in the study of circular motion with Newton s Law of Universal Gravitation to understand the (circular) motion

More information

The Revolution of the Moons of Jupiter

The Revolution of the Moons of Jupiter The Revolution of the Moons of Jupiter Overview: During this lab session you will make use of a CLEA (Contemporary Laboratory Experiences in Astronomy) computer program generously developed and supplied

More information

FORCE. The 4 Fundamental Forces of Nature

FORCE. The 4 Fundamental Forces of Nature FORCE - Force a push or pull. Results only from interaction with another object. Without interaction, forces cannot be present. - Measured in Newtons (N) 1 Newton is the amount of force required to give

More information

EXAM #2. ANSWERS ASTR , Spring 2008

EXAM #2. ANSWERS ASTR , Spring 2008 EXAM #2. ANSWERS ASTR 1101-001, Spring 2008 1. In Copernicus s heliocentric model of the universe, which of the following astronomical objects was placed in an orbit around the Earth? The Moon 2. In his

More information

Shattering the Celestial Sphere

Shattering the Celestial Sphere Shattering the Celestial Sphere Shattering the Celestial Sphere Key Concepts 1) Thomas Digges discarded the celestial sphere, advocating an infinite universe. 2) Johannes Kepler discarded epicycles, and

More information

KEPLER S LAWS OF PLANETARY MOTION

KEPLER S LAWS OF PLANETARY MOTION KEPLER S LAWS OF PLANETARY MOTION In the early 1600s, Johannes Kepler culminated his analysis of the extensive data taken by Tycho Brahe and published his three laws of planetary motion, which we know

More information

AP Physics QUIZ Gravitation

AP Physics QUIZ Gravitation AP Physics QUIZ Gravitation Name: 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

More information

Astronomy, PART 2. Vocabulary. A. Universe - Our Milky Way Galaxy is one of of galaxies in an expanding universe.

Astronomy, PART 2. Vocabulary. A. Universe - Our Milky Way Galaxy is one of of galaxies in an expanding universe. Astronomy, PART 2 Vocabulary Aphelion Asteroid Astronomical Unit Comet Constellation Crater Eccentricity Eclipse Equinox Geocentric model Gravitation Heliocentric model Inertia Jovian Perihelion Revolution

More information

ASTRO 1050 LAB #3: Planetary Orbits and Kepler s Laws

ASTRO 1050 LAB #3: Planetary Orbits and Kepler s Laws ASTRO 1050 LAB #3: Planetary Orbits and Kepler s Laws ABSTRACT Johannes Kepler (1571-1630), a German mathematician and astronomer, was a man on a quest to discover order and harmony in the solar system.

More information

Notes: The Solar System

Notes: The Solar System Notes: The Solar System The Formation of the Solar System 1. A gas cloud collapses under the influence of gravity. 2. Solids condense at the center, forming a protostar. 3. A falttened disk of matter surrounds

More information

4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion Our goals for learning: How do we describe motion? How is mass different from weight? How do we describe

More information

Natural Questions. About 2000 years ago Greek scientists were confused about motion. and developed a theory of motion

Natural Questions. About 2000 years ago Greek scientists were confused about motion. and developed a theory of motion Natural Questions First natural question: Next question: What these things made of? Why and how things move? About 2000 years ago Greek scientists were confused about motion. Aristotle --- First to study

More information

Lesson 9. Luis Anchordoqui. Physics 168. Tuesday, October 24, 17

Lesson 9. Luis Anchordoqui. Physics 168. Tuesday, October 24, 17 Lesson 9 Physics 168 1 Static Equilibrium 2 Conditions for Equilibrium An object with forces acting on it but that is not moving is said to be in equilibrium 3 Conditions for Equilibrium (cont d) First

More information

Please turn on your clickers

Please turn on your clickers Please turn on your clickers HW #1, due 1 week from today Quiz in class Wednesday Sections meet in Planetarium Honors meeting tonight in my office Sterling 5520 at 5:30-6pm Newton s First Law An object

More information

Earth Science Unit 6: Astronomy Period: Date: Elliptical Orbits

Earth Science Unit 6: Astronomy Period: Date: Elliptical Orbits Earth Science Name: Unit 6: Astronomy Period: Date: Lab # 5 Elliptical Orbits Objective: To compare the shape of the earth s orbit (eccentricity) with the orbits of and with a circle. other planets Focus

More information

The Birth of Astronomy. Lecture 3 1/24/2018

The Birth of Astronomy. Lecture 3 1/24/2018 The Birth of Astronomy Lecture 3 1/24/2018 Fundamental Questions of Astronomy (life?) What is the shape of the Earth? How big is the planet we live on? Why do the stars move across the sky? Where is Earth

More information

Copyright 2010 Pearson Education, Inc. GRAVITY. Chapter 12

Copyright 2010 Pearson Education, Inc. GRAVITY. Chapter 12 GRAVITY Chapter 12 Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion. First let s consider

More information

Review of previous concepts!! Earth s orbit: Year, seasons, observed constellations, Polaris (North star), day/night lengths, equinoxes

Review of previous concepts!! Earth s orbit: Year, seasons, observed constellations, Polaris (North star), day/night lengths, equinoxes Review of previous concepts!! Earth s orbit: Year, seasons, observed constellations, Polaris (North star), day/night lengths, equinoxes Celestial poles, celestial equator, ecliptic, ecliptic plane (Fig

More information

Pedagogical information

Pedagogical information SHOOTING STAR Shooting Star, an interactive computer simulation using calculation power of super computers. Students should investigate and become familiar with Kepler's laws, Newton's theory of gravitation,

More information

Answer Key for Exam C

Answer Key for Exam C Answer Key for Exam C 2 points each Choose the answer that best completes the question. Read each problem carefully and read through all the answers. Take your time. If a question is unclear, ask for clarification

More information

General Physics 1 Lab - PHY 2048L Lab 2: Projectile Motion / Solar System Physics Motion PhET Lab Date. Part 1: Projectile Motion

General Physics 1 Lab - PHY 2048L Lab 2: Projectile Motion / Solar System Physics Motion PhET Lab Date. Part 1: Projectile Motion General Physics 1 Lab - PHY 2048L Name Lab 2: Projectile Motion / Solar System Physics Motion PhET Lab Date Author: Harsh Jain / PhET Source: Part 1: Projectile Motion http://phet.colorado.edu/en/simulation/projectile-motion

More information

ASTRONOMY. S6E1 a, b, c, d, e, f S6E2 a, b, c,

ASTRONOMY. S6E1 a, b, c, d, e, f S6E2 a, b, c, ASTRONOMY S6E1 a, b, c, d, e, f S6E2 a, b, c, UNIVERSE Age 13.7 billion years old The Big Bang Theory Protons and Neutrons formed hydrogen and helium. This created heat that formed the stars. Other elements

More information

Patterns in the Solar System (Chapter 18)

Patterns in the Solar System (Chapter 18) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Patterns in the Solar System (Chapter 18) For this assignment you will require: a calculator, colored pencils, a metric ruler, and meter stick.

More information

Earth Science Lesson Plan Quarter 4, Week 5, Day 1

Earth Science Lesson Plan Quarter 4, Week 5, Day 1 Earth Science Lesson Plan Quarter 4, Week 5, Day 1 Outcomes for Today Standard Focus: Earth Sciences 1.d students know the evidence indicating that the planets are much closer to Earth than are the stars

More information

How do we describe motion?

How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves example: speed of

More information

Motion. Argument: (i) Forces are needed to keep things moving, because they stop when the forces are taken away (evidence horse pulling a carriage).

Motion. Argument: (i) Forces are needed to keep things moving, because they stop when the forces are taken away (evidence horse pulling a carriage). 1 Motion Aristotle s Study Aristotle s Law of Motion This law of motion was based on false assumptions. He believed that an object moved only if something was pushing it. His arguments were based on everyday

More information

What was once so mysterious about planetary motion in our sky? We see apparent retrograde motion when we pass by a planet

What was once so mysterious about planetary motion in our sky? We see apparent retrograde motion when we pass by a planet What was once so mysterious about planetary motion in our sky? Planets usually move slightly eastward from night to night relative to the stars. You cannot see this motion on a single night. But sometimes

More information

The Sun. - this is the visible surface of the Sun. The gases here are very still hot, but much cooler than inside about 6,000 C.

The Sun. - this is the visible surface of the Sun. The gases here are very still hot, but much cooler than inside about 6,000 C. Name: The Sun The Sun is an average sized. Earth, Mars, Jupiter and Uranus are. A star is the only object in space that makes its own. This includes and. The sun is about million miles from Earth. This

More information

The Scientific Method

The Scientific Method The Scientific Method Objectives: 1. Outline the scientific method. 2. Explain why the scientific method has been more successful than other approaches to understanding the universe. 3. Distinguish between

More information

How do we describe motion?

How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves $ speed = distance!#"units

More information

Kepler s Laws Simulations

Kepler s Laws Simulations Kepler s Laws Simulations Goto: http://csep10.phys.utk.edu/guidry/java/kepler/kepler.html 1. Observe the speed of the planet as it orbits around the Sun. Change the speed to.50 and answer the questions.

More information

1UNIT. The Universe. What do you remember? Key language. Content objectives

1UNIT. The Universe. What do you remember? Key language. Content objectives 1UNIT The Universe What do you remember? What are the points of light in this photo? What is the difference between a star and a planet? a moon and a comet? Content objectives In this unit, you will Learn

More information

Newton's Laws. Before Isaac Newton

Newton's Laws. Before Isaac Newton Newton's Laws Before Isaac Newton Newton's Laws There were facts and laws about the way the physical world worked, but no explanations After Newton There was a unified system that explained those facts

More information

The Solar System CHAPTER 6. Vocabulary. star an object in space that makes its own light and heat. moon an object that circles around a planet

The Solar System CHAPTER 6. Vocabulary. star an object in space that makes its own light and heat. moon an object that circles around a planet CHAPTER 6 The Solar System Vocabulary star an object in space that makes its own light and heat moon an object that circles around a planet Sun astronomical unit the distance between Earth and the Sun

More information