# Exam #1 Study Guide (Note this is not all the information you need to know for the test, these are just SOME of the main points)

Save this PDF as:

Size: px
Start display at page:

Download "Exam #1 Study Guide (Note this is not all the information you need to know for the test, these are just SOME of the main points)"

## Transcription

1 Exam #1 Study Guide (Note this is not all the information you need to know for the test, these are just SOME of the main points)

2 Moon Phases Moon is always ½ illuminated by the Sun, and the sunlit side ALWAYS faces the sun New Moon is when the moon is between the Earth and Sun, it is highest in the sky at noon. The New Moon is the only time a solar eclipse can happen. Full Moon rises at sunset, and sets at sunrise. A lunar eclipse can happen during a full moon. Waxing ( increasing ) Waning ( decreasing ) Order: New Moon, Waxing crescent, first quarter moon, waxing gibbous, full moon, waning gibbous moon, third quarter, waning crescent --- REPEAT next month

3

4 Eclipses Lunar eclipse- occurs when the earth shades the Moon as it passes between the moon and sun, during a full moon Solar eclipse- occurs when the moon passes in front of the sun, blocking the sun from view from earth, during a new moon

5 Newton s Laws 1. the law of inertia, a body remains at rest, or moves in a straight line at a constant speed unless acted upon by a net outside force. (an outside force would be something exerted on the body other than your body itself) 2. F=ma the acceleration of an object is proportional to the net outside force acting on the object. (the harder you push on an object, the greater the resulting acceleration) 3. Whenever one body exerts a force on a second body, the second body exerts an equal and opposite force on the first body. (Standing on the ground, you weigh 110 pounds, the floor is pushing up 110 pounds, equal force)

6 Newton s law of Gravity F gravity = G (m 1 m 2 /r 2 ) G = gravitational contast m = masses of the two objects r = the distance between the two Ex: How much would you weigh on a planet that has the same mass as Earth but has ¼ the radius (r)? (Answer on next slide)

7 ANSWER You would weight 4 times more than you do on Earth

8 Gravity Newton s law of gravity explains why the planet rotate the sun in a elliptical manner without falling out their orbits

9 Diurnal motion Diurnal- means having a period of ONE day Stars rise in the east, and set in the west The diurnal, or daily motion of the stars occurs b/c the earth rotates once a day around an axis from the north pole to the south pole The stars will slowly shift throughout the year, approximately FOUR minutes EARLIER each night. This is because of the rotation of the Earth around the Sun

10 Seasons The sun heats the Earth s surface The closer the sun the warmer the surface It is NOT Earth s orbital eccentricity that effects the seasons The seasons are caused by the 23 ½ degree tilt of the earth The sun stays high in the midday sky in summer The sun is low (not as direct) in the midday in the winter March 21- sun crosses northward across celestial equator at the vernal equinox and marks beginning of spring, -Sep. 22- sun moves southward across celestial equator called autumnal equinox

11

12 Retrograde motion of planets When observed from one night to the next, a planet appears to move from West to East against the background stars most of the time. Sometimes it will appear to reverse direction. For a short time, it moves from East to West against the background constellations. This reversal is known as retrograde motion. All planets exhibit this behavior as seen from Earth. It is due to the relative motion of Earth and the planet.

13 Blackbody radiation A perfect blackbody does not reflect any light at all, it absorbs all light. The Sun is an example of blackbody radiation The higher an objects temperature, the shorter the wavelength (Wein s Law) Stefan- Boltzmann law states that a blackbody radiates electromagnetic waves with a total energy flux (F) directly proportional to the fourth power of the Kelvin temperature (T) of the object Engery flux is how rapidly energy is flowing out of the object The amount of energy emitted by a blackbody depends on both its temperature and its surface area (the larger the object, the more heat it will radiate)

14 The Sun is like a Blackbody

15 Question If you double the temperature of an object from 300K to 600K, what would be the energy emitted from the object s surface each second?

16 Answer Each second would increase by a factor of 2, therefore 2 4 = 16 (Stefan-Boltzmann law)

17 Telescopes A refracting Telescope- consists of a large diameter objective lens witha long focal length and a small eyepiece lens of short focal length. the eyepiece lens magnifies the image formed by the objective lens in its focal plane. (astrnomers want to view an image so they add a second lens to magnify the image formed in the focal plane, called a refracting telescope or refracting)

18 Telescopes continued Angular resolution- The angular resolution of a telescope indicates the sharpness of the telescopes image. To determine the angular resolution of a telescope pick out two adjacent stars whose separate images are barely discernible the angle between the stars is the telescopes angular resolution, the smaller that angle the finer the details can be seen and the finer the image. One factor limiting angular resolution is diffraction which is the tendency of light waves to spread out when they are confined to a small area like the lens or mirror of a telescope.

19 Magnification The amount of magnification depends on the focal length of the primary and the eyepiece (The smaller the eyepiece, the greater the magnification)

20 A hot opaque body (blackbody) produces a smooth continuous spectrum Example: stars Kirchoff s Laws A cool transparent gas in front of a source of a continuous spectrum produces an absorption-line spectrum Example planetary atmospheres, solar photosphere and chromosphere A hot transparent gas radiates an emission-line spectrum (against a dark background) Example: the solar corona

21 Ancient Astronomers Ancient astronomers knew that the earth was a sphere and believed it was the center of the universe Aristotle dismissed the heliocentric system he saw because he saw no parallax Believed the heavens were unchangeable

22 Copernicus ( ) Polish scientist who Reproposed heliocentric theory and put the Sun at the center, but still believed the orbits of the planets were circles + epicycles Heliocentric Model

23 Ptolemaic system Thought of by Ptolemy. Ptolemy ( ad) - Egypt -Used the concept of Epicycles to explain the motion of the Sun and planets Said that each planet moved in a small circle, or an epicycle, whose center turns in a larger circle (the deferent), rotating counterclockwise Theory is flawed!

24 Tycho Brahe ( ), Danish -Observed a supernova, and periodic comets Proof that the stars and planets are not constant, as the ancient astronomers believed -Best pre-telescope observer

25 Galileo ( ), Italian -Used telescope to view Jupiter s moons, lunar mountains, and sunspots Phases of Venus Experiments on motion Including attempts to measure the speed of light Famous gravity experiment using the leaning tower of Pisa -Galileo also discovered four moons, now called the Galilean satellites, orbiting Jupiter Phases of Venus- Galileo s observations of Venus s gibbous ( fullish ) phase definitively ruled out Ptolemy s geocentric model Galileo discovered that the higher an object is dropped, the greater its speed when it reaches the ground - All falling objects near the surface of the Earth have the same acceleration (9.8 m/s2) -The acceleration of gravity on the surface of other solar-system bodies depends on their mass and radius

26 Kepler s Laws 1. The orbits are ellipses - The planets move about the sun in elliptical orbits with the Sun at one foci of the ellipse - The Semi-major axis is ½ the long width of the ellipse - Eccentricity a measure of how oblong an ellipse is. 2. A planet s speed varies as it moves around its elliptical orbit - The Planet sweeps out equal areas of the elliptical orbit, in equal time intervals - The planet moves fastest when it is closest to the Sun and slowest when it is farthest away 3. The orbital period of a planet is related to the size of its orbit - The square of a planet s period (P) is proportional - To the cube of its semi-major axis (a). - The farther a planet is from the sun, the longer it takes to go around the sun P2 = A3 P= period (in years) A= semi- major axis (in AU) only applies to planetary motion about the sun

27 Isaac Newton ( ) Developed the Laws of Motion Discovered the law of gravity Used physics to derive Kepler s 3rd Law

28 Units Common Units Used: Distance- AU for between planets, 1AU=distance from earth to sun Km- size of features on planets Mass- kg *mass is different from weight, weight is force exerted by gravity Speed- km/s Speed of light: 3 x 108 m/s Temperature- Kelvin, Centigrade, and Fahrenheit Distance Traveled= speed x time D=vt

29 Planet order Layout of the Solar System starting from sun- Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto

30 Terrestrial planets The first four are Terrestrial Planets which are set apart because they are small, rocky materials containing iron, oxygen, silicon, magnesium, nickel, and sulfur. with high density.

31 Jovian planets The outer four are the Jovian Planets which are large and mostly composed of helium and hydrogen are have a low density.

32 Question What does it take for a planet to have active volcanoes?

33 Answer -requires heat hot after planet formed - Big planets cool slower - Big terrestrial planets are active longer - Fewer craters - more likely to have active volcanoes

34 Question What does a planet need to have an atmosphere?

35 Answer -Requires Gas -gas must be cool enough to not escape -must have enough gravity -Big cool planets are more likely to have an atmosphere

### Planetary Orbits: Kepler s Laws 1/18/07

Planetary Orbits: Kepler s Laws Announcements The correct link for the course webpage http://www.lpl.arizona.edu/undergrad/classes/spring2007/giacalone_206-2 The first homework due Jan 25 (available for

### Introduction To Modern Astronomy I

ASTR 111 003 Fall 2006 Lecture 03 Sep. 18, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17) Ch1: Astronomy and the Universe Ch2: Knowing the Heavens

### Gravitation and the Motion of the Planets

Gravitation and the Motion of the Planets 1 Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets go around

### Astronomy I Exam I Sample Name: Read each question carefully, and choose the best answer.

Name: Read each question carefully, and choose the best answer. 1. During a night in Schuylkill Haven, most of the stars in the sky (A) are stationary through the night. (B) the actual motion depends upon

### Gravitation and the Waltz of the Planets

Gravitation and the Waltz of the Planets Chapter Four Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets

### Gravitation and the Waltz of the Planets. Chapter Four

Gravitation and the Waltz of the Planets Chapter Four Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets

### Most of the time during full and new phases, the Moon lies above or below the Sun in the sky.

6/16 Eclipses: We don t have eclipses every month because the plane of the Moon s orbit about the Earth is different from the plane the ecliptic, the Earth s orbital plane about the Sun. The planes of

### Practice Test DeAnza College Astronomy 04 Test 1 Spring Quarter 2009

Practice Test DeAnza College Astronomy 04 Test 1 Spring Quarter 2009 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Mark answer on Scantron.

### PHYS 160 Astronomy Test #1 Fall 2017 Version B

PHYS 160 Astronomy Test #1 Fall 2017 Version B 1 I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. An object has the same weight,

### Lecture #5: Plan. The Beginnings of Modern Astronomy Kepler s Laws Galileo

Lecture #5: Plan The Beginnings of Modern Astronomy Kepler s Laws Galileo Geocentric ( Ptolemaic ) Model Retrograde Motion: Apparent backward (= East-to-West) motion of a planet with respect to stars Ptolemy

### 1. The Moon appears larger when it rises than when it is high in the sky because

2-1 Copyright 2016 All rights reserved. No reproduction or distribution without the prior written consent of 1. The Moon appears larger when it rises than when it is high in the sky because A. you are

### Chapter 02 The Rise of Astronomy

Chapter 02 The Rise of Astronomy Multiple Choice Questions 1. The moon appears larger when it rises than when it is high in the sky because A. You are closer to it when it rises (angular-size relation).

### Learning Objectives. one night? Over the course of several nights? How do true motion and retrograde motion differ?

Kepler s Laws Learning Objectives! Do the planets move east or west over the course of one night? Over the course of several nights? How do true motion and retrograde motion differ?! What are geocentric

### AST Section 2: Test 1

AST1002 - Section 2: Test 1 Date: 10/06/2009 Name: Equations: c = λ f, λ peak = Question 1: A star with a declination of +40.0 degrees will be 1. east of the vernal equinox. 2. west of the vernal equinox.

### Midterm 1. - Covers Ch. 1, 2, 3, 4, & 5 (HW 1, 2, 3, & 4) ** bring long green SCANTRON 882 E short answer questions (show work)

Midterm 1 - Covers Ch. 1, 2, 3, 4, & 5 (HW 1, 2, 3, & 4) - 20 multiple choice/fill-in the blank ** bring long green SCANTRON 882 E - 10 short answer questions (show work) - formula sheet will be included

### 3) During retrograde motion a planet appears to be A) dimmer than usual. B) the same brightness as usual C) brighter than usual.

Descriptive Astronomy (ASTR 108) Exam 1 B February 17, 2010 Name: In each of the following multiple choice questions, select the best possible answer. In the line on the scan sheet corresponding to the

### 1) Kepler's third law allows us to find the average distance to a planet from observing its period of rotation on its axis.

Descriptive Astronomy (ASTR 108) Exam 1 A February 17, 2010 Name: In each of the following multiple choice questions, select the best possible answer. In the line on the scan sheet corresponding to the

### Astronomy 1010 Planetary Astronomy Sample Questions for Exam 1

Astronomy 1010 Planetary Astronomy Sample Questions for Exam 1 Chapter 1 1. A scientific hypothesis is a) a wild, baseless guess about how something works. b) a collection of ideas that seems to explain

### a. 0.5 AU b. 5 AU c. 50 AU d.* AU e AU

1 AST104 Sp04: WELCOME TO EXAM 1 Multiple Choice Questions: Mark the best answer choice. Read all answer choices before making selection. (No credit given when multiple answers are marked.) 1. A galaxy

### 18. Kepler as a young man became the assistant to A) Nicolaus Copernicus. B) Ptolemy. C) Tycho Brahe. D) Sir Isaac Newton.

Name: Date: 1. The word planet is derived from a Greek term meaning A) bright nighttime object. B) astrological sign. C) wanderer. D) nontwinkling star. 2. The planets that were known before the telescope

### 7.4 Universal Gravitation

Circular Motion Velocity is a vector quantity, which means that it involves both speed (magnitude) and direction. Therefore an object traveling at a constant speed can still accelerate if the direction

### Topic 10: Earth in Space Workbook Chapters 10 and 11

Topic 10: Earth in Space Workbook Chapters 10 and 11 We can imagine all the celestial objects seen from Earth the sun, stars, the Milky way, and planets as being positioned on a celestial sphere. Earth

### How big is the Universe and where are we in it?

Announcements Results of clicker questions from Monday are on ICON. First homework is graded on ICON. Next homework due one minute before midnight on Tuesday, September 6. Labs start this week. All lab

### Announcements. Topics To Be Covered in this Lecture

Announcements! Tonight s observing session is cancelled (due to clouds)! the next one will be one week from now, weather permitting! The 2 nd LearningCurve activity was due earlier today! Assignment 2

### Astronomy 201 Review 1 Answers

Astronomy 201 Review 1 Answers What is temperature? What happens to the temperature of a box of gas if you compress it? What happens to the temperature of the gas if you open the box and let the gas expand?

### Early Theories. Early astronomers believed that the sun, planets and stars orbited Earth (geocentric model) Developed by Aristotle

Planetary Motion Early Theories Early astronomers believed that the sun, planets and stars orbited Earth (geocentric model) Developed by Aristotle Stars appear to move around Earth Observations showed

### Unit 1 Discovering the Heavens I. Introduction to Astronomy A. Celestial Sphere

Unit 1 Discovering the Heavens I. Introduction to Astronomy A. Celestial Sphere celestial sphere - a model that represents the real sky with the Earth at the center - used to help visualize positions of

### ASTRONOMY LECTURE NOTES MIDTERM REVIEW. ASTRONOMY LECTURE NOTES Chapter 1 Charting the Heavens

ASTRONOMY LECTURE NOTES MIDTERM REVIEW ASTRONOMY LECTURE NOTES Chapter 1 Charting the Heavens How Do We Locate Objects in the Sky? Local-Sky Coordinates versus Celestial-Sphere Coordinates When the sky

### THE SUN AND THE SOLAR SYSTEM

Chapter 26 THE SUN AND THE SOLAR SYSTEM CHAPTER 26 SECTION 26.1: THE SUN S SIZE, HEAT, AND STRUCTURE Objectives: What is the Sun s structure and source of energy? Key Vocabulary: Fusion Photosphere Corona

### Astronomy 1 Fall 2016

Astronomy 1 Fall 2016 Comet Halley Edmund Halley, a friend of Newton s used Newton s math to predict the return of a comet seen at intervals of 76 years. Lecture 3; September 29, 2016 Previously on Astro-1

### Introduction To Modern Astronomy II

ASTR 111 003 Fall 2006 Lecture 03 Sep. 18, 2006 Introduction To Modern Astronomy II Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17) Ch1: Astronomy and the Universe Ch2: Knowing the Heavens

### Exam# 1 Review Gator 1 Keep the first page of the exam. Scores will be published using the exam number Chapter 0 Charting the Heavens

Exam# 1 Review Exam is Wednesday October 11 h at 10:40AM, room FLG 280 Bring Gator 1 ID card Bring pencil #2 (HB) with eraser. We provide the scantrons No use of calculator or any electronic device during

### Earth Science, 13e Tarbuck & Lutgens

Earth Science, 13e Tarbuck & Lutgens Origins of Modern Astronomy Earth Science, 13e Chapter 21 Stanley C. Hatfield Southwestern Illinois College Early history of astronomy Ancient Greeks Used philosophical

### Brock University. Test 1, May 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: May 21, 2014

Brock University Test 1, May 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: May 21, 2014 Number of hours: 50 min Time of Examination: 14:00 14:50 Instructor: B.Mitrović

### Chapter 3 The Solar System

Name: Date: Period: Chapter 3 The Solar System Section 1 Observing the Solar System (pp. 72-77) Key Concepts What are the geocentric and heliocentric systems? How did Copernicus, Galileo, and Kepler contribute

### Gravitation Part I. Ptolemy, Copernicus, Galileo, and Kepler

Gravitation Part I. Ptolemy, Copernicus, Galileo, and Kepler Celestial motions The stars: Uniform daily motion about the celestial poles (rising and setting). The Sun: Daily motion around the celestial

### a. 1/3 AU b. 3 AU 5. Meteor showers occur

1 AST104 Sp. 2006: WELCOME TO EXAM 3 Multiple Choice Questions: Mark the best answer choice on the answer form. Read all answer choices before making selection. CHECK YOUR WORK CAREFULLY BEFORE HANDING

### Space Notes Covers Objectives 1 & 2

Space Notes Covers Objectives 1 & 2 Space Introduction Space Introduction Video Celestial Bodies Refers to a natural object out in space 1) Stars 2) Comets 3) Moons 4) Planets 5) Asteroids Constellations

### Astronomy 101 Test 1 Review FOUNDATIONS

Astronomy 101 Test 1 Review FOUNDATIONS Scientists use the metric system to measure things. It is based on powers ten, and is thus more logical than our everyday Imperial system. The kilogram (or gram),

The History of Astronomy Please pick up your assigned transmitter. When did mankind first become interested in the science of astronomy? 1. With the advent of modern computer technology (mid-20 th century)

### d. Galileo Galilei i. Heard about lenses being used to magnify objects 1. created his own telescopes to 30 power not the inventor! 2. looked

1. Age of Reason a. Nicolaus Copernicus 1473-1543 i. Commenteriolus manuscript circulated from 1512 1. unpublished 2. Heliocentric hypothesis ii. On the Revolutions of the Planets published year of his

### How Astronomers Learnt that The Heavens Are Not Perfect

1 How Astronomers Learnt that The Heavens Are Not Perfect Introduction In this packet, you will read about the discoveries and theories which changed the way astronomers understood the Universe. I have

### SPACE REVIEW. 1. The time it takes for the Earth to around the sun is one year. a. rotate b. revolve

SPACE REVIEW 1. The time it takes for the Earth to around the sun is one year. a. rotate b. revolve 2. Which planet is known as the "Red Planet"? a. Earth b. Mars c. Uranus d. Venus 3. One complete revolution

### AY2 Winter 2017 Midterm Exam Prof. C. Rockosi February 14, Name and Student ID Section Day/Time

AY2 Winter 2017 Midterm Exam Prof. C. Rockosi February 14, 2017 Name and Student ID Section Day/Time Write your name and student ID number on this printed exam, and fill them in on your Scantron form.

### Coriolis Effect - the apparent curved paths of projectiles, winds, and ocean currents

Regents Earth Science Unit 5: Astronomy Models of the Universe Earliest models of the universe were based on the idea that the Sun, Moon, and planets all orbit the Earth models needed to explain how the

### cosmogony geocentric heliocentric How the Greeks modeled the heavens

Cosmogony A cosmogony is theory about ones place in the universe. A geocentric cosmogony is a theory that proposes Earth to be at the center of the universe. A heliocentric cosmogony is a theory that proposes

### Name and Student ID Section Day/Time:

AY2 - Overview of the Universe - Midterm #1 - Instructor: Maria F. Duran Name and Student ID Section Day/Time: 1) Imagine we ve discovered a planet orbiting another star at 1 AU every 6 months. The planet

### Lecture 13. Gravity in the Solar System

Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

### ASTR-1010: Astronomy I Course Notes Section III

ASTR-1010: Astronomy I Course Notes Section III Dr. Donald G. Luttermoser Department of Physics and Astronomy East Tennessee State University Edition 2.0 Abstract These class notes are designed for use

### Astronomy 1143 Quiz 1 Review

Astronomy 1143 Quiz 1 Review Prof. Pradhan September 7, 2017 I What is Science? 1. Explain the difference between astronomy and astrology. Astrology: nonscience using zodiac sign to predict the future/personality

### Useful Formulas and Values

Name Test 1 Planetary and Stellar Astronomy 2017 (Last, First) The exam has 20 multiple choice questions (3 points each) and 8 short answer questions (5 points each). This is a closed-book, closed-notes

### ASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy

Chariho Regional School District - Science Curriculum September, 2016 ASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy OVERVIEW Summary Students will be introduced to the overarching concept of astronomy.

### Eclipses and Forces. Jan 21, ) Review 2) Eclipses 3) Kepler s Laws 4) Newton s Laws

Eclipses and Forces Jan 21, 2004 1) Review 2) Eclipses 3) Kepler s Laws 4) Newton s Laws Review Lots of motion The Moon revolves around the Earth Eclipses Solar Lunar the Sun, Earth and Moon must all be

### EXAM #2. ANSWERS ASTR , Spring 2008

EXAM #2. ANSWERS ASTR 1101-001, Spring 2008 1. In Copernicus s heliocentric model of the universe, which of the following astronomical objects was placed in an orbit around the Earth? The Moon 2. In his

### Early Models of the Universe. How we explained those big shiny lights in the sky

Early Models of the Universe How we explained those big shiny lights in the sky The Greek philosopher Aristotle (384 322 BCE) believed that the Earth was the center of our universe, and everything rotated

### Phys Homework Set 2 Fall 2015 Exam Name

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Increasing the temperature of a blackbody by a factor of 2 will increase its energy by

### Phys Homework Set 2 Fall 2015 Exam Name

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) About how many stars are visible on a clear, dark night with the naked eye alone? 1)

### PTYS/ASTR 206 Section 2 Spring 2007 Homework #1 (Page 1/4)

PTYS/ASTR 206 Section 2 Spring 2007 Homework #1 (Page 1/4) NAME: KEY Due Date: start of class 1/25/2007 5 pts extra credit if turned in before 9:00AM (early!) (To get the extra credit, the assignment must

### 9/12/2010. The Four Fundamental Forces of Nature. 1. Gravity 2. Electromagnetism 3. The Strong Nuclear Force 4. The Weak Nuclear Force

The Four Fundamental Forces of Nature 1. Gravity 2. Electromagnetism 3. The Strong Nuclear Force 4. The Weak Nuclear Force The Universe is made of matter Gravity the force of attraction between matter

### Orbital Mechanics. CTLA Earth & Environmental Science

Orbital Mechanics CTLA Earth & Environmental Science The Earth Spherical body that is flattened near the poles due to centrifugal force (rotation of the Earth) 40,074 KM across at the Equator 40,0007 KM

### BROCK UNIVERSITY. 1. About 2300 years ago, Aristotle argued that the Earth is spherical based on a number of observations, one of which was that

BROCK UNIVERSITY Page 1 of 10 Test 2: November 2015 Number of pages: 10 Course: ASTR 1P01, Section 2 Number of students: 861 Examination date: 7 November 2015 Time limit: 50 min Time of Examination: 13:00

### Basics of Kepler and Newton. Orbits of the planets, moons,

Basics of Kepler and Newton Orbits of the planets, moons, Kepler s Laws, as derived by Newton. Kepler s Laws Universal Law of Gravity Three Laws of Motion Deriving Kepler s Laws Recall: The Copernican

### Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields

Gravity Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields Simulation Synchronous Rotation https://www.youtube.com/watch?v=ozib_l eg75q Sun-Earth-Moon System https://vimeo.com/16015937

### AST 1002 Section 1 (Dobrosavljevic) PLANETS, STARS, GALAXIES

Your name (print) Your FSUID AST 1002 Section 1 (Dobrosavljevic) PLANETS, STARS, GALAXIES Midterm Exam 1, Fall 2018 Instructions: 1. Use a pencil for marking the machine scoring sheet. 2. Enter and encode

### 3. The diagram below shows the Moon at four positions in its orbit around Earth as viewed from above the North Pole.

1. Which object orbits Earth in both the Earth-centered (geocentric) and Sun-centered (heliocentric) models of our solar system? (1) Polaris (3) the Sun (2) Venus (4) the Moon 2. A cycle of Moon phases

### BROCK UNIVERSITY. 1. The observation that the intervals of time between two successive quarter phases of the Moon are very nearly equal implies that

BROCK UNIVERSITY Page 1 of 10 Test 1: November 2014 Number of pages: 10 Course: ASTR 1P01, Section 2 Number of students: 961 Examination date: 7 November 2014 Time limit: 50 min Time of Examination: 17:00

### PHYS 155 Introductory Astronomy

PHYS 155 Introductory Astronomy - observing sessions: Sunday Thursday, 9pm, weather permitting http://www.phys.uconn.edu/observatory - Exam - Tuesday March 20, - Review Monday 6:30-9pm, PB 38 Marek Krasnansky

### Chapter 23. Our Solar System

Chapter 23 Our Solar System Our Solar System 1 Historical Astronomy Wandering Stars Greeks watched the stars move across the sky and noticed five stars that wandered around and did not follow the paths

### 2) The number one million can be expressed in scientific notation as: (c) a) b) 10 3 c) 10 6 d)

Astronomy Phys 181 Midterm Examination Choose the best answer from the choices provided. 1) What is the range of values that the coordinate Declination can have? (a) a) -90 to +90 degrees b) 0 to 360 degrees

### FCAT Review Space Science

FCAT Review Space Science The Law of Universal Gravitation The law of universal gravitation states that ALL matter in the universe attracts each other. Gravity is greatly impacted by both mass and distance

### Copernican Revolution. ~1500 to ~1700

~1500 to ~1700 Copernicus (~1500) Brahe (~1570) Kepler (~1600) Galileo (~1600) Newton (~1670) The Issue: Geocentric or Heliocentric Which model explains observations the best? Copernicus (~1500) Resurrected

### Physical Science 1 Chapter 16 INTRODUCTION. Astronomy is the study of the universe, which includes all matter, energy, space and time.

INTRODUCTION Astronomy is the study of the universe, which includes all matter, energy, space and time. Although the universe is vast and almost beyond imagination, much is known about its make-up and

### DeAnza College Winter First Midterm Exam MAKE ALL MARKS DARK AND COMPLETE.

FAMILY NAME : (Please PRINT!) GIVEN NAME : (Please PRINT!) Signature: ASTRONOMY 4 DeAnza College Winter 2018 First Midterm Exam MAKE ALL MARKS DARK AND COMPLETE. Instructions: 1. On your Parscore sheet

### Chapter 2. The Rise of Astronomy. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 2 The Rise of Astronomy Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Periods of Western Astronomy Western astronomy divides into 4 periods Prehistoric

### Intro to Astronomy. Looking at Our Space Neighborhood

Intro to Astronomy Looking at Our Space Neighborhood Astronomy: The Original Science Ancient cultures used the movement of stars, planets and the moon to mark time Astronomy: the study of the universe

### Chapter 4. The Origin Of Modern Astronomy. Is okay to change your phone? From ios to Android From Android to ios

Chapter 4 The Origin Of Modern Astronomy Slide 14 Slide 15 14 15 Is Change Good or Bad? Do you like Homer to look like Homer or with hair? Does it bother you when your schedule is changed? Is it okay to

### Claudius Ptolemaeus Second Century AD. Jan 5 7:37 AM

Claudius Ptolemaeus Second Century AD Jan 5 7:37 AM Copernicus: The Foundation Nicholas Copernicus (Polish, 1473 1543): Proposed the first modern heliocentric model, motivated by inaccuracies of the Ptolemaic

### Brock University. Test 1, September 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: September 29, 2014

Brock University Test 1, September 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: September 29, 2014 Number of hours: 50 min Time of Examination: 18:00 18:50 Instructor:

### a. 0.1 AU b. 10 AU c light years d light years

1 AST104 Sp2006: EXAM 1 Multiple Choice Questions: Mark the best answer choice on the bubble form. Read all answer choices before making selection. (No credit given when multiple answers are marked.) 1.

### Name: Exam 1, 9/30/05

Multiple Choice: Select the choice that best answers each question. Write your choice in the blank next to each number. (2 points each) 1. At the North Pole in mid-november, the sun rises at a. North of

### Kepler, Newton, and laws of motion

Kepler, Newton, and laws of motion First: A Little History Geocentric vs. heliocentric model for solar system (sec. 2.2-2.4)! The only history in this course is this progression: Aristotle (~350 BC) Ptolemy

### If Earth had no tilt, what else would happen?

A more in depth explanation from last week: If Earth had no tilt, what else would happen? The equator would be much hotter due to the direct sunlight which would lead to a lower survival rate and little

### Astronomy Final Exam Study Guide

Astronomy Final Exam Study Guide 1. Daily motion is diurnal. Yearly motion is annual. 2. The Celestial equator lies directly above the Earth s equator. The Celestial North Pole lies directly above the

### Motion of the Sun. motion relative to the horizon. rises in the east, sets in the west on a daily basis. Basis for the unit of time, the DAY

Motion of the Sun motion relative to the horizon rises in the east, sets in the west on a daily basis Basis for the unit of time, the DAY noon: highest point of Sun in sky relative to the horizon 1 altitude:

### F = ma P 2 = a 3 (M + m) P 2 = a 3. max T = 2900 K m

Summer 2013 Astronomy - Test 1 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as

### Earth Science, 11e. Origin of Modern Astronomy Chapter 21. Early history of astronomy. Early history of astronomy. Early history of astronomy

2006 Pearson Prentice Hall Lecture Outlines PowerPoint Chapter 21 Earth Science 11e Tarbuck/Lutgens This work is protected by United States copyright laws and is provided solely for the use of instructors

### Astronomy 1001/1005 Midterm (200 points) Name:

Astronomy 1001/1005 Midterm (00 points) Name: Instructions: Mark your answers on this test AND your bubble sheet You will NOT get your bubble sheet back One page of notes and calculators are allowed Use

### Days of the week: - named after 7 Power (moving) objects in the sky (Sun, Moon, 5 planets) Models of the Universe:

Motions of the Planets ( Wanderers ) Planets move on celestial sphere - change RA, Dec each night - five are visible to naked eye Mercury, Venus, Mars, Jupiter, Saturn Days of the week: - named after 7

### PHYS 160 Astronomy Test #1 Name Answer Key Test Version A

PHYS 160 Astronomy Test #1 Name Answer Key Test Version A True False Multiple Choice 1. T 1. C 2. F 2. B 3. T 3. A 4. T 4. E 5. T 5. B 6. F 6. A 7. F 7. A 8. T 8. D 9. F 9. D 10. F 10. B 11. B 12. D Definitions

### EARTH SCIENCE UNIT 9 -KEY ASTRONOMY

EARTH SCIENCE UNIT 9 -KEY ASTRONOMY UNIT 9- ASTRONOMY 2 THE SOLAR SYSTEM I. The Solar System: THE SUN AND ALL CELESTIAL OBJECTS THAT ORBIT THE SUN HELD BY THE SUN S GRAVITY. a. Celestial Body: ANY OBJECT

### D. A system of assumptions and principles applicable to a wide range of phenomena that has been repeatedly verified

ASTRONOMY 1 EXAM 1 Name Identify Terms - Matching (20 @ 1 point each = 20 pts.) 1 Solar System G 7. aphelion N 14. eccentricity M 2. Planet E 8. apparent visual magnitude R 15. empirical Q 3. Star P 9.

### Exam #1 Covers material from first day of class, all the way through Tides and Nature of Light Supporting reading chapters 1-5 Some questions are

Exam #1 Covers material from first day of class, all the way through Tides and Nature of Light Supporting reading chapters 1-5 Some questions are concept questions, some involve working with equations,

### Greeks watched the stars move across the sky and noticed five stars that wandered around and did not follow the paths of the normal stars.

Chapter 23 Our Solar System Our Solar System Historical Astronomy Wandering Stars Greeks watched the stars move across the sky and noticed five stars that wandered around and did not follow the paths of

### The Solar System. Chapter Test A. Multiple Choice. Write the letter of the correct answer on the line at the left.

The Solar System Chapter Test A Multiple Choice Write the letter of the correct answer on the line at the left. 1. 2. 3. 4. 5. The fact that each planet s orbit is an ellipse was discovered by a. Copernicus.

### BROCK UNIVERSITY. 1. The observation that the intervals of time between two successive quarter phases of the Moon are very nearly equal implies that

BROCK UNIVERSITY Page 1 of 10 Test 1: November 2014 Number of pages: 10 Course: ASTR 1P01, Section 2 Number of students: 30 Examination date: 10 November 2014 Time limit: 50 min Time of Examination: 9:00

### The point in an orbit around the Sun at which an object is at its greatest distance from the Sun (Opposite of perihelion).

ASTRONOMY TERMS Albedo Aphelion Apogee A measure of the reflectivity of an object and is expressed as the ratio of the amount of light reflected by an object to that of the amount of light incident upon

### Chapter 17 Solar System

Chapter 17 Solar System Rotation Earth spinning on its axis (like a top) "TOP" imaginary rod running through the center of the Earth from North pole to South pole The Earth is tilted on its axis at an

### 5. How did Copernicus s model solve the problem of some planets moving backwards?

MODELS OF THE SOLAR SYSTEM Reading Guide: Chapter 27.2 (read text pages 691-694) 1k. Recognize the cumulative nature of scientific evidence. 1n. Know that when an observation does not agree with an accepted