National Maritime Center

Size: px
Start display at page:

Download "National Maritime Center"

Transcription

1 National Maritime Center Providing Credentials to Mariners Master TV to Master Less than 500 Gross Registered Tons Oceans or Near Coastal (Sample Examination) Page 1 of 5

2 Choose the best answer to the following Multiple Choice Questions. 1. You observe the lower limb of the Sun at a sextant altitude (hs) of ' on 11 October. The index error is 3.0' off the arc. The height of eye is 63 feet (19.2 meters). What is the observed altitude (Ho)? o (A) ' o (B) ' o (C) ' (D) ' 2. A great circle crosses the equator at 93 W. It will also cross the equator at what other longitude? o (A) 177 E o (B) 177 W (C) 87 E o (D) 13 E 3. The great circle distance from LAT 'S, LONG 'E to LAT 'S, LONG 'E is 4559 miles and the initial course is 121 T. Determine the longitude of the vertex. o (A) 'E o (B) 'E (C) 'E o (D) 'E 4. The tropical year differs from which year by 20 minutes? o (A) Astronomical year o (B) Equinoctial year (C) Sidereal year o (D) Natural year Page 2 of 5

3 5. On 22 February your 0800 zone time position is LAT 24 16'S, LONG 95 37'E. Your vessel is on course 126 T at a speed of 14 knots. An observation of the Sun's lower limb is made at 0945 zone time. The chronometer reads 03h 47m 22s, and the chronometer error is 02m 37s fast. The observed altitude (Ho) is '. LAN occurs at 1148 zone time, and a meridian altitude of the Sun's lower limb is made. The observed meridian altitude (Ho) is '. Determine the vessel's 1200 zone time position. o (A) LAT 'S, LONG 'E o (B) LAT 'S, LONG 'E (C) LAT 'S, LONG 'E o (D) LAT 'S, LONG 'E 6. On 13 October your 0515 zone time fix gives you a position of LAT 'N, LONG 'W. Your vessel is on course 068 T, and your speed is 7.8 knots. Local apparent noon (LAN) occurs at 1145 zone time, at which time a meridian altitude of the Sun's lower limb is observed. The observed altitude (Ho) for this sight is '. What is the latitude at 1200 ZT? (A) 'N o (B) 'N o (C) 'N o (D) 'N 7. On 16 July at 2000 zone time, you take a sextant observation of Polaris. Your vessel's DR position is LAT 'N, LONG 'W, and your sextant reads '. Your chronometer reads 05h 59m 16s, and your chronometer error is 01m 28s slow. Your height of eye is 48 feet, and the index error for your sextant is 1.3' off the arc. What is the latitude of your vessel from your observation of Polaris? o (A) 'N o (B) 'N (C) 'N o (D) 'N 8. You are on course 355 T and take a relative bearing of a lighthouse of 275. What is the true bearing of the lighthouse? (A) 270 o (B) 080 o (C) 280 o (D) 085 Page 3 of 5

4 9. On 10 April, your 1630 ZT DR position is LAT 'N, LONG 'W. You are on course 324 T at a speed of 22 knots. What will be the zone time of sunset at your vessel? o (A) 1805 o (B) 1814 o (C) 1818 (D) Which of the four adjustable errors in the sextant causes side error? o (A) Index mirror not being perpendicular to the frame o (B) Elliptical centering error (C) Horizon glass not being perpendicular to the frame o (D) Telescope not being parallel to the frame 11. On 14 January your 0550 DR position is LAT 'N, LONG 'W. You observe an unidentified star bearing 043 T at an observed altitude (Ho) of '. The chronometer reads 08h 48m 51s, and is 01m 22s slow. What star did you observe? o (A) Gacrux o (B) Gienah (C) Eltanin o (D) Kochab 12. On 2 February your 0400 zone time DR position is LAT ' N, LONG ' W. You are on course 322 T at a speed of 22 knots. Considering their magnitude, azimuth, and altitude, which group includes the three bodies best suited for a fix at star time? o (A) Jupiter, Spica, Denebola o (B) Saturn, Polaris, Zubenelgenubi o (C) Jupiter, Saturn, Polaris (D) Saturn, Antares, Rasalhague 13. distance in miles between the circle of equal altitude for the observed altitude (Ho) and the circle of equal altitude for the computed altitude (Hc) is the. (A) intercept o (B) zenith distance o (C) zenith angle o (D) equation of time Page 4 of 5

5 14. On 12 July your 0800 ZT DR position is LAT 'N, LONG 'W. Your vessel is on course 045 T at a speed of 15.0 knots. What is the ZT of local apparent noon (LAN)? o (A) 1146 o (B) 1148 (C) 1152 o (D) Determine the distance from LAT 'N, LONG 'E to LAT 'N, LONG 'W by parallel sailing. o (A) miles o (B) miles o (C) miles (D) miles Page 5 of 5

National Maritime Center

National Maritime Center National Maritime Center Providing Credentials to Mariners (Sample Examination) Page 1 of 5 Choose the best answer to the following Multiple Choice questions. 1. On 24 July your 1912 zone time DR position

More information

National Maritime Center

National Maritime Center National Maritime Center Providing Credentials to Mariners Q207 Navigation Problems-Oceans (Sample Examination) Page 1 of 6 Choose the best answer to the following Multiple Choice questions. 1. On 1 December

More information

National Maritime Center

National Maritime Center National Maritime Center Providing Credentials to Mariners Q127 Navigation Problems-Oceans (Sample Examination) Page 1 of 5 Choose the best answer to the following Multiple Choice questions. 1. You depart

More information

National Maritime Center

National Maritime Center National Maritime Center Providing Credentials to Mariners (Sample Examination) Page 1 of 5 Choose the best answer to the following Multiple Choice questions. 1. On 15 October your 0300 zone time DR position

More information

CHAPTER 20 SIGHT REDUCTION

CHAPTER 20 SIGHT REDUCTION CHAPTER 20 SIGHT REDUCTION BASIC PRINCIPLES 2000. Introduction Reducing a celestial sight to obtain a line of position consists of six steps: 1. Correcting sextant altitude (hs) to obtain observed altitude

More information

CHAPTER 19 SIGHT REDUCTION

CHAPTER 19 SIGHT REDUCTION CHAPTER 19 SIGHT REDUCTION BASIC PROCEDURES 1900. Computer Sight Reduction The purely mathematical process of sight reduction is an ideal candidate for computerization, and a number of different hand-held

More information

ASTRONOMICAL NAVIGATION

ASTRONOMICAL NAVIGATION Basic terms ASTRONOMICAL NAVIGATION *astronomical navigation *compilation *astronomical tabels *celestial observations *solution of a sight * Sun/Moon/star sight *spherical trigonometry *PZX triangle *celestial

More information

Office 307 Breshnahan Hall Phone: ext MT3121 CELESTIAL NAVIGATION II

Office 307 Breshnahan Hall Phone: ext MT3121 CELESTIAL NAVIGATION II MT3121 CELESTIAL NAVIGATION II Learning Objective Celestial Navigation II will cover the requirements of the 1978 STCW convention as amended in 1995. The course covers the theory and practice of navigation

More information

Navigating by the Stars and Planets

Navigating by the Stars and Planets Navigating by the Stars and Planets (Finding your location from measured altitudes of celestial bodies) Presented to: Chagrin Valley Astronomical Society September 1, 2012 By Ron Baker, CVAS member Historical

More information

Chapter 6: Latitude by Noon Sight

Chapter 6: Latitude by Noon Sight Chapter 6: Latitude by oon ight When the sun is crossing the meridian of the boat, it is straight south or north of the boat and at its highest altitude over the horizon for the day. The local meridian

More information

SUN SIGHT REDUCTION CALCULATIONS

SUN SIGHT REDUCTION CALCULATIONS SUN SIGHT REDUCTION CALCULATIONS Date: Ship s time: GMT at sight: h m s DR Position: Lat º N/S Long º E/W Ass Position: Lat º N/S Long º E/W GHA: º Decl: º N/S d = +/- Incrmnt º Corr: +/- GHA: º Decl:

More information

Workforms. contents. Note on copyright and reproduction

Workforms. contents. Note on copyright and reproduction Workforms contents Form 104 for Sight Reduction with Pub. 249 or 229 Form 106 for Sight Reduction with NAO Tables Form 107 for LAN Sights Form 108 Combined Sight Reduction Form 109 for Solar Index Correction

More information

INTRODUCTION FOREWORD

INTRODUCTION FOREWORD FOREWORD The Sight Reduction Tables for Air Navigation consist of three volumes of comprehensive tables of altitude and azimuth designed for the rapid reduction of astronomical sights in the air. This

More information

A Celestial Navigation Primer

A Celestial Navigation Primer Introduction A Celestial Navigation Primer by Ron Davidson The study of celestial navigation, whether for blue water sailing, the taking of a navigation class (like the United States Power Squadron's JN

More information

DUMMIES guide to Astro-Navigation

DUMMIES guide to Astro-Navigation DUMMIES guide to Astro-Navigation The idea of this booklet is to give you the nuts and bolts in the process of gaining a position on your chart through celestial navigation without a deep understanding

More information

Chapter 2. Altitude Measurement

Chapter 2. Altitude Measurement Chapter Altitude Measurement Although altitudes and zenith distances are equally suitable for navigational calculations, most formulas are traditionally based upon altitudes which are easily accessible

More information

PHSC 1053: Astronomy Time and Coordinates

PHSC 1053: Astronomy Time and Coordinates PHSC 1053: Astronomy Time and Coordinates Astronomical Clocks Earth s Rotation on its Axis Time between two successive meridian transits of the sun 1 solar day (our adopted clock time) 24 hours (86,400

More information

Astronomy 311 Professor Menningen January 2, Syllabus overview books & supplies course goals assignments & grading About the professor

Astronomy 311 Professor Menningen January 2, Syllabus overview books & supplies course goals assignments & grading About the professor 1 Astronomy 311 Professor Menningen January 2, 2014 Syllabus overview books & supplies course goals assignments & grading About the professor 2 How to Learn Astronomy Stay curious Interact with the same

More information

Altitude NAVIGATION. Visible Horizon

Altitude NAVIGATION. Visible Horizon Altitude Visible Horizon Rational Horizon Sensible Horizon Dip Polar Distance A small circle on the surface of the earth, containing the points of intersection between the observer s eye sight and the

More information

March 21. Observer located at 42 N. Horizon

March 21. Observer located at 42 N. Horizon March 21 Sun Observer located at 42 N Horizon 48 June 21 March 21 A 48 90 S 23.5 S 0 23.5 N 42 N 90 N Equator (June 21) C (March 21) B A 71.5 48 Horizon 24.5 Observer Sun 40 Observer Sun 22 Observer Sun

More information

PHYS 160 Astronomy Test #1 Fall 2017 Version B

PHYS 160 Astronomy Test #1 Fall 2017 Version B PHYS 160 Astronomy Test #1 Fall 2017 Version B 1 I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. An object has the same weight,

More information

4 Solar System and Time

4 Solar System and Time 4 olar ystem and Time 4.1 The Universe 4.1.1 Introduction The Universe consists of countless galaxies distributed throughout space. The bodies used in astro navigation belong to the Galaxy known as the

More information

Modern Navigation. Thomas Herring

Modern Navigation. Thomas Herring 12.215 Modern Navigation Thomas Herring Review of Monday s Class Spherical Trigonometry Review plane trigonometry Concepts in Spherical Trigonometry Distance measures Azimuths and bearings Basic formulas:

More information

PY 124: Terrestrial Position from Celestial Observations

PY 124: Terrestrial Position from Celestial Observations The linked image cannot be displayed. The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location. The linked image cannot be displayed. The file may

More information

Earth-Sun Relationships. The Reasons for the Seasons

Earth-Sun Relationships. The Reasons for the Seasons Earth-Sun Relationships The Reasons for the Seasons Solar Radiation The earth intercepts less than one two-billionth of the energy given off by the sun. However, the radiation is sufficient to provide

More information

LOCATING CELESTIAL OBJECTS: COORDINATES AND TIME. a. understand the basic concepts needed for any astronomical coordinate system.

LOCATING CELESTIAL OBJECTS: COORDINATES AND TIME. a. understand the basic concepts needed for any astronomical coordinate system. UNIT 2 UNIT 2 LOCATING CELESTIAL OBJECTS: COORDINATES AND TIME Goals After mastery of this unit, you should: a. understand the basic concepts needed for any astronomical coordinate system. b. understand

More information

Name: Date: 5. The bright stars Vega, Deneb, and Altair form A) the summer triangle. B) the winter triangle. C) the Big Dipper. D) Orion, the Hunter.

Name: Date: 5. The bright stars Vega, Deneb, and Altair form A) the summer triangle. B) the winter triangle. C) the Big Dipper. D) Orion, the Hunter. Name: Date: 1. If there are about 6000 stars in the entire sky that can be seen by the unaided human eye, about how many stars would be seen at a particular instant on a given dark night from a single

More information

Chapter S1 Celestial Timekeeping and Navigation. How do we define the day, month, year, and planetary time periods?

Chapter S1 Celestial Timekeeping and Navigation. How do we define the day, month, year, and planetary time periods? Chapter S1 Celestial Timekeeping and Navigation S1.1 Astronomical Time Periods Our goals for learning:! How do we define the day, month, year, and planetary time periods?! How do we tell the time of day?!

More information

Complete Sun Sight Reduction Procedure

Complete Sun Sight Reduction Procedure Caution...2 Usage...2 Conventions...2 Assumptions...2 Explanation...2 Sight #...2 DR Latitude/DR Longitude...2 Date...2 GMT/UT...3 Hs...3 D. R. I. P. S...3 Index Error...3 Complete Sun Sight Reduction

More information

APPENDIX B CALCULATIONS AND CONVERSIONS

APPENDIX B CALCULATIONS AND CONVERSIONS APPENDIX B CALCULATIONS AND CONVERSIONS INTRODUCTION App B 1. Purpose and Scope This chapter discusses the use of calculators and computers in navigation and summarizes the formulas the navigator depends

More information

CHAPTER 2 SKILL SHEET 2: CELESTIAL NAVIGATION

CHAPTER 2 SKILL SHEET 2: CELESTIAL NAVIGATION CHAPTER 2 SKILL SHEET 2: CELESTIAL NAVIGATION Before the invention of GPS technology, how were people on ships far at sea, out of the sight of land, able to tell where they were? For thousands of years

More information

Geometry of Earth Sun System

Geometry of Earth Sun System 12S56 Geometry of Earth Sun System Figure below shows the basic geometry Northern Hemisphere Winter ω equator Earth s Orbit Ecliptic ω ω SUN equator Northern Hemisphere Spring Northern Hemisphere Fall

More information

Mid Term Prep-Shape of the Earth

Mid Term Prep-Shape of the Earth 1. The Earth is slightly flattened from a perfect spherical shape because of A) its rotation B) the pull of the sun and moon C) storms on the sun's surface D) its molten core 2. The diagrams below represent

More information

Oberth: Energy vs. Momentum

Oberth: Energy vs. Momentum 1 2 The Oberth Effect 3 Oberth: Energy vs. Momentum 4 The Celestial Sphere From our perspective on Earth the stars appear embedded on a distant 2-dimensional surface the Celestial Sphere. 5 The Celestial

More information

Celestial Coordinate Systems

Celestial Coordinate Systems Celestial Coordinate Systems Introduction How does one go about describing the position of an object in the sky? Astronomers cannot rely on the imprecise method of merely pointing at an object. There must

More information

Meridian Circle through Zenith, North Celestial Pole, Zenith Direction Straight Up from Observer. South Celestial Pole

Meridian Circle through Zenith, North Celestial Pole, Zenith Direction Straight Up from Observer. South Celestial Pole Chapter 3 How Earth and Sky Work- Effects of Latitude In chapters 3 and 4we will learn why our view of the heavens depends on our position on the Earth, the time of day, and the day of the year. We will

More information

ASTRONOMY Merit Badge Requirements

ASTRONOMY Merit Badge Requirements ASTRONOMY Merit Badge Requirements 1) Do the following: A) Sketch the face of the moon, indicating on it the locations of at least five seas and five craters. B) Within a single week, sketch the position

More information

Topic Guide: The Celestial Sphere. GCSE (9-1) Astronomy. Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Astronomy (1AS0)

Topic Guide: The Celestial Sphere. GCSE (9-1) Astronomy. Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Astronomy (1AS0) Topic Guide: The Celestial Sphere GCSE (9-1) Astronomy Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Astronomy (1AS0) The Celestial Sphere Contents Specification Points 1 The Astronomy 2 Equatorial coordinates

More information

Practice Questions: Shape of the Earth

Practice Questions: Shape of the Earth Practice Questions: Shape of the Earth 1. The Earth is slightly flattened from a perfect spherical shape because of A) its rotation B) the pull of the sun and moon C) storms on the sun's surface D) its

More information

NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS SEMESTER 1 EXAMINATION Heavenly Mathematics: Cultural Astronomy

NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS SEMESTER 1 EXAMINATION Heavenly Mathematics: Cultural Astronomy 1 GEK1506 NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS SEMESTER 1 EXAMINATION 2005 2006 GEK1506 Heavenly Mathematics: Cultural Astronomy November 2005 Time allowed: 2 hours 1. After taking

More information

Phys Lab #1: The Sun and the Constellations

Phys Lab #1: The Sun and the Constellations Phys 10293 Lab #1: The Sun and the Constellations Introduction Astronomers use a coordinate system that is fixed to Earth s latitude and longitude. This way, the coordinates of a star or planet are the

More information

is a revolution relative to a fixed celestial position. is the instant of transit of mean equinox relative to a fixed meridian position.

is a revolution relative to a fixed celestial position. is the instant of transit of mean equinox relative to a fixed meridian position. PERIODICITY FORMULAS: Sidereal Orbit Tropical Year Eclipse Year Anomalistic Year Sidereal Lunar Orbit Lunar Mean Daily Sidereal Motion Lunar Synodical Period Centenial General Precession Longitude (365.25636042

More information

EARTHS SHAPE AND POLARIS PRACTICE 2017

EARTHS SHAPE AND POLARIS PRACTICE 2017 1. In the diagram below, letters A through D represent the locations of four observers on the Earth's surface. Each observer has the same mass. 3. Which diagram most accurately shows the cross-sectional

More information

AFPAM MARCH Chapter 8 CELESTIAL CONCEPTS

AFPAM MARCH Chapter 8 CELESTIAL CONCEPTS AFPAM11-216 1 MARCH 2001 197 Section 8A Introduction to Celestial Concepts Chapter 8 CELESTIAL CONCEPTS 8.1. Basics. Celestial navigation is a universal aid to dead reckoning (DR). Because it is available

More information

This unit is primarily aimed at learners who intend to seek employment within the maritime industry.

This unit is primarily aimed at learners who intend to seek employment within the maritime industry. General information for centres Unit title: Celestial Navigation (SCQF level 8) Unit code: HW6M 48 Superclass: RE Publication date: November 2017 Source: Scottish Qualifications Authority Version: 01 Unit

More information

CELESTIAL COORDINATES

CELESTIAL COORDINATES ASTR 1030 Astronomy Lab 27 Celestial Coordinates CELESTIAL COORDINATES GEOGRAPHIC COORDINATES The Earth's geographic coordinate system is familiar to everyone - the north and south poles are defined by

More information

Aileen A. O Donoghue Priest Associate Professor of Physics

Aileen A. O Donoghue Priest Associate Professor of Physics SOAR: The Sky in Motion Life on the Tilted Teacup Ride The Year Aileen A. O Donoghue Priest Associate Professor of Physics Celestial Coordinates Right Ascension RA or From prime meridian (0 h ) to 23 h

More information

ASTRONOMICAL COORDINATE SYSTEMS CELESTIAL SPHERE

ASTRONOMICAL COORDINATE SYSTEMS CELESTIAL SPHERE ASTRONOMICAL COORDINATE SYSTEMS CELESTIAL SPHERE To the naked eye, stars appear fixed on the sky with respect to one another. These patterns are often grouped into constellations. Angular measurements

More information

Chapter S1 Lecture. The Cosmic Perspective Seventh Edition. Celestial Timekeeping and Navigation Pearson Education, Inc.

Chapter S1 Lecture. The Cosmic Perspective Seventh Edition. Celestial Timekeeping and Navigation Pearson Education, Inc. Chapter S1 Lecture The Cosmic Perspective Seventh Edition Celestial Timekeeping and Navigation 2014 Pearson Education, Inc. Celestial Timekeeping and Navigation 2014 Pearson Education, Inc. S1.1 Astronomical

More information

Acknowledgments Piloting The Art of Navigation p. 3 The Shipboard Navigation Department Organization p. 6 Duties of the Navigator p.

Acknowledgments Piloting The Art of Navigation p. 3 The Shipboard Navigation Department Organization p. 6 Duties of the Navigator p. Foreword p. xiii Acknowledgments p. xv Piloting The Art of Navigation p. 3 The Shipboard Navigation Department Organization p. 6 Duties of the Navigator p. 7 Relationship of the Navigator to the Command

More information

The following terms are some of the vocabulary that students should be familiar with in order to fully master this lesson.

The following terms are some of the vocabulary that students should be familiar with in order to fully master this lesson. Lesson 211: EARTH'S SEASONS Students learn the complex geometry and planetary motions that cause Earth to have four distinct seasons. Fundamental Questions Attempting to give thorough and reasonable answers

More information

Using Your Astrolabe

Using Your Astrolabe Using Your Astrolabe So, you are working on your Astronomy Before the Telescope certification with the Astronomical League. You have built your Astrolabe. Now what? It seems easy enough to use a rotating

More information

Earth Moon Motions A B1

Earth Moon Motions A B1 Earth Moon Motions A B1 1. The Coriolis effect provides evidence that Earth (1) rotates on its axis (2) revolves around the Sun (3) undergoes cyclic tidal changes (4) has a slightly eccentric orbit 9.

More information

EXPLANATION OF NAVIGATION TABLES

EXPLANATION OF NAVIGATION TABLES EXPLANATION OF NAVIGATION TABLES Mathematical Tables Table. Logarithms of Numbers The first page of this table gives the complete common logarithm (characteristic and mantissa) of numbers through 250.

More information

Chapter 2: Measure of the Sun s Altitude: Ho

Chapter 2: Measure of the Sun s Altitude: Ho The altitude (angle) of the sun above the horizon is traditionally measured with a sextant. 2.1 Principle of the Sextant The sextant measures the angle between what is seen straight through the clear window

More information

Computer Activity #3 SUNRISE AND SUNSET: THE SEASONS

Computer Activity #3 SUNRISE AND SUNSET: THE SEASONS NAME(S)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ASTRONOMY 25 Computer Activity #3 SUNRISE AND SUNSET: THE SEASONS SECTION DAY/TIME S. V. LLOYD Overview The seasonal variation in temperature is due to two changes

More information

CHAPTER 22 NAVIGATIONAL CALCULATIONS

CHAPTER 22 NAVIGATIONAL CALCULATIONS CHAPTER 22 NAVIGATIONAL CALCULATIONS INTRODUCTION 2200. Purpose And Scope This chapter discusses the use of calculators and computers in navigation and summarizes the formulas the navigator depends on

More information

Astro Navigation (i.e. Celestial Navigation)

Astro Navigation (i.e. Celestial Navigation) Name: Partner First Name: Astro Navigation (i.e. Celestial Navigation) Over the course of human lifetimes, the stars don t appear to change positions much. We can use that in order to determine locations

More information

Global Positioning System (G.P.S.)

Global Positioning System (G.P.S.) Title: Global Positioning System (G.P.S.) (Navigation) Grade(s): 6-8 Introduction: The Global Positioning System (G.P.S.) Is a worldwide radio-navigation system formed from a constellation of 24 satellites

More information

UNIT 6 CELESTIAL SPHERE AND EQUINOCTIAL SYSTEM OF COORDINATES

UNIT 6 CELESTIAL SPHERE AND EQUINOCTIAL SYSTEM OF COORDINATES UNIT 6 CELESTIAL SPHERE AND EQUINOCTIAL SYSTEM OF COORDINATES Structure 6.1 Introduction Objectives 6.2 References 6.3 Apparent Annual Motion of the Sun and the Concept of the Ecliptic and the Obliquity

More information

Time and Diurnal Motion. 1a. The Earth Is Flat. 1c. Aristotle ( BC) 1b. The Earth Is Round. Time and Diurnal Motion

Time and Diurnal Motion. 1a. The Earth Is Flat. 1c. Aristotle ( BC) 1b. The Earth Is Round. Time and Diurnal Motion Time and Diurnal Motion Time and Diurnal Motion A. Geography: mapping the earth 2 B. Equatorial Coordinates C. Local Horizon System Updated April 12, 2006 A. Geography: mapping the earth Geometry: measure

More information

COMPUTATION PROGRAMS OF THE ASTRONOMICAL VESSEL POSITION

COMPUTATION PROGRAMS OF THE ASTRONOMICAL VESSEL POSITION Journal of Marine Science and Technology Vol. 19 No. 1 pp. 35-4 (011) 35 COMPUTATION PROGRAMS OF THE ASTRONOMICAL VESSEL POSITION Chih-Li Chen* and Tsung-Hsuan Hsieh* Key words: intercept method observed

More information

To be able to calculate the great circle distance between any two points on the Earth s surface.

To be able to calculate the great circle distance between any two points on the Earth s surface. 17. Great Circles Objective To be able to calculate the great circle distance between any two points on the Earth s surface. Introduction The shortest distance between any two points on the Earth s surface

More information

Answers to Lyra Celestial Navigation Refresher Exercise

Answers to Lyra Celestial Navigation Refresher Exercise Answers to Lyra Celestial Navigation Refresher Exercise Correcting Your Sight Reduction Forms Below are the sight reduction forms and plotting sheets for the navigation exercise. The sight reduction forms

More information

OCCULTATIONS OF PLANETS AND BRIGHT STARS BY THE MOON January 27, 2018

OCCULTATIONS OF PLANETS AND BRIGHT STARS BY THE MOON January 27, 2018 OCCULTATIONS OF PLANETS AND BRIGHT STARS BY THE MOON January 27, 2018 The moon, as our nearest neighbor, sometimes blocks the light coming from a planet, a star, or the sun. Occultations are listed below

More information

Physics Lab #2: Learning Starry Night, Part 1

Physics Lab #2: Learning Starry Night, Part 1 Physics 10293 Lab #2: Learning Starry Night, Part 1 Introduction In this lab, we'll learn how to use the Starry Night software to explore the sky, and at the same time, you ll get a preview of many of

More information

2. Descriptive Astronomy ( Astronomy Without a Telescope )

2. Descriptive Astronomy ( Astronomy Without a Telescope ) How do we locate stars in the heavens? 2. Descriptive Astronomy ( Astronomy Without a Telescope ) What stars are visible from a given location? Where is the sun in the sky at any given time? Where are

More information

Appearance of the Sky Orientation Motion of sky Seasons Precession (?)

Appearance of the Sky Orientation Motion of sky Seasons Precession (?) Today Appearance of the Sky Orientation Motion of sky Seasons Precession (?) The Celestial Sphere Stars at different distances all appear to lie on the celestial sphere. The ecliptic is the Sun s apparent

More information

I. Evidence of Earth s Spherical Shape

I. Evidence of Earth s Spherical Shape Earth s Shape I. Evidence of Earth s Spherical Shape A. Two millennia ago Greek mathematicians determined Earth s shape was. spherical 1. Aristarchus (310 B.C. to 210 B.C.) a. Believed in universe. Sun-centered

More information

Observing the Universe for Yourself

Observing the Universe for Yourself Observing the Universe for Yourself Figure 6-20 Solar-System Formation What does the universe look like from Earth? With the naked eye, we can see more than 2,000 stars as well as the Milky Way. A constellation

More information

The Earth, Moon, and Sky. Lecture 5 1/31/2017

The Earth, Moon, and Sky. Lecture 5 1/31/2017 The Earth, Moon, and Sky Lecture 5 1/31/2017 From Last Time: Stable Orbits The type of orbit depends on the initial speed of the object Stable orbits are either circular or elliptical. Too slow and gravity

More information

3. The Sun s Position

3. The Sun s Position 3. The Sun s Position In order to understand how to collect energy from the sun, one must first be able to predict the location of the sun relative to the collection device. In this chapter we develop

More information

Appearance of the Sky Orientation Motion of sky Seasons Precession (?)

Appearance of the Sky Orientation Motion of sky Seasons Precession (?) Today Appearance of the Sky Orientation Motion of sky Seasons Precession (?) The Celestial Sphere Stars at different distances all appear to lie on the celestial sphere. The ecliptic is the Sun s apparent

More information

Time and Diurnal Motion

Time and Diurnal Motion Time and Diurnal Motion Time and Diurnal Motion A. Geography: mapping the earth 2 B. Equatorial Coordinates C. Local Horizon System Updated Sep 30, 2012 A. Geography: mapping the earth Geometry: measure

More information

The Earth is a Rotating Sphere

The Earth is a Rotating Sphere The Earth is a Rotating Sphere The Shape of the Earth Earth s Rotation ( and relative movement of the Sun and Moon) The Geographic Grid Map Projections Global Time The Earth s Revolution around the Sun

More information

Coordinates on the Sphere

Coordinates on the Sphere Survey Observations Coordinates on the Sphere Any position on the surface of a sphere (such as the Earth or the night sky) can be expressed in terms of the angular coordinates latitude and longitude Latitude

More information

Manual and Documentation for Teacup Celestial version 3.2a Software revision 3a

Manual and Documentation for Teacup Celestial version 3.2a Software revision 3a Manual and Documentation for Teacup Celestial version 3.2a Software revision 3a By Teacup Navigation Rodger E. Farley Contents Introduction Note as to compatibility with the previous version Sight Planner

More information

NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS SEMESTER 1 EXAMINATION Heavenly Mathematics: Cultural Astronomy

NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS SEMESTER 1 EXAMINATION Heavenly Mathematics: Cultural Astronomy NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS SEMESTER 1 EXAMINATION 2005 2006 GEK1506 Heavenly Mathematics: Cultural Astronomy November 2005 Time allowed: 2 hours Matriculation Number: INSTRUCTIONS

More information

Astron 104 Laboratory #2 The Celestial Sphere

Astron 104 Laboratory #2 The Celestial Sphere Name: Date: Section: Astron 104 Laboratory #2 The Celestial Sphere Basic Setup Once the celestial sphere is properly setup, it will serve as an exact model of the heavens relative to your location on Earth.

More information

Celestial Sphere Spectroscopy (Something interesting; e.g., advanced data analyses with IDL)

Celestial Sphere Spectroscopy (Something interesting; e.g., advanced data analyses with IDL) AST326, 2010 Winter Semester Celestial Sphere Spectroscopy (Something interesting; e.g., advanced data analyses with IDL) Practical Assignment: analyses of Keck spectroscopic data from the instructor (can

More information

Time and Diurnal Motion

Time and Diurnal Motion Time and Diurnal Motion Time and Diurnal Motion A. Geography: mapping the earth 2 B. Equatorial Coordinates C. Local Horizon System Updated 2014Jan11 A. Geography: mapping the earth Geometry: measure the

More information

Astronomy 101: 9/18/2008

Astronomy 101: 9/18/2008 Astronomy 101: 9/18/2008 Announcements Pick up a golf ball at the front of the class or get one from Alex; you will need it for an in-class activity today. You will also need the question sheet from Alex.

More information

A NOVEL APPROACH TO DETERMINE THE ASTRONOMICAL VESSEL POSITION

A NOVEL APPROACH TO DETERMINE THE ASTRONOMICAL VESSEL POSITION Journal of Marine Science and Technology, Vol. 11, No. 4, pp. 221-235 (2003) 221 A NOVEL APPROACH TO DETERMINE THE ASTRONOMICAL VESSEL POSITION Chih-Li Chen* Tien-Pen Hsu** and Jiang-Ren Chang*** Key words:

More information

drinking straw, protractor, string, and rock. observer on Earth. Sun across the sky on March 21 as seen by an

drinking straw, protractor, string, and rock. observer on Earth. Sun across the sky on March 21 as seen by an 1. The diagram below represents some constellations and one position of Earth in its orbit around the Sun. These constellations are visible to an observer on Earth at different times of the year. When

More information

Aileen A. O Donoghue Priest Associate Professor of Physics

Aileen A. O Donoghue Priest Associate Professor of Physics SOAR: The Sky in Motion Life on the Tilted Teacup Ride Celestial Coordinates and the Day Aileen A. O Donoghue Priest Associate Professor of Physics Reference Points Poles Equator Prime Meridian Greenwich,

More information

The Potential Accuracy of the Eighteenth-Century Method of Determining Longitude at Sea

The Potential Accuracy of the Eighteenth-Century Method of Determining Longitude at Sea The Potential Accuracy of the Eighteenth-Century Method of Determining Longitude at Sea by Nicholas A. Doe If one ignores, as we in the western world are wont to do, the achievements of the Polynesians

More information

SKYTRACK. Diary of Astronomical Events (All times listed are UT); Singapore Standard (Local) Time = UT + 8 h. January d h.

SKYTRACK. Diary of Astronomical Events (All times listed are UT); Singapore Standard (Local) Time = UT + 8 h. January d h. SKYTRACK Diary of Astronomical Events 2012 (All times listed are UT); Singapore Standard (Local) Time = UT + 8 h January 01 06 FIRST QUARTER 03 03 Jupiter 5ºS of Moon 09 08 FULL MOON 14 07 Mars 9ºN of

More information

Charts and Chart Work with Poole Sailing

Charts and Chart Work with Poole Sailing with Poole Sailing Nautical charts are a mine of information but they need to be up to date. Corrections to charts are published by the Hydrographic Office monthly as Notices to Mariners both in print

More information

Physics 312 Introduction to Astrophysics Lecture 3

Physics 312 Introduction to Astrophysics Lecture 3 Physics 312 Introduction to Astrophysics Lecture 3 James Buckley buckley@wuphys.wustl.edu Lecture 3 Celestial Coordinates the Planets and more History Reason for the Seasons Summer Solstice: Northern Hemisphere

More information

In all cases assume the observer is located at the latitude of Charlottesville (38 degrees north).

In all cases assume the observer is located at the latitude of Charlottesville (38 degrees north). 1. Recalling that azimuth is measured around the sky from North (North is 0 degrees, East is 90 degrees, South is 180 degrees, and West is 270 degrees) estimate (do not calculate precisely) the azimuth

More information

Time and Diurnal Motion. 1a. The Earth Is Flat. 1c. Aristotle ( BC) 1b. The Earth Is Round. Time and Diurnal Motion

Time and Diurnal Motion. 1a. The Earth Is Flat. 1c. Aristotle ( BC) 1b. The Earth Is Round. Time and Diurnal Motion Time and Diurnal Motion Time and Diurnal Motion A. Geography: mapping the earth 2 B. Equatorial Coordinates C. Local Horizon System A. Geography: mapping the earth Geometry: measure the earth! 1) The earth

More information

NAVIGATION THEORY QUESTIONS Basics of Navigation

NAVIGATION THEORY QUESTIONS Basics of Navigation NAVIGATION THEORY QUESTIONS Basics of Navigation Q610065 look at it The angle between the plane of the ecliptic and the plane of equator is approx? 23.5 degrees In which two months of the year is the difference

More information

Early history of astronomy. Early history of astronomy. Positions in the sky. Lecture 3: The Sun & Constellations

Early history of astronomy. Early history of astronomy. Positions in the sky. Lecture 3: The Sun & Constellations Lecture 3: The Sun & Constellations Professor Kenny L. Tapp Early history of astronomy Birth of modern astronomy Noted scientist Johannes Kepler (1571-1630) Ushered in new astronomy Planets revolve around

More information

The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses. Chapters 2 and S1

The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses. Chapters 2 and S1 The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses Chapters 2 and S1 The celestial sphere and the coordinates system Chapter S1 How to find our way in the sky? Let s

More information

Angles and Directions. Angles and Directions. CIVL 1112 Surveying - Azimuths and Bearings 1/8

Angles and Directions. Angles and Directions. CIVL 1112 Surveying - Azimuths and Bearings 1/8 IVL 1112 Surveying - zimuths and earings 1/8 The most common relative directions are left, right, forward(s), backward(s), up, and down. x y z In planar geometry, an angle is the figure formed by two rays,

More information

astronomy A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

astronomy A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were

More information

ANNOUNCEMENTS CLASS WEBSITE UP AND

ANNOUNCEMENTS CLASS WEBSITE UP AND ANNOUNCEMENTS CLASS WEBSITE UP AND RUNNING @ http://casaweb.colorado.edu/astr2000/ Not D2L!! OPTIONAL OBSERVING SESSION TONIGHT AT SOMMERS-BAUSCH OBSERVATORY (SBO) AT 8:30pm (weather permitting!). I will

More information

Coordinate Systems. Basis for any 3D Coordinate System. 2. Locate the x-y plane (the fundamental plane ) Usual approach to define angles:

Coordinate Systems. Basis for any 3D Coordinate System. 2. Locate the x-y plane (the fundamental plane ) Usual approach to define angles: Coordinate Systems Basis for any 3D Coordinate System Basic steps for the definition of a 3D coordinate system:. Locate the origin. Locate the -y plane (the fundamental plane ) 3. Decide on direction of

More information

Marine Sextants: History & Technology

Marine Sextants: History & Technology Title: Marine Sextants: History & Technology (Coastal Navigation) Grade(s): 6-8 Introduction: Today s low cost metal sextants offer high accuracy and ease of use. Plastic models are perfect for lifeboat

More information

CHENDU COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF CIVIL ENGINEERING SUB CODE & SUB NAME : CE6404 SURVEYING II

CHENDU COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF CIVIL ENGINEERING SUB CODE & SUB NAME : CE6404 SURVEYING II CHENDU COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF CIVIL ENGINEERING SUB CODE & SUB NAME : CE6404 SURVEYING II UNIT I CONTROL SURVEYING PART A (2 MARKS) 1. What is the main principle involved in

More information