The Earth, Moon, and Sky. Lecture 5 1/31/2017

Size: px
Start display at page:

Download "The Earth, Moon, and Sky. Lecture 5 1/31/2017"

Transcription

1 The Earth, Moon, and Sky Lecture 5 1/31/2017

2 From Last Time: Stable Orbits The type of orbit depends on the initial speed of the object Stable orbits are either circular or elliptical. Too slow and gravity pulls the object back in Too fast and gravity is not strong enough. This is called the escape velocity

3 From Last Time: Difference between Mass and Weight Newton s Second Law: Force = mass x acceleration Mass is a measure of how much material an object has. Weight (force) is a measure of home much acceleration a mass is feeling. Earth s surface acceleration 9.8 m/sec 2 -> My weight is 889 Newtons (mass = 90.7 Kg) Jupiter s surface acceleration m/sec 2 -> My weight is Newtons We as a society conflate mass and weight since everyone feels the same gravity. We mix up Newtons and Kilograms, though not the same.

4 Locating Places on Earth We live on a sphere and thus define our position using two angles. Latitude measures North/South angular distances with 0 degrees at the Equator Longitude measures East/West angular distances with 0 degrees on the Prime Meridian (Greenwich, England). Washington, DC is at N, W Albuquerque is at N, W Melbourne Australia is at S, E

5 The Seasons The Earth is on an elliptical orbit, sometimes it is farther away to Sun, sometimes it is closer. Does this create Seasons? It is summer in the southern hemisphere. Earth is actually its closest to the Sun in January. Earth varies its distance to the Sun by about 3% over a year. Conclusion: Earth changing its distance to the Sun create seasons. Axial tilt, 23.5 o, does create seasons. The Suns position in the sky changes throughout the year because of the tilt

6

7 Axial Tilt: 23.5 o Summer occurs for a certain hemisphere, when it is leaning towards the Sun. Hemispheres distance to the Sun is changing, but it is insignificant relative to the distance from the Sun to the Earth. Sun light is more direct in Summer and more spread out in Winter. Summer Winter

8

9 Seasons also depend of the amount of daylight.

10 Solstices Around June 21, the Sun is the most over head it will be all year. At Latitude N, Tropic of Cancer, the Sun appears directly overhead at noon (or 67 N), Article Circle, the Sun does not set that day.

11 Equinoctia Halfway between the solstices, on about March 21 and September 21. The Sun is on the celestial equator and whole planet receives ~12 hours day/night At the poles of the Earth, the Sun only rises or sets once per year on the equinox.

12 Length of the Day A day is a measure of how long the Earth takes to rotate relative to Relative to the Sun: Solar Day (24 hours) Relative to distance stars: Sidereal Day (23 hours 56 minutes)

13 Now: Scorpius Night Day Day Night Orion Summer: July Winter: January 13,000 years from now: Scorpius Night Day Day Night Orion Winter: July or January? Summer: January or July? We choose to keep July a summer month, but then in 13,000 years, summer occurs on other side of orbit!

14 The Year Summer Winter Sun high in northern sky Sun low in northern sky Night Day Day Night The Earth revolves around the Sun in days ( sidereal year ). But the year we use is days ( tropical year ). Why? Why do we have a leap year?

15 The Motion of the Moon Half of the Moon's surface is lit by the Sun. The Moon has a cycle of "phases", which lasts about 29 days. During this cycle, we see different fractions of the sunlit side. Which way is the Sun here?

16

17

18 Cycle of phases slightly longer than time it takes Moon to do a complete orbit around Earth. Cycle of phases or "synodic month 29.5 days Orbit time or "sidereal month 27.3 days

19 Tides A feature of oceans (but solid materials have small tides too). Two high and two low tides per day. Tides are due to the gravitational pull being stronger on side of Earth closest to it (Sun causes smaller tides) Earth-Moon gravity keeps them orbiting each other. But side of Earth closest to Moon has slightly stronger pull to Moon => bulges towards it. Other side has weaker pull => bulges away compared to rest of Earth. The Earth spins once a day while the bulge always points towards and away from the Moon => high and low tides.

20

21 Eclipses Lunar eclipse: When the Earth passes directly between the Sun and the Moon. Earth Moon Sun Solar eclipse: When the Moon passes directly between the Sun and the Earth. Sun Moon Earth

22 Moon's orbit tilted compared to Earth-Sun orbital plane: Sun Moon Earth 5.2 o Side view Moon's orbit slightly elliptical: Moon Earth Distance varies by ~14% Top view, exaggerated ellipse

23

24

25

Earth s Motion. Lesson Outline LESSON 1. A. Earth and the Sun 1. The diameter is more than 100 times greater than

Earth s Motion. Lesson Outline LESSON 1. A. Earth and the Sun 1. The diameter is more than 100 times greater than Lesson Outline Earth s Motion LESSON 1 A. Earth and the Sun 1. The diameter is more than 100 times greater than Earth s diameter. a. In the Sun, atoms combine during, producing huge amounts of energy.

More information

Practice Seasons Moon Quiz

Practice Seasons Moon Quiz 1. Which diagram represents the tilt of Earth's axis relative to the Sun's rays on December 15? A) B) C) D) 2. The diagram below represents Earth in space on the first day of a season. 5. Base your answer

More information

Knowing the Heavens. Goals: Constellations in the Sky

Knowing the Heavens. Goals: Constellations in the Sky Goals: Knowing the Heavens To see how the sky changes during a night and from night to night. To measure the positions of stars in celestial coordinates. To understand the cause of the seasons. Constellations

More information

Knowing the Heavens. Goals: Constellations in the Sky

Knowing the Heavens. Goals: Constellations in the Sky Goals: Knowing the Heavens To see how the sky changes during a night and from night to night. To measure the positions of stars in celestial coordinates. To understand the cause of the seasons. Constellations

More information

2. Knowing the Heavens

2. Knowing the Heavens 2. Knowing the Heavens Ancient naked-eye astronomy Eighty-eight constellations The sky s ever-changing appearance The celestial sphere Celestial coordinates Seasons: Earth s axial tilt Precession of Earth

More information

Reasons for the seasons - Rebecca Kaplan

Reasons for the seasons - Rebecca Kaplan Reasons for the seasons - Rebecca Kaplan https://www.youtube.com/watch?v=dd_8jm5ptlk https://www.timeanddate.com/worldclock/sunearth.html https://www.time.gov/ https://www.space.com/33790-harvest-moon-guide.html

More information

Time, coordinates and how the Sun and Moon move in the sky

Time, coordinates and how the Sun and Moon move in the sky Time, coordinates and how the Sun and Moon move in the sky Using the colors and magnitudes of quasars drawn from the SDSS Catalog Archive Server to distinguish quasars from stars using the light they emit

More information

Earth in Space Chapter 1

Earth in Space Chapter 1 Earth in Space Chapter 1 Section 1 Earth in Space How does Earth move in space? What causes the cycle of seasons on Earth? How the Earth Moves The study of the moon, stars, and other objects in space is

More information

The position of the Sun on the celestial sphere at the solstices and the equinoxes.

The position of the Sun on the celestial sphere at the solstices and the equinoxes. 1 2 3 4 5 6 7 8 9 10 11 12 13 EARTH IN SPACE Tillery, Chapter 18 Artist's concept of the solar system. Shown are the orbits of the planets, Earth being the third planet from the Sun, and the other planets

More information

Appearance of the Sky Orientation Motion of sky Seasons Precession (?)

Appearance of the Sky Orientation Motion of sky Seasons Precession (?) Today Appearance of the Sky Orientation Motion of sky Seasons Precession (?) The Celestial Sphere Stars at different distances all appear to lie on the celestial sphere. The ecliptic is the Sun s apparent

More information

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Chapter 15 Place and Time

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Chapter 15 Place and Time James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Chapter 15 Place and Time Place & Time Read sections 15.5 and 15.6, but ignore the math. Concentrate on those sections that help explain the slides.

More information

PHAS 1511: Foundations of Astronomy

PHAS 1511: Foundations of Astronomy PHAS 1511: Foundations of Astronomy Dr Roger Wesson Research interests: deaths of stars. Planetary nebulae, novae and supernovae. Astronomy: some maths You can see that distances in astronomy are huge.

More information

Appearance of the Sky Orientation Motion of sky Seasons Precession (?)

Appearance of the Sky Orientation Motion of sky Seasons Precession (?) Today Appearance of the Sky Orientation Motion of sky Seasons Precession (?) The Celestial Sphere Stars at different distances all appear to lie on the celestial sphere. The ecliptic is the Sun s apparent

More information

Chapter Introduction Lesson 1 Earth s Motion Lesson 2 Earth s Moon Lesson 3 Eclipses and Tides Chapter Wrap-Up. Jason Reed/Photodisc/Getty Images

Chapter Introduction Lesson 1 Earth s Motion Lesson 2 Earth s Moon Lesson 3 Eclipses and Tides Chapter Wrap-Up. Jason Reed/Photodisc/Getty Images Chapter Introduction Lesson 1 Earth s Motion Lesson 2 Earth s Moon Lesson 3 Eclipses and Tides Chapter Wrap-Up Jason Reed/Photodisc/Getty Images What natural phenomena do the motions of Earth and the Moon

More information

SPACE REVIEW. 1. The time it takes for the Earth to around the sun is one year. a. rotate b. revolve

SPACE REVIEW. 1. The time it takes for the Earth to around the sun is one year. a. rotate b. revolve SPACE REVIEW 1. The time it takes for the Earth to around the sun is one year. a. rotate b. revolve 2. Which planet is known as the "Red Planet"? a. Earth b. Mars c. Uranus d. Venus 3. One complete revolution

More information

1. The pictures below show the Sun at midday. Write winter, spring or summer under the correct picture.

1. The pictures below show the Sun at midday. Write winter, spring or summer under the correct picture. Test 2 1. The pictures below show the Sun at midday. Write winter, spring or summer under the correct picture. 2. Look carefully at the phases of the Moon. Number them (1 to 4) in the order that you would

More information

Chapter 1: Discovering the Night Sky. The sky is divided into 88 unequal areas that we call constellations.

Chapter 1: Discovering the Night Sky. The sky is divided into 88 unequal areas that we call constellations. Chapter 1: Discovering the Night Sky Constellations: Recognizable patterns of the brighter stars that have been derived from ancient legends. Different cultures have associated the patterns with their

More information

2.1 Patterns in the Night Sky

2.1 Patterns in the Night Sky 2.1 Patterns in the Night Sky Our goals for learning: What are constellations? How do we locate objects in the sky? Why do stars rise and set? Why don t we see the same constellations throughout the year?

More information

Aim: What causes Seasons?

Aim: What causes Seasons? Notepack 28 Aim: What causes Seasons? Do Now: What is the difference between revolution and rotation? Earth s rotation The Earth rotates on its axis (imaginary vertical line around which Earth spins) every

More information

The Earth-Moon-Sun System

The Earth-Moon-Sun System chapter 7 The Earth-Moon-Sun System section 2 Time and Seasons What You ll Learn how to calculate time and date in different time zones how to distinguish rotation and revolution what causes seasons Before

More information

Introduction to Astronomy

Introduction to Astronomy Introduction to Astronomy AST0111-3 (Astronomía) Semester 2014B Prof. Thomas H. Puzia Theme Our Sky 1. Celestial Sphere 2. Diurnal Movement 3. Annual Movement 4. Lunar Movement 5. The Seasons 6. Eclipses

More information

STANDARD. S6E1 d. Explain the motion of objects in the day/night sky in terms of relative position.

STANDARD. S6E1 d. Explain the motion of objects in the day/night sky in terms of relative position. STANDARD S6E1 d. Explain the motion of objects in the day/night sky in terms of relative position. S6E2 b. Explain the alignment of the earth, moon, and sun during solar and lunar eclipses. c. Relate the

More information

Moon, Planet, Star, Solar System, Galaxy, Universe

Moon, Planet, Star, Solar System, Galaxy, Universe Dr. V s Study Guide : Astronomy Unit 1) Place the following in order of increasing size: The Galaxy, the Solar System, a Star, the Universe,a Moon and a Planet. Moon, Planet, Star, Solar System, Galaxy,

More information

Chapter S1 Celestial Timekeeping and Navigation. How do we define the day, month, year, and planetary time periods?

Chapter S1 Celestial Timekeeping and Navigation. How do we define the day, month, year, and planetary time periods? Chapter S1 Celestial Timekeeping and Navigation S1.1 Astronomical Time Periods Our goals for learning:! How do we define the day, month, year, and planetary time periods?! How do we tell the time of day?!

More information

C) D) 2. The model below shows the apparent path of the Sun as seen by an observer in New York State on the first day of one of the four seasons.

C) D) 2. The model below shows the apparent path of the Sun as seen by an observer in New York State on the first day of one of the four seasons. 1. Which diagram best represents the regions of Earth in sunlight on June 21 and December 21? [NP indicates the North Pole and the shading represents Earth's night side. Diagrams are not drawn to scale.]

More information

UNIT 3: EARTH S MOTIONS

UNIT 3: EARTH S MOTIONS UNIT 3: EARTH S MOTIONS After Unit 3 you should be able to: o Differentiate between rotation and revolution of the Earth o Apply the rates of rotation and revolution to basic problems o Recall the evidence

More information

Earth in Space. The Sun-Earth-Moon System

Earth in Space. The Sun-Earth-Moon System in Space The --Moon System What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with the statement or a D if

More information

Astronomy 122 Section 1 TR Outline. The Earth is Rotating. Question Digital Computer Laboratory

Astronomy 122 Section 1 TR Outline. The Earth is Rotating. Question Digital Computer Laboratory Astronomy 122 Section 1 TR 1300-1350 Outline 1320 Digital Computer Laboratory Leslie Looney Phone: 244-3615 Email: lwlw@wuiucw. wedu Office: Astro Building #218 Office Hours: T 10:30-11:30 a.m. or by appointment

More information

The Ecliptic on the Celestial. Sphere. The Celestial Sphere. Astronomy 210. Section 1 MWF Astronomy Building. celestial equator are not

The Ecliptic on the Celestial. Sphere. The Celestial Sphere. Astronomy 210. Section 1 MWF Astronomy Building. celestial equator are not Astronomy 210 Section 1 MWF 1500-1550 134 Astronomy Building This Class (Lecture 3): Lunar Phases Check Planetarium Schedule Next Class: HW1 Due Friday! Early Cosmology Music: We only Come out at Night

More information

ASTRONOMY. Chapter 4 EARTH, MOON, AND SKY PowerPoint Image Slideshow

ASTRONOMY. Chapter 4 EARTH, MOON, AND SKY PowerPoint Image Slideshow ASTRONOMY Chapter 4 EARTH, MOON, AND SKY PowerPoint Image Slideshow FIGURE 4.1 Southern Summer. As captured with a fish-eye lens aboard the Atlantis Space Shuttle on December 9, 1993, Earth hangs above

More information

Lecture #03. January 20, 2010, Wednesday

Lecture #03. January 20, 2010, Wednesday Lecture #03 January 20, 2010, Wednesday Causes of Earth s Seasons Earth-Sun geometry Day length Solar angle (beam spread) Atmospheric beam depletion Shape and Size of the Earth North Pole E Geoid: not

More information

L.O: EARTH'S 23.5 DEGREE TILT ON ITS AXIS GIVES EARTH ITS SEASONS March 21 (SPRING), June 21(SUMMER), Sept 22 (AUTUMN) & Dec 21(WINTER)

L.O: EARTH'S 23.5 DEGREE TILT ON ITS AXIS GIVES EARTH ITS SEASONS March 21 (SPRING), June 21(SUMMER), Sept 22 (AUTUMN) & Dec 21(WINTER) L.O: EARTH'S 23.5 DEGREE TILT ON ITS AXIS GIVES EARTH ITS SEASONS March 21 (SPRING), June 21(SUMMER), Sept 22 (AUTUMN) & Dec 21(WINTER) 1. The apparent daily path of the Sun changes with the seasons because

More information

Discovering the Night Sky

Discovering the Night Sky Discovering the Night Sky Guiding Questions 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same stars

More information

Discovering the Night Sky

Discovering the Night Sky Guiding Questions Discovering the Night Sky 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same stars

More information

6/17. Universe from Smallest to Largest:

6/17. Universe from Smallest to Largest: 6/17 Universe from Smallest to Largest: 1. Quarks and Leptons fundamental building blocks of the universe size about 0 (?) importance: quarks combine together to form neutrons and protons. One of the leptons

More information

EARTHS SHAPE AND POLARIS PRACTICE 2017

EARTHS SHAPE AND POLARIS PRACTICE 2017 1. In the diagram below, letters A through D represent the locations of four observers on the Earth's surface. Each observer has the same mass. 3. Which diagram most accurately shows the cross-sectional

More information

Knowing the Heavens. Chapter Two. Guiding Questions. Naked-eye (unaided-eye) astronomy had an important place in ancient civilizations

Knowing the Heavens. Chapter Two. Guiding Questions. Naked-eye (unaided-eye) astronomy had an important place in ancient civilizations Knowing the Heavens Chapter Two Guiding Questions 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same

More information

Chapter S1 Lecture. The Cosmic Perspective Seventh Edition. Celestial Timekeeping and Navigation Pearson Education, Inc.

Chapter S1 Lecture. The Cosmic Perspective Seventh Edition. Celestial Timekeeping and Navigation Pearson Education, Inc. Chapter S1 Lecture The Cosmic Perspective Seventh Edition Celestial Timekeeping and Navigation 2014 Pearson Education, Inc. Celestial Timekeeping and Navigation 2014 Pearson Education, Inc. S1.1 Astronomical

More information

PHYS 160 Astronomy Test #1 Fall 2017 Version B

PHYS 160 Astronomy Test #1 Fall 2017 Version B PHYS 160 Astronomy Test #1 Fall 2017 Version B 1 I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. An object has the same weight,

More information

Solar System Glossary. The point in an object s elliptical orbit farthest from the body it is orbiting

Solar System Glossary. The point in an object s elliptical orbit farthest from the body it is orbiting Solar System Glossary Apogee Atmosphere Asteroid Axis Autumn Barred spiral The point in an object s elliptical orbit farthest from the body it is orbiting The air that surrounds Earth and other planets

More information

The Earth is a Rotating Sphere

The Earth is a Rotating Sphere The Earth is a Rotating Sphere The Shape of the Earth Earth s Rotation ( and relative movement of the Sun and Moon) The Geographic Grid Map Projections Global Time The Earth s Revolution around the Sun

More information

Practice Questions: Seasons #1

Practice Questions: Seasons #1 1. Seasonal changes on Earth are primarily caused by the A) parallelism of the Sun's axis as the Sun revolves around Earth B) changes in distance between Earth and the Sun C) elliptical shape of Earth's

More information

Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself Pearson Education, Inc.

Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself Pearson Education, Inc. Chapter 2 Lecture The Cosmic Perspective Seventh Edition Discovering the Universe for Yourself Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the

More information

SAMPLE First Midterm Exam

SAMPLE First Midterm Exam Astronomy 1000 Dr C. Barnbaum SAMPLE First Midterm Exam Note: This is a sample exam. It is NOT the exam you will take. I give out sample exams so that you will have an understanding of the depth of knowledge

More information

lightyears observable universe astronomical unit po- laris perihelion Milky Way

lightyears observable universe astronomical unit po- laris perihelion Milky Way 1 Chapter 1 Astronomical distances are so large we typically measure distances in lightyears: the distance light can travel in one year, or 9.46 10 12 km or 9, 600, 000, 000, 000 km. Looking into the sky

More information

Introduction To Modern Astronomy I: Solar System

Introduction To Modern Astronomy I: Solar System ASTR 111 003 Fall 2007 Lecture 02 Sep. 10, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-15) Chap. 16: Our Sun Chap. 28: Search for

More information

TAKEN FROM HORIZONS 7TH EDITION CHAPTER 3 TUTORIAL QUIZ

TAKEN FROM HORIZONS 7TH EDITION CHAPTER 3 TUTORIAL QUIZ TAKEN FROM HORIZONS 7TH EDITION CHAPTER 3 TUTORIAL QUIZ 1. When Neap tides are occurring, a. a person experiences the lowest tides close to sunset and sunrise. b. the Sun and the Moon are separated by

More information

Chapter 2 Discovering the Universe for Yourself. Copyright 2012 Pearson Education, Inc.

Chapter 2 Discovering the Universe for Yourself. Copyright 2012 Pearson Education, Inc. Chapter 2 Discovering the Universe for Yourself 1 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations

More information

A. the spinning of Earth on its axis B. the path of the Sun around Earth

A. the spinning of Earth on its axis B. the path of the Sun around Earth stronomy 1 Packet Write answers on your own paper 1. The Sun appears to move across the sky each day. What causes this?. the spinning of Earth on its axis. the path of the Sun around Earth. the production

More information

Astronomy 103: First Exam

Astronomy 103: First Exam Name: Astronomy 103: First Exam Stephen Lepp September 21, 2010 Each question is worth 2 points. Write your name on this exam and on the scantron. Short Answer Mercury What is the closest Planet to the

More information

2. Modern: A constellation is a region in the sky. Every object in the sky, whether we can see it or not, is part of a constellation.

2. Modern: A constellation is a region in the sky. Every object in the sky, whether we can see it or not, is part of a constellation. 6/14 10. Star Cluster size about 10 14 to 10 17 m importance: where stars are born composed of stars. 11. Galaxy size about 10 21 m importance: provide a stable environment for stars. Composed of stars.

More information

Physical Science. Chapter 22 The Earth in Space. Earth s Rotation

Physical Science. Chapter 22 The Earth in Space. Earth s Rotation Physical Science Chapter 22 The Earth in Space Earth s Rotation Axis imaginary line passing through the North and South Pole Earth s axis is tilted at 23 ½ degrees Rotation: the Earth spinning on its axis

More information

HNRS 227 Fall 2007 Chapter 14. Earth in Space presented by Prof. Geller 25 October 2007

HNRS 227 Fall 2007 Chapter 14. Earth in Space presented by Prof. Geller 25 October 2007 HNRS 227 Fall 2007 Chapter 14 Earth in Space presented by Prof. Geller 25 October 2007 Key Points of Chapter 14 Shape, Size and Motions of the Earth Rotation and Revolution Precession Coordinate Systems

More information

Physical Science. Chapter 22 The Earth in Space

Physical Science. Chapter 22 The Earth in Space Physical Science Chapter 22 The Earth in Space Earth s Rotation Axis imaginary line passing through the North and South Pole Earth s axis is tilted at 23 ½ degrees Rotation: the Earth spinning on its axis

More information

8 th Grade Earth, Moon and Sun Systems Review

8 th Grade Earth, Moon and Sun Systems Review 8 th Grade Earth, Moon and Sun Systems Review #1 Click on the link to learn What causes Seasons? A #2 H G B D C What is season A in this diagram? E F A: Summer B: Fall C: Winter D: Spring D. Spring A #3

More information

Chapter 0 2/19/2014. Lecture Outline. 0.1 The Obvious View. Charting the Heavens. 0.1 The Obvious View. 0.1 The Obvious View. Units of Chapter 0

Chapter 0 2/19/2014. Lecture Outline. 0.1 The Obvious View. Charting the Heavens. 0.1 The Obvious View. 0.1 The Obvious View. Units of Chapter 0 Lecture Outline Chapter 0 Charting the Heavens Earth is average we don t occupy any special place in the universe Universe: Totality of all space, time, matter, and energy Astronomy: Study of the universe

More information

Orbital Mechanics. CTLA Earth & Environmental Science

Orbital Mechanics. CTLA Earth & Environmental Science Orbital Mechanics CTLA Earth & Environmental Science The Earth Spherical body that is flattened near the poles due to centrifugal force (rotation of the Earth) 40,074 KM across at the Equator 40,0007 KM

More information

The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses. Chapters 2 and S1

The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses. Chapters 2 and S1 The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses Chapters 2 and S1 The celestial sphere and the coordinates system Chapter S1 How to find our way in the sky? Let s

More information

Planet Earth. Part 2

Planet Earth. Part 2 Planet Earth Part 2 Sun, Earth and Moon Motions The Solar System revolves around the Milky Way galaxy center. The Sun rotates on its own axis. Earth revolves around the Sun (1 year) and rotates on its

More information

Unit 2: Celestial Mechanics

Unit 2: Celestial Mechanics Unit 2: Celestial Mechanics The position of the Earth Ptolemy (90 168 AD) Made tables that allowed a user to locate the position of a planet at any past, present, or future date. In order to maintain circular

More information

Cartesian Coordinates Need two dimensional system 2 number lines perpendicular to each other X-axis is horizontal Y-axis is vertical Position relative

Cartesian Coordinates Need two dimensional system 2 number lines perpendicular to each other X-axis is horizontal Y-axis is vertical Position relative General Physical Science Chapter 15 Place and Time Space and Time Einstein Space and time related Single entity Time is the 4 th dimension! Cartesian Coordinates Need some system to tell us where something

More information

Viewed from Earth's north pole, the rotation of Earth and its moon are counter-clockwise.!

Viewed from Earth's north pole, the rotation of Earth and its moon are counter-clockwise.! The Earth rotates around once in 24 hours The time it takes for the Earth to rotate completely around once is what we call a day. It's Earth's rotation that gives us night and day. Viewed from Earth's

More information

Chapter 2 Discovering the Universe for Yourself. What does the universe look like from Earth? Constellations. 2.1 Patterns in the Night Sky

Chapter 2 Discovering the Universe for Yourself. What does the universe look like from Earth? Constellations. 2.1 Patterns in the Night Sky Chapter 2 Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations we

More information

Geography Class 6 Chapters 3 and

Geography Class 6 Chapters 3 and CHAPTER 3 MOTIONS OF THE EARTH The Earth is always travelling in Space. That makes each person on Earth, a Space Traveller. No one feels the movement of the Earth because humans are too tiny when compared

More information

Latitude & Longitude Study Guide

Latitude & Longitude Study Guide Latitude & Longitude Study Guide Name: Date: Section: Label the important Latitude lines on the diagram below. Include the degree measurements The equator is located at zero degrees latitude. The equator

More information

Academic Year Second Term. Science Revision Sheet. Grade

Academic Year Second Term. Science Revision Sheet. Grade Academic Year 2017-2018 Second Term Science Revision Sheet Grade 6 Name: Grade Date: Section: Part A. Science Practice. Circle the letter of your answer. 1. When the moon is waxing, its lighted part appears

More information

Lecture 2 Motions in the Sky September 10, 2018

Lecture 2 Motions in the Sky September 10, 2018 1 Lecture 2 Motions in the Sky September 10, 2018 2 What is your year in school? A. New freshman B. Returning freshman C. Sophomore D. Junior E. Senior F. I ve been here, like, forever 3 What is your major?

More information

Name: Date: 5. The bright stars Vega, Deneb, and Altair form A) the summer triangle. B) the winter triangle. C) the Big Dipper. D) Orion, the Hunter.

Name: Date: 5. The bright stars Vega, Deneb, and Altair form A) the summer triangle. B) the winter triangle. C) the Big Dipper. D) Orion, the Hunter. Name: Date: 1. If there are about 6000 stars in the entire sky that can be seen by the unaided human eye, about how many stars would be seen at a particular instant on a given dark night from a single

More information

The Sun-Earth-Moon System

The Sun-Earth-Moon System Name The Sun-Earth-Moon System Section 28.3 The Sun-Earth-Moon System Date Main Idea Details Read the title of Section 3. List three things that might be discussed in this section. 1. 2. 3. Review Vocabulary

More information

Earth Moon Motions A B1

Earth Moon Motions A B1 Earth Moon Motions A B1 1. The Coriolis effect provides evidence that Earth (1) rotates on its axis (2) revolves around the Sun (3) undergoes cyclic tidal changes (4) has a slightly eccentric orbit 9.

More information

Observing the Universe for Yourself

Observing the Universe for Yourself Observing the Universe for Yourself Figure 6-20 Solar-System Formation What does the universe look like from Earth? With the naked eye, we can see more than 2,000 stars as well as the Milky Way. A constellation

More information

The following terms are some of the vocabulary that students should be familiar with in order to fully master this lesson.

The following terms are some of the vocabulary that students should be familiar with in order to fully master this lesson. Lesson 211: EARTH'S SEASONS Students learn the complex geometry and planetary motions that cause Earth to have four distinct seasons. Fundamental Questions Attempting to give thorough and reasonable answers

More information

Day, Night, Year, and Seasons

Day, Night, Year, and Seasons Welcome Astronomers to the Sun, Moon, and Earth! The relationship between the Sun, Moon, and Earth is very important to the existence of life on Earth. Our quest is to find out how their relationships

More information

The. Astronomy is full of cycles. Like the day, the month, & the year In this section we will try to understand these cycles.

The. Astronomy is full of cycles. Like the day, the month, & the year In this section we will try to understand these cycles. Understanding The Sky Astronomy is full of cycles Like the day, the month, & the year In this section we will try to understand these cycles. For Example Why do we think of stars as nighttime objects?

More information

Time, Seasons, and Tides

Time, Seasons, and Tides Time, Seasons, and Tides Celestial Sphere Imagine the sky as a great, hollow, sphere surrounding the Earth. The stars are attached to this sphere--- some bigger and brighter than others--- which rotates

More information

Chapter: The Earth-Moon-Sun System

Chapter: The Earth-Moon-Sun System Chapter 7 Table of Contents Chapter: The Earth-Moon-Sun System Section 1: Earth in Space Section 2: Time and Seasons Section 3: Earth s Moon 1 Earth in Space Earth s Size and Shape Ancient Measurements

More information

CHAPTER 2 Strand 1: Structure and Motion within the Solar System

CHAPTER 2 Strand 1: Structure and Motion within the Solar System CHAPTER 2 Strand 1: Structure and Motion within the Solar System Chapter Outline 2.1 EARTH, MOON, AND SUN SYSTEM (6.1.1) 2.2 GRAVITY AND INERTIA (6.1.2) 2.3 SCALE OF SOLAR SYSTEM (6.1.3) 2.4 REFERENCES

More information

Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself

Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself Chapter 2 Lecture The Cosmic Perspective Seventh Edition Discovering the Universe for Yourself Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the

More information

Chapter 2 Discovering the Universe for Yourself

Chapter 2 Discovering the Universe for Yourself Chapter 2 Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations we

More information

1/3/12. Chapter: The Earth-Moon-Sun System. Ancient Measurements. Earth s Size and Shape. Ancient Measurements. Ancient Measurements

1/3/12. Chapter: The Earth-Moon-Sun System. Ancient Measurements. Earth s Size and Shape. Ancient Measurements. Ancient Measurements // Table of Contents Chapter: The Earth-Moon-Sun System Section : Chapter 7 Section : Section : Earth s Size and Shape Ancient Measurements First, no matter where you are on Earth, objects fall straight

More information

Day, Night & the Seasons. Lecture 2 1/21/2014

Day, Night & the Seasons. Lecture 2 1/21/2014 Day, Night & the Seasons Lecture 2 1/21/2014 Logistics The following students see me after class: A. Gonzalez, Chen Anyone who was not here on first day see me after class Pin Numbers - if you have not

More information

Astronomy Review. Use the following four pictures to answer questions 1-4.

Astronomy Review. Use the following four pictures to answer questions 1-4. Astronomy Review Use the following four pictures to answer questions 1-4. 1. Put an X through the pictures that are NOT possible. 2. Circle the picture that could be a lunar eclipse. 3. Triangle the picture

More information

Name and Student ID Section Day/Time:

Name and Student ID Section Day/Time: AY2 - Overview of the Universe - Midterm #1 - Instructor: Maria F. Duran Name and Student ID Section Day/Time: 1) Imagine we ve discovered a planet orbiting another star at 1 AU every 6 months. The planet

More information

Astronomy 11. No, this course isn t all about Star Wars

Astronomy 11. No, this course isn t all about Star Wars Astronomy 11 No, this course isn t all about Star Wars Earth s Rotation How fast are people on the equator moving? s=d/t =circumference/24 hours =(40,000 km)/24 hours =1670 km/h That s Mach 1.4! What

More information

Astronomy 291. Professor Bradley M. Peterson

Astronomy 291. Professor Bradley M. Peterson Astronomy 291 Professor Bradley M. Peterson The Sky As a first step, we need to understand the appearance of the sky. Important points (to be explained): The relative positions of stars remain the same

More information

REVIEW CH #0. 1) Right ascension in the sky is very similar to latitude on the Earth. 1)

REVIEW CH #0. 1) Right ascension in the sky is very similar to latitude on the Earth. 1) REVIEW CH #0 TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) Right ascension in the sky is very similar to latitude on the Earth. 1) 2) Latitude and right ascension

More information

Observing the Night Sky: Locating Objects

Observing the Night Sky: Locating Objects Observing the Night Sky: Locating Objects As I left the house this morning, there was a bright bluish light above and to the left of my neighbors house (approximately East) and a big very bright object

More information

Earth is rotating on its own axis

Earth is rotating on its own axis Earth is rotating on its own axis 1 rotation every day (24 hours) Earth is rotating counterclockwise if you are looking at its North pole from other space. Earth is rotating clockwise if you are looking

More information

Astr 1050 Mon. Jan. 31, 2017

Astr 1050 Mon. Jan. 31, 2017 Astr 1050 Mon. Jan. 31, 2017 Finish Ch. 2: Eclipses & Planetary Motion Seasons Angular Size formula Eclipses Planetary Motion Reading: For Today: Finish Chapter 2 For Monday: Start Chapter 3 Homework on

More information

November 20, NOTES ES Rotation, Rev, Tilt.notebook. vertically. night. night. counterclockwise. counterclockwise. East. Foucault.

November 20, NOTES ES Rotation, Rev, Tilt.notebook. vertically. night. night. counterclockwise. counterclockwise. East. Foucault. NOTES ES, Rev,.notebook, and Rotates on an imaginary axis that runs from the to the South North Pole Pole vertically North The of the axis points to a point in space near day Pole Polaris night Responsible

More information

Astronomy. The Seasons

Astronomy. The Seasons Astronomy The Seasons The seasons are caused by the inclination of the Earth s axis: when a hemisphere is tipped toward the Sun, the Sun is more directly above it. At the Summer Solstice the tilt is most

More information

Intro to Astronomy. Looking at Our Space Neighborhood

Intro to Astronomy. Looking at Our Space Neighborhood Intro to Astronomy Looking at Our Space Neighborhood Astronomy: The Original Science Ancient cultures used the movement of stars, planets and the moon to mark time Astronomy: the study of the universe

More information

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION CHAPTER 0 Charting the Heavens Lecture Presentation 0.0 Astronmy a why is that subject! Q. What rare astronomical event happened in late summer

More information

(1) How does the annual average sun angle at solar noon (that is, the sun angle at noon averaged over a full year) depend on latitude?

(1) How does the annual average sun angle at solar noon (that is, the sun angle at noon averaged over a full year) depend on latitude? (1) How does the annual average sun angle at solar noon (that is, the sun angle at noon averaged over a full year) depend on latitude? (A) * As latitude increases, average sun angle at solar noon decreases.

More information

Seasons. What causes the seasons?

Seasons. What causes the seasons? Questions: Seasons What causes the seasons? How do we mark the progression of the seasons? What is the seasonal motion of the sun in the sky? What could cause the seasonal motion of the sun to change over

More information

The Main Point. Phases and Motions of the Moon. Lecture #5: Earth, Moon, & Sky II. Lunar Phases and Motions. Tides. Eclipses.

The Main Point. Phases and Motions of the Moon. Lecture #5: Earth, Moon, & Sky II. Lunar Phases and Motions. Tides. Eclipses. Lecture #5: Earth, Moon, & Sky II Lunar Phases and Motions. Tides. Eclipses. The Main Point The Moon s size and orbit lead to many interesting phenomena: changing phases, tides, and eclipses. Astro 102/104

More information

What is in outer space?

What is in outer space? What is in outer space? Celestial Objects are any natural objects that move through space. Star:_a huge sphere of gas in space _Nuclear fusion within stars give off enormous amounts of energy such as light

More information

a. 0.5 AU b. 5 AU c. 50 AU d.* AU e AU

a. 0.5 AU b. 5 AU c. 50 AU d.* AU e AU 1 AST104 Sp04: WELCOME TO EXAM 1 Multiple Choice Questions: Mark the best answer choice. Read all answer choices before making selection. (No credit given when multiple answers are marked.) 1. A galaxy

More information

Tools of Astronomy Tools of Astronomy

Tools of Astronomy Tools of Astronomy Tools of Astronomy Tools of Astronomy The light that comes to Earth from distant objects is the best tool that astronomers can use to learn about the universe. In most cases, there is no other way to study

More information

Lunar Eclipse Wednesday (January 31 st ) Morning. Topics for Today s Class. PHYS 1403 Stars and Galaxies

Lunar Eclipse Wednesday (January 31 st ) Morning. Topics for Today s Class. PHYS 1403 Stars and Galaxies PHYS 1403 Stars and Galaxies Lunar Eclipse Wednesday (January 31 st ) Morning Super Moon so visible with naked eye Look in the western horizon Penumbral eclipse starts at 5:00 am Totality begins at 7:00

More information