PROPERTIES, DYNAMICS, & SPECTRAL SIGNATURES OF CLOUDS IN AGN TIM WATERS PHD CANDIDATE UNLV (ADVISOR: DANIEL PROGA)

Size: px
Start display at page:

Download "PROPERTIES, DYNAMICS, & SPECTRAL SIGNATURES OF CLOUDS IN AGN TIM WATERS PHD CANDIDATE UNLV (ADVISOR: DANIEL PROGA)"

Transcription

1 PROPERTIES, DYNAMICS, & SPECTRAL SIGNATURES OF CLOUDS IN AGN TIM WATERS PHD CANDIDATE UNLV (ADVISOR: DANIEL PROGA) Figure credit: Active Galactic Nuclei, Wiley 2012

2 COMMON VIEW LOCAL SIMULATIONS Property Single cloud Global distribution Single cloud Global distribution Equilibrium Static vs. evolving Confined vs. state vs. evaporating outflowing Formation/ Thermal instability orbiting blobs vs. Regeneration vs. blobs uplifted from the disk condensing clumps (bloated star winds?) Velocity Unconstrained -10^4-10^4 km/s Density/ Temperature Constant Wide range (e.g., LOC model) Requires global simulations: Size Wide range Sub parsec to parsec Number 1 10^3-10^7 Shape Motion Emission/ Absorption Blobs, shells, Directed stream vs. slabs, filaments? failed wind vs. mist Keplerian orbit vs. Swarm vs. embedded in wind clumpy outflow Optically Self-shielding is thick vs. thin important?

3 Intercloud medium Cloud core Conductive interface e- e- e- Classical evaporation: tau_evap (Cowie & McKee 1977) Steady state configuration: line cooling balances conductive heating Begelman & McKee (1990)

4 CLOUD DYNAMICS: ACCELERATION, EVAPORATION, AND REGENERATION (SPITZER CONDUCTIVITY T^5/2) To view animation please visit

5 CLOUD FORMATION AND ACCELERATION DYNAMICS OF THE NONLINEAR REGIME OF TI See Proga & Waters (2015)

6 TI: THE NONLINEAR REGIME Saturation of TI is a cloud formation process, but it also naturally leads to cloud acceleration (PW15). Xrays UV

7 TI: THE NONLINEAR REGIME Saturation of TI is a cloud formation process, but it also naturally leads to cloud acceleration (PW15). Xrays UV

8 TI: THE NONLINEAR REGIME Saturation of TI is a cloud formation process, but it also naturally leads to cloud acceleration (PW15). v Xrays UV

9 COMMON VIEW LOCAL SIMULATIONS Property Single cloud Global distribution Single cloud Global distribution Equilibrium Static vs. evolving Confined vs. Accelerating state vs. evaporating outflowing clumpy flow Outflowing Formation/ Thermal instability orbiting blobs vs. Regeneration vs. blobs uplifted condensing clumps from the disk (bloated star winds?) Velocity Unconstrained -10^4-10^4 km/s Density/ Temperature Constant Wide range (e.g., LOC model) TI naturally leads to cloud regeneration v_flow + a*t Requires global simulations: Condensing clumps ~v_flow Size Wide range Sub parsec to parsec Number 1 10^3-10^7 Shape Motion Emission/ Absorption Blobs, shells, Directed stream vs. slabs, filaments? failed wind vs. mist Keplerian orbit vs. Swarm vs. embedded in wind clumpy outflow Optically Self-shielding is thick vs. thin important? lambda of max growth rate? 1 becomes many Clumpy medium

10 LOCAL OPTIMALLY EMITTING CLOUD PICTURE (LOC MODEL) From Baldwin et al. (1995) LUMINOUS ORBITING COVFEFE

11 CLOUD DENSITIES ARE CONSTRAINED TO RANGES DICTATED BY THE SED (AND CORRESPONDING S-CURVE) To view animation please visit

12 SINGLE ZONE!= SINGLE CLOUD

13 CLUMPS RESPOND TO IONIZING FLUX VARIABILITY shown here: 20% case To view animation please visit

14 CLUMPS RESPOND TO IONIZING FLUX VARIABILITY With (left) and without (right) 20% variability From Waters & Proga (2016)

15 A SPECTRAL SIGNATURE FOR CLOUD ACCELERATION PPC model ==>

16 A SPECTRAL SIGNATURE FOR CLOUD ACCELERATION From Waters et al. 2017

17 COMMON VIEW LOCAL SIMULATIONS Property Single cloud Global distribution Single cloud Global distribution Equilibrium Static vs. evolving Confined vs. Accelerating state vs. evaporating outflowing clumpy flow Outflowing Formation/ Thermal instability orbiting blobs vs. Regeneration vs. blobs uplifted condensing clumps from the disk (bloated star winds?) Velocity Unconstrained -10^4-10^4 km/s Density/ Temperature Constant Wide range (e.g., LOC model) TI naturally leads to cloud regeneration v_flow + a*t d_min - d_max T_min - T_max Requires global simulations: Condensing clumps ~v_flow Determined by S-curve Size Wide range Sub parsec to parsec Number 1 10^3-10^7 Shape Motion Emission/ Absorption Blobs, shells, Directed stream vs. slabs, filaments? failed wind vs. mist Keplerian orbit vs. Swarm vs. embedded in wind clumpy outflow Optically Self-shielding is thick vs. thin important? lambda of max growth rate? 1 becomes many Clumpy medium

X-ray signatures of AGN outflows: multi-dimensional radiative transfer simulations

X-ray signatures of AGN outflows: multi-dimensional radiative transfer simulations X-ray signatures of AGN outflows: multi-dimensional radiative transfer simulations Stuart Sim Knox Long (STScI) Lance Miller (Oxford) Daniel Proga (UNLV) T. Jane Turner (UMBC) James Reeves (Keele) Overview

More information

Dust. The four letter word in astrophysics. Interstellar Emission

Dust. The four letter word in astrophysics. Interstellar Emission Dust The four letter word in astrophysics Interstellar Emission Why Dust Dust attenuates and scatters UV/optical/NIR Amount of attenuation and spectral shape depends on dust properties (grain size/type)

More information

Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010

Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010 Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010 Aim Review the characteristics of regions of ionized gas within young massive star forming regions. Will focus the discussion

More information

Star systems like our Milky Way. Galaxies

Star systems like our Milky Way. Galaxies Galaxies Star systems like our Milky Way Galaxies Contain a few thousand to tens of billions of stars,as well as varying amounts of gas and dust Large variety of shapes and sizes Gas and Dust in

More information

Interstellar Medium and Star Birth

Interstellar Medium and Star Birth Interstellar Medium and Star Birth Interstellar dust Lagoon nebula: dust + gas Interstellar Dust Extinction and scattering responsible for localized patches of darkness (dark clouds), as well as widespread

More information

Simulations of Mass Outflows from Accretion Powered Sources

Simulations of Mass Outflows from Accretion Powered Sources Simulations of Mass Outflows from Accretion Powered Sources Daniel Proga UNLV Collaborators J. Drew J. Stone T. Kallman J. Raymond M. Begelman J. Ostriker R. Kurosawa A. Janiuk M. Moscibrodzka B. Czerny

More information

Simulations of Winds. Daniel Proga University of Nevada, Las Vegas Princeton University

Simulations of Winds. Daniel Proga University of Nevada, Las Vegas Princeton University Simulations of Winds Daniel Proga University of Nevada, Las Vegas Princeton University Collaborators J. Stone, T. Kallman, J. Raymond, M. Begelman, J. Ostriker, R. Kurosawa, J. Drew, A. Janiuk, M. Moscibrodzka,

More information

Superbubble Feedback in Galaxy Formation

Superbubble Feedback in Galaxy Formation Superbubble Feedback in Galaxy Formation Ben Keller (McMaster University) James Wadsley, Samantha Benincasa, Hugh Couchman Paper: astro-ph/1405.2625 (Accepted MNRAS) Keller, Wadsley, Benincasa & Couchman

More information

coronal gas (10 6 K)! high T radiates inefficiently (no ion states, only free-free)!! once gas is hot, stays hot for 10 6 yrs!

coronal gas (10 6 K)! high T radiates inefficiently (no ion states, only free-free)!! once gas is hot, stays hot for 10 6 yrs! Global Models of ISM! relationship between phases of ISM! phases of ISM : HII : 10 4, 10 6 K! HI : 100, 10 3 K! H 2 : 10 K!? s! 1) stationary or transient! e.g. is HI at 10 3 K, just HII cooling to 100K!

More information

The Interstellar Medium. Papillon Nebula. Neutral Hydrogen Clouds. Interstellar Gas. The remaining 1% exists as interstellar grains or

The Interstellar Medium. Papillon Nebula. Neutral Hydrogen Clouds. Interstellar Gas. The remaining 1% exists as interstellar grains or The Interstellar Medium About 99% of the material between the stars is in the form of a gas The remaining 1% exists as interstellar grains or interstellar dust If all the interstellar gas were spread evenly,

More information

Accretion onto the Massive Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

Accretion onto the Massive Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley) Accretion onto the Massive Black Hole in the Galactic Center Eliot Quataert (UC Berkeley) Why focus on the Galactic Center? GR! Best evidence for a BH (stellar orbits) M 4x10 6 M Largest BH on the sky

More information

Guiding Questions. Stellar Evolution. Stars Evolve. Interstellar Medium and Nebulae

Guiding Questions. Stellar Evolution. Stars Evolve. Interstellar Medium and Nebulae Guiding Questions Stellar Evolution 1. Why do astronomers think that stars evolve? 2. What kind of matter exists in the spaces between the stars? 3. What steps are involved in forming a star like the Sun?

More information

Black Holes and Active Galactic Nuclei

Black Holes and Active Galactic Nuclei Black Holes and Active Galactic Nuclei A black hole is a region of spacetime from which gravity prevents anything, including light, from escaping. The theory of general relativity predicts that a sufficiently

More information

Lecture 2 Interstellar Absorption Lines: Line Radiative Transfer

Lecture 2 Interstellar Absorption Lines: Line Radiative Transfer Lecture 2 Interstellar Absorption Lines: Line Radiative Transfer 1. Atomic absorption lines 2. Application of radiative transfer to absorption & emission 3. Line broadening & curve of growth 4. Optical/UV

More information

ASTR 101 Introduction to Astronomy: Stars & Galaxies

ASTR 101 Introduction to Astronomy: Stars & Galaxies We observe star-gas-star cycle operating in Milky Way s disk using many different wavelengths of light! ASTR 101 Introduction to Astronomy: Stars & Galaxies Infrared light reveals stars whose visible light

More information

The 158 Micron [C II] Line: A Measure of Global Star Formation Activity in Galaxies Stacey et al. (1991) ApJ, 373, 423

The 158 Micron [C II] Line: A Measure of Global Star Formation Activity in Galaxies Stacey et al. (1991) ApJ, 373, 423 The 158 Micron [C II] Line: A Measure of Global Star Formation Activity in Galaxies Stacey et al. (1991) ApJ, 373, 423 Presented by Shannon Guiles Astronomy 671 April 24, 2006 Image:[C II] map of the galaxy

More information

ASTR 101 Introduction to Astronomy: Stars & Galaxies

ASTR 101 Introduction to Astronomy: Stars & Galaxies ASTR 101 Introduction to Astronomy: Stars & Galaxies We observe star-gas-star cycle operating in Milky Way s disk using many different wavelengths of light Infrared light reveals stars whose visible light

More information

Feedback from growth of supermassive black holes

Feedback from growth of supermassive black holes Research Collection Other Conference Item Feedback from growth of supermassive black holes Author(s): Begelman, Mitchell C.; Ruszkowksi, Mateusz Publication Date: 2003 Permanent Link: https://doi.org/10.3929/ethz-a-004585094

More information

PHOTOIONIZATION X-RAY BINARIES INSTABILITY OF WINDS IN STEFANO BIANCHI. June 8 th 2017 The X-ray Universe 2017 Rome, Italy

PHOTOIONIZATION X-RAY BINARIES INSTABILITY OF WINDS IN STEFANO BIANCHI. June 8 th 2017 The X-ray Universe 2017 Rome, Italy PHOTOIONIZATION INSTABILITY OF WINDS IN X-RAY BINARIES STEFANO BIANCHI June 8 th 2017 The X-ray Universe 2017 Rome, Italy 4U1630-472 Suzaku WINDS IN GBHS GROJ1655-40 XMM Kubota+ 07 Diaz-Trigo+ 07 WINDS

More information

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines! Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines Idealized 21cm spectra Example observed 21cm spectra HI densities

More information

Astronomy 1 Fall 2016

Astronomy 1 Fall 2016 Astronomy 1 Fall 2016 Lecture11; November 1, 2016 Previously on Astro-1 Introduction to stars Measuring distances Inverse square law: luminosity vs brightness Colors and spectral types, the H-R diagram

More information

Warm absorbers from torus evaporative flows(??) Tim Kallman (NASA/GSFC) + A. Dorodnitsyn (GSFC) + D. Proga (UNLV)

Warm absorbers from torus evaporative flows(??) Tim Kallman (NASA/GSFC) + A. Dorodnitsyn (GSFC) + D. Proga (UNLV) Warm absorbers from torus evaporative flows(??) Tim Kallman (NASA/GSFC) + A. Dorodnitsyn (GSFC) + D. Proga (UNLV).. Why should we care about warm absorbers Mass loss rate in wind < 0.1 M sun /yr Mass accretion

More information

A Unified Model for AGN. Ryan Yamada Astro 671 March 27, 2006

A Unified Model for AGN. Ryan Yamada Astro 671 March 27, 2006 A Unified Model for AGN Ryan Yamada Astro 671 March 27, 2006 Overview Introduction to AGN Evidence for unified model Structure Radiative transfer models for dusty torus Active Galactic Nuclei Emission-line

More information

ACTIVE GALACTIC NUCLEI I. AN INTRODUCTION Sebastian F. Hoenig Lecturer & Marie Curie Fellow Outline and learning goals I. Phenomenology What are AGN? How are they identified? II. Energy output Where is

More information

9. Evolution with redshift - z > 1.5. Selection in the rest-frame UV

9. Evolution with redshift - z > 1.5. Selection in the rest-frame UV 11-5-10see http://www.strw.leidenuniv.nl/ franx/college/galaxies10 10-c09-1 11-5-10see http://www.strw.leidenuniv.nl/ franx/college/galaxies10 10-c09-2 9. Evolution with redshift - z > 1.5 Selection in

More information

Stellar Life Cycle in Giant Galactic Nebula NGC edited by David L. Alles Western Washington University

Stellar Life Cycle in Giant Galactic Nebula NGC edited by David L. Alles Western Washington University Stellar Life Cycle in Giant Galactic Nebula NGC 3603 edited by David L. Alles Western Washington University e-mail: alles@biol.wwu.edu Introduction NGC 3603 is a giant HII region in the Carina spiral arm

More information

Galaxies. With a touch of cosmology

Galaxies. With a touch of cosmology Galaxies With a touch of cosmology Types of Galaxies Spiral Elliptical Irregular Spiral Galaxies Spiral Galaxies Disk component where the spiral arms are Interstellar medium Star formation Spheroidal

More information

Astrophysics of Gaseous Nebulae and Active Galactic Nuclei

Astrophysics of Gaseous Nebulae and Active Galactic Nuclei SECOND EDITION Astrophysics of Gaseous Nebulae and Active Galactic Nuclei Donald E. Osterbrock Lick Observatory, University of California, Santa Cruz Gary J. Ferland Department of Physics and Astronomy,

More information

Lecture 11 Quiz 2. AGN and You. A Brief History of AGN. This week's topics

Lecture 11 Quiz 2. AGN and You. A Brief History of AGN. This week's topics Lecture 11 Quiz 2 AGN and You March 25 2003 8:00 PM BPS 1420 1. What system of time do astronomers use rather than the standard day-month-year system? 2. In that system, how long would it be between noon

More information

Detailed Study of a Turbulent multiphase multicomponent ISM

Detailed Study of a Turbulent multiphase multicomponent ISM Detailed Study of a Turbulent multiphase multicomponent ISM Dieter Breitschwerdt Collaborators Miguel de Avillez (Evora, Portugal) Verena Baumgartner (Vienna, Austria) Jan Bolte (TU Berlin, Germany) Jenny

More information

Star formation. Protostellar accretion disks

Star formation. Protostellar accretion disks Star formation Protostellar accretion disks Summary of previous lectures and goal for today Collapse Protostars - main accretion phase - not visible in optical (dust envelope) Pre-main-sequence phase -

More information

CO 近赤外線吸収から探る銀河中心 pc スケールでのガスの物理状態 : あかりと Spitzer による低分散分光観測

CO 近赤外線吸収から探る銀河中心 pc スケールでのガスの物理状態 : あかりと Spitzer による低分散分光観測 ALMAワークショップ AGN 銀河質量降着 @sub-kpc @ 国立天文台三鷹 21 Dec. 2015 1 CO 近赤外線吸収から探る銀河中心 pc スケールでのガスの物理状態 : あかりと Spitzer による低分散分光観測 馬場俊介 ( 東大,ISAS/JAXA) 中川貴雄, 磯部直樹 (ISAS/JAXA), 白旗麻衣 ( 国立天文台 ) ALMAワークショップ AGN 銀河質量降着

More information

Theory of Interstellar Phases

Theory of Interstellar Phases Theory of Interstellar Phases 1. Relevant Observations 2. Linear Stability Theory 3. FGH Model 4. Update and Summary References Tielens, Secs. 8.1-5 Field ApJ 142 531 1965 (basic stability theory) Field,

More information

Astr 5465 Feb. 5, 2018 Kinematics of Nearby Stars

Astr 5465 Feb. 5, 2018 Kinematics of Nearby Stars Astr 5465 Feb. 5, 2018 Kinematics of Nearby Stars Properties of Nearby Stars Most in orbit with the Sun around Galactic Center Stellar Kinematics Reveal Groups of Stars with Common Space Motion (Moving

More information

Guiding Questions. The Birth of Stars

Guiding Questions. The Birth of Stars Guiding Questions The Birth of Stars 1 1. Why do astronomers think that stars evolve (bad use of term this is about the birth, life and death of stars and that is NOT evolution)? 2. What kind of matter

More information

Orianne ROOS CEA-Saclay Collaborators : F. Bournaud, J. Gabor, S. Juneau

Orianne ROOS CEA-Saclay Collaborators : F. Bournaud, J. Gabor, S. Juneau Orianne ROOS CEA-Saclay Collaborators : F. Bournaud, J. Gabor, S. Juneau Bachelor of Physics, Master of Astrophysics Université de Strasbourg PhD, Université Paris-Diderot Observatoire de Strasbourg Les

More information

THE EMISSION AND DISTRIBUTION OF DUST OF THE TORUS OF NGC 1068

THE EMISSION AND DISTRIBUTION OF DUST OF THE TORUS OF NGC 1068 THE EMISSION AND DISTRIBUTION OF DUST OF THE TORUS OF NGC 1068 ENRIQUE LOPEZ RODRIGUEZ Instrument Scientist (HAWC+) Stratospheric Observatory For Infrared Astronomy (SOFIA) / NASA elopezrodriguez@nasa.gov

More information

Physics and Chemistry of the Interstellar Medium

Physics and Chemistry of the Interstellar Medium Physics and Chemistry of the Interstellar Medium Sun Kwok The University of Hong Kong UNIVERSITY SCIENCE BOOKS Sausalito, California * Preface xi The Interstellar Medium.1.1 States of Matter in the ISM

More information

Redshifted Broad Absorption Troughs in Quasars

Redshifted Broad Absorption Troughs in Quasars Redshifted Broad Absorption Troughs in Quasars Pat Hall, York University with Niel Brandt and Nur Filiz Ak (PSU), Patrick Petitjean (IAP), and the SDSS-III/BOSS team If due to fallback or rotation, challenge

More information

The Inception of Star Cluster Formation Revealed by [CII] Emission Around an Infrared Dark Cloud Thomas G. Bisbas

The Inception of Star Cluster Formation Revealed by [CII] Emission Around an Infrared Dark Cloud Thomas G. Bisbas The Inception of Star Cluster Formation Revealed by [CII] Emission Around an Infrared Dark Cloud Thomas G. Bisbas tbisbas@gmail.com University of Virginia Outline of the presentation 1. Introduction 2.

More information

Galaxies with Active Nuclei. Active Galactic Nuclei Seyfert Galaxies Radio Galaxies Quasars Supermassive Black Holes

Galaxies with Active Nuclei. Active Galactic Nuclei Seyfert Galaxies Radio Galaxies Quasars Supermassive Black Holes Galaxies with Active Nuclei Active Galactic Nuclei Seyfert Galaxies Radio Galaxies Quasars Supermassive Black Holes Active Galactic Nuclei About 20 25% of galaxies do not fit well into Hubble categories

More information

Active galactic nuclei (AGN)

Active galactic nuclei (AGN) Active galactic nuclei (AGN) General characteristics and types Supermassive blackholes (SMBHs) Accretion disks around SMBHs X-ray emission processes Jets and their interaction with ambient medium Radio

More information

Ultra-fast disk wind from a high accretion rate black hole 1H

Ultra-fast disk wind from a high accretion rate black hole 1H Ultra-fast disk wind from a high accretion rate black hole 1H 0707-495 Kouichi Hagino (ISAS/JAXA) H. Odaka, C. Done, R. Tomaru, S. Watanabe, T. Takahashi K. Hagino et al. 2016, MNRAS, 461, 3954 BREAKING

More information

Gas 1: Molecular clouds

Gas 1: Molecular clouds Gas 1: Molecular clouds > 4000 known with masses ~ 10 3 to 10 5 M T ~ 10 to 25 K (cold!); number density n > 10 9 gas particles m 3 Emission bands in IR, mm, radio regions from molecules comprising H,

More information

Raman Spectroscopy in Symbiotic Stars. Jeong-Eun Heo Sejong University, Korea Gemini Observatory, Chile

Raman Spectroscopy in Symbiotic Stars. Jeong-Eun Heo Sejong University, Korea Gemini Observatory, Chile Raman Spectroscopy in Symbiotic Stars Jeong-Eun Heo Sejong University, Korea Gemini Observatory, Chile Jeong-Eun, Heo Ph.D Student Dept. of Astronomy, Sejong University, Seoul, Korea The astrophysical

More information

Multi-wavelength Surveys for AGN & AGN Variability. Vicki Sarajedini University of Florida

Multi-wavelength Surveys for AGN & AGN Variability. Vicki Sarajedini University of Florida Multi-wavelength Surveys for AGN & AGN Variability Vicki Sarajedini University of Florida What are Active Galactic Nuclei (AGN)? Galaxies with a source of non-stellar emission arising in the nucleus (excessive

More information

Theoretical ideas About Galaxy Wide Star Formation! Star Formation Efficiency!

Theoretical ideas About Galaxy Wide Star Formation! Star Formation Efficiency! Theoretical ideas About Galaxy Wide Star Formation Theoretical predictions are that galaxy formation is most efficient near a mass of 10 12 M based on analyses of supernova feedback and gas cooling times

More information

Young stellar objects and their environment

Young stellar objects and their environment Recent Advances in Star Formation: Observations and Theory ASI Conference Series, 2012, Vol. 4, pp 107 111 Edited by Annapurni Subramaniam & Sumedh Anathpindika Young stellar objects and their environment

More information

Atoms and Star Formation

Atoms and Star Formation Atoms and Star Formation What are the characteristics of an atom? Atoms have a nucleus of protons and neutrons about which electrons orbit. neutrons protons electrons 0 charge +1 charge 1 charge 1.67 x

More information

ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT

ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT Julian H. Krolik ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT PRINCETON UNIVERSITY PRESS Princeton, New Jersey Preface Guide for Readers xv xix 1. What Are Active Galactic

More information

Dusty star-forming galaxies at high redshift (part 5)

Dusty star-forming galaxies at high redshift (part 5) Dusty star-forming galaxies at high redshift (part 5) Flow of story 4.1 4.2 4.3 Acquiring Spectroscopic or Photometric Redshifts Infrared SED Fitting for DSFGs Estimating L IR, T dust and M dust from an

More information

Astr 2320 Thurs. April 27, 2017 Today s Topics. Chapter 21: Active Galaxies and Quasars

Astr 2320 Thurs. April 27, 2017 Today s Topics. Chapter 21: Active Galaxies and Quasars Astr 2320 Thurs. April 27, 2017 Today s Topics Chapter 21: Active Galaxies and Quasars Emission Mechanisms Synchrotron Radiation Starburst Galaxies Active Galactic Nuclei Seyfert Galaxies BL Lac Galaxies

More information

2. Active Galaxies. 2.1 Taxonomy 2.2 The mass of the central engine 2.3 Models of AGNs 2.4 Quasars as cosmological probes.

2. Active Galaxies. 2.1 Taxonomy 2.2 The mass of the central engine 2.3 Models of AGNs 2.4 Quasars as cosmological probes. 2. Active Galaxies 2.1 Taxonomy 2.2 The mass of the central engine 2.3 Models of AGNs 2.4 Quasars as cosmological probes Read JL chapter 3 Active galaxies: interface with JL All of JL chapter 3 is examinable,

More information

Announcement: Quiz Friday, Oct 31

Announcement: Quiz Friday, Oct 31 Announcement: Quiz Friday, Oct 31 What is the difference between the giant, horizontal, and asymptotic-giant branches? What is the Helium flash? Why can t high-mass stars support themselves in hydrostatic

More information

Chapter 17. Active Galaxies and Supermassive Black Holes

Chapter 17. Active Galaxies and Supermassive Black Holes Chapter 17 Active Galaxies and Supermassive Black Holes Guidepost In the last few chapters, you have explored our own and other galaxies, and you are ready to stretch your scientific imagination and study

More information

Solar System. A collection of planets, asteroids, etc that are gravitationally bound to the Sun

Solar System. A collection of planets, asteroids, etc that are gravitationally bound to the Sun Introduction Inventory of the Solar System Major Characteristics Distances & Timescales Spectroscopy Abundances, Rocks & Minerals Half-Life Some Definitions and Key Equations Solar System A collection

More information

Narrow (UV) Absorption Line Outflows from Quasars

Narrow (UV) Absorption Line Outflows from Quasars Narrow (UV) Absorption Line Outflows from Quasars Fred Hamann University of Florida Leah Simon (Berea), Paola Rodriguez Hidalgo (PSU), Daniel Nestor (UCLA), Dan Capellupo (UF), Jason Prochaska (UCSD),

More information

Astro2010 Science White Paper: Tracing the Mass Buildup of Supermassive Black Holes and their Host Galaxies

Astro2010 Science White Paper: Tracing the Mass Buildup of Supermassive Black Holes and their Host Galaxies Astro2010 Science White Paper: Tracing the Mass Buildup of Supermassive Black Holes and their Host Galaxies Anton M. Koekemoer (STScI) Dan Batcheldor (RIT) Marc Postman (STScI) Rachel Somerville (STScI)

More information

AGN feedback. Nadia Zakamska & Rachael Alexandroff Johns Hopkins University

AGN feedback. Nadia Zakamska & Rachael Alexandroff Johns Hopkins University AGN feedback Nadia Zakamska & Rachael Alexandroff Johns Hopkins University AGN feedback Mechanism of AGN feedback Ionized gas Extreme ionized gas outflows at high z Sunyaev-Zeldovich effect Quasar winds

More information

Astronomy 102: Stars and Galaxies Sample Review Test for Examination 3

Astronomy 102: Stars and Galaxies Sample Review Test for Examination 3 October 28, 2003 Name: Astronomy 102: Stars and Galaxies Sample Review Test for Examination 3 Do not open the test until instructed to begin. Instructions: Write your answers in the space provided. No

More information

On the Detectability of Lyman Alpha Emission by Galaxies from the Epoch of Reionization. Mark Dijkstra (MPA, Garching)

On the Detectability of Lyman Alpha Emission by Galaxies from the Epoch of Reionization. Mark Dijkstra (MPA, Garching) On the Detectability of Lyman Alpha Emission by Galaxies from the Epoch of Reionization Mark Dijkstra (MPA, Garching) Outline Why we care about the HI Lya line. Lya transfer basics. Why direct detection

More information

Stellar Binary Systems and CTA. Guillaume Dubus Laboratoire d Astrophysique de Grenoble

Stellar Binary Systems and CTA. Guillaume Dubus Laboratoire d Astrophysique de Grenoble Stellar Binary Systems and CTA Guillaume Dubus Laboratoire d Astrophysique de Grenoble Barcelona Cherenkov Telescope Array Meeting, 24-25 January 2008 X-ray binaries picture by H. Spruit relativistic outflow

More information

Lecture 25 The Milky Way Galaxy November 29, 2017

Lecture 25 The Milky Way Galaxy November 29, 2017 Lecture 25 The Milky Way Galaxy November 29, 2017 1 2 Size of the Universe The Milky Way galaxy is very much larger than the solar system Powers of Ten interactive applet 3 Galaxies Large collections of

More information

Chapter 21 Galaxy Evolution. How do we observe the life histories of galaxies?

Chapter 21 Galaxy Evolution. How do we observe the life histories of galaxies? Chapter 21 Galaxy Evolution How do we observe the life histories of galaxies? Deep observations show us very distant galaxies as they were much earlier in time (old light from young galaxies). 1 Observing

More information

Astronomy across the spectrum: telescopes and where we put them. Martha Haynes Discovering Dusty Galaxies July 7, 2016

Astronomy across the spectrum: telescopes and where we put them. Martha Haynes Discovering Dusty Galaxies July 7, 2016 Astronomy across the spectrum: telescopes and where we put them Martha Haynes Discovering Dusty Galaxies July 7, 2016 CCAT-prime: next generation telescope CCAT Site on C. Chajnantor Me, at 18,400 feet

More information

X-raying galactic feedback in nearby disk galaxies. Q. Daniel Wang University of Massachusetts

X-raying galactic feedback in nearby disk galaxies. Q. Daniel Wang University of Massachusetts X-raying galactic feedback in nearby disk galaxies Q. Daniel Wang University of Massachusetts Chandra survey of diffuse X-ray emission from 53 edge-on galaxies i > 60 o, D < 30 Mpc (Li, J.-T. & Wang, Q.D.

More information

The X-Ray Universe. The X-Ray Universe

The X-Ray Universe. The X-Ray Universe The X-Ray Universe The X-Ray Universe Potsdam University Dr. Lidia Oskinova Sommersemester 2017 lida@astro.physik.uni-potsdam.de astro.physik.uni-potsdam.de ~lida/vorlesungxrayso17.html Chandra X-ray,

More information

Intergalactic Medium and Lyman-Alpha / Metal Absorbers

Intergalactic Medium and Lyman-Alpha / Metal Absorbers Intergalactic Medium and Lyman-Alpha / Metal Absorbers Image credit: Tom Abel & Ralf Kaehler (Stanford) Ji-hoon Kim (TAPIR)! Slides provided by: Phil Hopkins and Ji-hoon Kim Today s Agenda What are there

More information

H II Regions of the First Stars II: A Primer on I-front Instabilities. Dan Whalen UC San Diego

H II Regions of the First Stars II: A Primer on I-front Instabilities. Dan Whalen UC San Diego H II Regions of the First Stars II: A Primer on I-front Instabilities Dan Whalen UC San Diego Our Collaboration Daniel Whalen, T-6, LANL; UC San Diego; UIUC Brian O Shea, T-6, LANL Alex Heger, T-6, LANL

More information

ON THE RELEVANCE AND FUTURE OF UV ASTRONOMY. Ana I Gómez de Castro

ON THE RELEVANCE AND FUTURE OF UV ASTRONOMY. Ana I Gómez de Castro ON THE RELEVANCE AND FUTURE OF UV ASTRONOMY The relevance of the UV spectral range for astrophysics What is available now? Instrumental requirements for the future Actions: Network for UV Astrophysics

More information

A Detailed Study of. the Pulsar Wind Nebula 3C 58

A Detailed Study of. the Pulsar Wind Nebula 3C 58 A Detailed Study of Collaborators: D. J. Helfand S. S. Murray S. Ransom F. D. Seward B. M. Gaensler E. V. Gotthelf E. van der Swaluw the Pulsar Wind Nebula 3C 58 Pulsar Wind Nebulae Young NS powers a particle/magnetic

More information

AST Cosmology and extragalactic astronomy. Lecture 20. Black Holes Part II

AST Cosmology and extragalactic astronomy. Lecture 20. Black Holes Part II AST4320 - Cosmology and extragalactic astronomy Lecture 20 Black Holes Part II 1 AST4320 - Cosmology and extragalactic astronomy Outline: Black Holes Part II Gas accretion disks around black holes, and

More information

Interstellar Dust and Extinction

Interstellar Dust and Extinction University of Oxford, Astrophysics November 12, 2007 Outline Extinction Spectral Features Emission Scattering Polarization Grain Models & Evolution Conclusions What and Why? Dust covers a range of compound

More information

Active Galactic Nuclei research with SOAR: present and upcoming capabilities

Active Galactic Nuclei research with SOAR: present and upcoming capabilities Active Galactic Nuclei research with SOAR: present and upcoming capabilities SOAR 2020 WORKSHOP CBPF Rio de Janeiro March 13 15 / 2017 Courtesy: Gabriel Maturana/NOAO/AURA/NSF Alberto Rodríguez Ardila

More information

AST242 LECTURE NOTES PART 7

AST242 LECTURE NOTES PART 7 AST242 LECTURE NOTES PART 7 Contents 1. HII regions and Ionization Fronts 1 1.1. The Strömgren Sphere 2 1.2. Early Evolution 3 1.3. Achieving Pressure equilibrium 3 1.4. Jump conditions on an ionization

More information

Cosmic Rays & Magnetic Fields

Cosmic Rays & Magnetic Fields Cosmic Rays & Magnetic Fields Ellen Zweibel zweibel@astro.wisc.edu Departments of Astronomy & Physics University of Wisconsin, Madison and Center for Magnetic Self-Organization in Laboratory and Astrophysical

More information

Active Galactic Nuclei

Active Galactic Nuclei Active Galactic Nuclei Optical spectra, distance, line width Varieties of AGN and unified scheme Variability and lifetime Black hole mass and growth Geometry: disk, BLR, NLR Reverberation mapping Jets

More information

A Panoramic HST Infrared View of the Galactic Center

A Panoramic HST Infrared View of the Galactic Center A Panoramic HST Infrared View of the Galactic Center Q. D. Wang, H. Dong, D. Calzetti (UMass), A. Cotera (SETI), S. Stolovy, M. Muno, J. Mauerhan, (Caltech/IPAC/JPL), C. C. Lang (U. of Iowa), M. R. Morris,

More information

Stellar Life Cycle in Giant Galactic Nebula NGC 3603

Stellar Life Cycle in Giant Galactic Nebula NGC 3603 Stellar Life Cycle in Giant Galactic Nebula NGC 3603 edited by David L. Alles Western Washington University e-mail: alles@biol.wwu.edu Last Updated 2009-11-20 Note: In PDF format most of the images in

More information

CHAPTER 29: STARS BELL RINGER:

CHAPTER 29: STARS BELL RINGER: CHAPTER 29: STARS BELL RINGER: Where does the energy of the Sun come from? Compare the size of the Sun to the size of Earth. 1 CHAPTER 29.1: THE SUN What are the properties of the Sun? What are the layers

More information

Astronomy across the spectrum: telescopes and where we put them. Martha Haynes Exploring Early Galaxies with the CCAT June 28, 2012

Astronomy across the spectrum: telescopes and where we put them. Martha Haynes Exploring Early Galaxies with the CCAT June 28, 2012 Astronomy across the spectrum: telescopes and where we put them Martha Haynes Exploring Early Galaxies with the CCAT June 28, 2012 CCAT: 25 meter submm telescope CCAT Site on C. Chajnantor Me, at 18,400

More information

Radio Observations of the Supermassive Black Hole at the Galactic Center and its Orbiting Magnetar

Radio Observations of the Supermassive Black Hole at the Galactic Center and its Orbiting Magnetar Radio Observations of the Supermassive Black Hole at the Galactic Center and its Orbiting Magnetar Rebecca Rimai Diesing Honors Thesis Department of Physics and Astronomy Northwestern University Spring

More information

Lecture 18 - Photon Dominated Regions

Lecture 18 - Photon Dominated Regions Lecture 18 - Photon Dominated Regions 1. What is a PDR? 2. Physical and Chemical Concepts 3. Molecules in Diffuse Clouds 4. Galactic and Extragalactic PDRs References Tielens, Ch. 9 Hollenbach & Tielens,

More information

Theory of optically thin emission line spectroscopy

Theory of optically thin emission line spectroscopy Theory of optically thin emission line spectroscopy 1 Important definitions In general the spectrum of a source consists of a continuum and several line components. Processes which give raise to the continuous

More information

Energy Source for Active Galactic Nuclei

Energy Source for Active Galactic Nuclei Quasars Quasars are small, extremely luminous, extremely distant galactic nuclei Bright radio sources Name comes from Quasi-Stellar Radio Source, as they appeared to be stars! Can have clouds of gas near

More information

Philamentary Structure and Velocity Gradients in the Orion A Cloud

Philamentary Structure and Velocity Gradients in the Orion A Cloud Red: CO from Mini survey Orion B Philamentary Structure and Velocity Gradients in the Orion A Cloud Spitzer Orion Cloud Survey: 10 sq. degrees in Orion A and Orion B mapped between 2004-2009 Orion A Green

More information

Midterm Results. The Milky Way in the Infrared. The Milk Way from Above (artist conception) 3/2/10

Midterm Results. The Milky Way in the Infrared. The Milk Way from Above (artist conception) 3/2/10 Lecture 13 : The Interstellar Medium and Cosmic Recycling Midterm Results A2020 Prof. Tom Megeath The Milky Way in the Infrared View from the Earth: Edge On Infrared light penetrates the clouds and shows

More information

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc) THE MILKY WAY GALAXY Type: Spiral galaxy composed of a highly flattened disk and a central elliptical bulge. The disk is about 100,000 light years (30kpc) in diameter. The term spiral arises from the external

More information

Infrared Emission from the dusty veil around AGN

Infrared Emission from the dusty veil around AGN Infrared Emission from the dusty veil around AGN Thomas Beckert Max-Planck-Institut für Radioastronomie, Bonn Bonn, 2. October 2004 In collaboration with! Bernd Vollmer (Strasbourg)! Wolfgang Duschl &

More information

AGN feedback and the connection to triggering

AGN feedback and the connection to triggering AGN feedback and the connection to triggering Ryan C. Hickox Dartmouth College The Triggering Mechanisms for Active Galactic Nuclei Lorentz Center, Leiden 26 July 2013 Illustration courtesy NASA Outline

More information

Influence of Mass Flows on the Energy Balance and Structure of the Solar Transition Region

Influence of Mass Flows on the Energy Balance and Structure of the Solar Transition Region **TITLE** ASP Conference Series, Vol. **VOLUME***, **YEAR OF PUBLICATION** **NAMES OF EDITORS** Influence of Mass Flows on the Energy Balance and Structure of the Solar Transition Region E. H. Avrett and

More information

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk Accretion Disks Accretion Disks 1. Accretion Efficiency 2. Eddington Luminosity 3. Bondi-Hoyle Accretion 4. Temperature profile and spectrum of accretion disk 5. Spectra of AGN 5.1 Continuum 5.2 Line Emission

More information

Active Galactic Nuclei-I. The paradigm

Active Galactic Nuclei-I. The paradigm Active Galactic Nuclei-I The paradigm An accretion disk around a supermassive black hole M. Almudena Prieto, July 2007, Unv. Nacional de Bogota Centers of galaxies Centers of galaxies are the most powerful

More information

Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION

Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION Accretion Discs Mathematical Tripos, Part III Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION 0.1. Accretion If a particle of mass m falls from infinity and comes to rest on the surface of a star of mass

More information

IRS Spectroscopy of z~2 Galaxies

IRS Spectroscopy of z~2 Galaxies IRS Spectroscopy of z~2 Galaxies Houck et al., ApJ, 2005 Weedman et al., ApJ, 2005 Lutz et al., ApJ, 2005 Astronomy 671 Jason Marshall Opening the IR Wavelength Regime for Discovery One of the primary

More information

RADIATIVE TANSFER MODELING OF AGN DUSTY TORUS AS CLUMPY TWO-PHASE MEDIUM

RADIATIVE TANSFER MODELING OF AGN DUSTY TORUS AS CLUMPY TWO-PHASE MEDIUM RADIATIVE TANSFER MODELING OF AGN DUSTY TORUS AS CLUMPY TWO-PHASE MEDIUM Marko Stalevski1, 2, Jacopo Fritz2, Maarten Baes2, Luka Č. Popović1 Astronomical Observatory, Volgina 7, 11160 Belgrade, Serbia

More information

RELATIVISTIC SPECTROSCOPY OF BLACK HOLES

RELATIVISTIC SPECTROSCOPY OF BLACK HOLES RELATIVISTIC SPECTROSCOPY OF BLACK HOLES Michael Parker ESAC science seminar 24/5/18 BLACK HOLES 101 For an object to just escape a massive body, it needs the sum: Kinetic energy + gravitational binding

More information

Dust. Interstellar Emission. The four letter word in astrophysics Scattered in S&G mostly pgs , MBW

Dust. Interstellar Emission. The four letter word in astrophysics Scattered in S&G mostly pgs , MBW Dust The four letter word in astrophysics Scattered in S&G mostly pgs 100-108, MBW 478-482 recent conference Proceedings of the International Astronomical Porous chondrite interplanetary dust particle.

More information

F q. Gas at radius R (cylindrical) and height z above the disk midplane. F z. central mass M

F q. Gas at radius R (cylindrical) and height z above the disk midplane. F z. central mass M Accretion Disks Luminosity of AGN derives from gravitational potential energy of gas spiraling inward through an accretion disk. Derive structure of the disk, and characteristic temperatures of the gas.

More information

Ultra Luminous X-ray sources ~one of the most curious objects in the universe~

Ultra Luminous X-ray sources ~one of the most curious objects in the universe~ Ultra Luminous X-ray sources ~one of the most curious objects in the universe~ Shogo B. Kobayashi the University of Tokyo ULX workshop@isas 1 The discovery of the enigmatic sources pfabbiano & Trincheri

More information