coronal gas (10 6 K)! high T radiates inefficiently (no ion states, only free-free)!! once gas is hot, stays hot for 10 6 yrs!

Size: px
Start display at page:

Download "coronal gas (10 6 K)! high T radiates inefficiently (no ion states, only free-free)!! once gas is hot, stays hot for 10 6 yrs!"

Transcription

1 Global Models of ISM! relationship between phases of ISM! phases of ISM : HII : 10 4, 10 6 K! HI : 100, 10 3 K! H 2 : 10 K!? s! 1) stationary or transient! e.g. is HI at 10 3 K, just HII cooling to 100K! 2) do phases depend on gal. location! e.g. hot phases only in halo, H 2 only in arms! coronal gas (10 6 K)! high T radiates inefficiently (no ion states, only free-free)!! once gas is hot, stays hot for 10 6 yrs!

2 two-phase model of ISM! (Field, Goldsmith & Habing 69, apj, 155,L149,! update : McKee 95, ASP, 80, 292)! balance c.r. heating against cooling (H at high T, C + at low T)! FGH : " from c.r. (2 Mev from SN)! assume # H = H ioniz. rate = 4x10-16 sec -1 H -1! get 8-20 ev per ioniz. (~35 ev primary, ~3 ev secondary)! " cr = n H # H <E> ~ 4x10-27 n H! McKee : " from photo-electric effect on small grains! $ from H & trace ions coll. excit. at high T, C + at low T!

3 Equilibrium T Pressure (nt)%! 3 phases in pressure equilibrium% F = intercloud medium, H=clouds %

4 Stability :! thermally unstable if when it heats, heating increases! if G = net heating =!-", unstable if dg dt P dg dt = #G #T + #G #$ #$ #T P = $RT % dp = RTd$+ R$dT dp $ = d$ $ + dt T % dg dt P = #G #T & $ T, for dp=0, #$ #$ = & $ T #G #$ instability if T #G #T > $ #G #T > 0 unstable if T dep. of heat fn is greater than density dep.! true for G phase where T changes rapidly%

5 schematically,! for isobaric perturbation of T, if T, n! does excess $ correct higher T! T% F% excess "% G% n% excess $% H%!phases F & H self-correct, G not self-correcting (unstable)!

6 Vertical structure perp. to gal. disk :! at high z, n is low,!phase F! going to lower z, hydrostatic equil.! n increases! at n ~ 0.2, instability! jump to phase H (clouds)! at low z, have diffuse hot phase (F) in press. equil w/ cold dense phase (H)!

7 Vertical structure perp. to gal. disk :! Equation of motion (Euler's eq.)! dv!" dt = F ( force per unit vol) = "# PdS $! dv dt = "grad P +!g " " " +!gdv = " % for v = 0 &1d, &P &z =!g " # # " ( grad P "!g) dv How to get g (grav. accel.)?%

8 Oort('65) : for stars, P * = nm * v 2!nm * v 2!"!!nm * v 2!z = nm * g z " g z = 1 n i.e. count *'s as a fn of z " g z can also get limit on total mass (*'s, ISM, & dark matter)!z from Poisson's eq., # 2 $ = %!g!z = %4&G'!g!z = 8.2x10%30 sec %1 at z = 0 " ' 0 = 8.2x10 %30 / 4&G = 9.8x10 %24 gr cm %3 (Oort limit) ' * = 4x10 %24 " ' ISM+DM = 5.7x10 %24 ( 3.6 H cm %3

9 distribution of star perpendicular to MW disk % Star Type% Dispersion (km/s)% Scale height % (pc)%% B% 6% 60% A% 9% 120% gk% 17% 270% dm% 18% 350% WD% 25% 500% g z perpendicular to MW disk from % distribution of K giant stars w/ z % -g z (10-9 cm/sec 2 )% %

10 do phases vary w/ z above gal. disk?! P max % P min % F(WNM)% H(CNM)% n% where P > P max only H (CNM)! P min < P < P max WNM & CNM in press. equilibrium! but w/o KE input to clouds, they will settle in disk!

11 problems w/ 2 phase model :! 1) c.r. ioniz rate 10x too high! determined from HD/H 2! D+H +!D + +H! D + H 2!HD+H + (reason PE heating taken up)! 2)prevasive SN cavities sweep up F phase! 3) observations of coronal gas! OVI absorption!3-7x10 5 K gas! O* winds & SN shells/cavities! soft xray background (200ev)! (must be local since & 200ev ~1 w/i 100pc)! hotter gas at 10 6 K (SiIII)! 4) high vel. opt/uv abs. lines (20-50 km/s)! not dyn. equil.!

12 SN cavities do they overlap?% SN enter mom. cons. phases at ~200km/s, R i = 20pc R f = R i / V f! 68pc when V ~ 5km / s! vol,v SNR ~ 1.3x10 6 pc 3 how long does cavity last : " rec = 1 / n e # ~ 10 7 yr@n e ~ 0.01 " dyn ~ R / c 0 ~ 68pc / 10km / s ~ 7 Myr SN rate per unit vol., S ~ 3x10 $13 yr $1 pc $3 S V SNR " SNR ~ 2.7! the SNR cavities overlap! the WIM will be swept up by SNR

13 ISM not in equil., but a steady state! 1) SNR pervasive! 2) hot SN gas conductively heats clouds! 3) clouds evaporate! Cox & Smith (74), McKee & Ostriker (77) apj 218, 148! hot SN cavities become an interconnected tunnel system! but problems with these models :! 1) SN clustered! 2) SN occur in denser than average ISM! smaller SNR! 3) GMCs (H2) entirely left out %

14 Relationship between HI & H2 % M51! conventional ISM picture% HI! 1kpc! wrong!%

15 CARMA CO(1-0)% (Koda etal 09)% resolution : 4! 160 pc % sensitivity : ~105Msun% HI map (VLA)!

16 CARMA CO(1-0)% (Koda etal 09)% Spitzer 8 micron% (SINGS)%

17 gas fraction ~80% molecular! H 2 can t be confined to arms% continuity (mass cons.) =>% M H2 /! H2 = (M HI + M HII ) /! HI-HII! M : total mass of phase w/i ring%! : lifetime of H in phase% inner disks, M H2 ~ 4 x M HI +M HII% H 2 %! H2 =! HI-HII M H2 / (M HI + M HII ) ~ 4 x! HI-HI! =>! H2 >>! HI-HII " 3 x 10 7 yrs% # typical H 2 lifetime >> 10 8 yrs!! (could be forever)% ( lifetime of H 2, not necessarily GMC )% Scoville & Hersh 79% Koda etal ( 09)%

18 equipartition of cloud KE! == > massive clouds w/ lowest ' v! requires cloud last % several GMC-GMC % collision times% & GMC-GMC > ~ 10 8 yrs!

19 Summary :% H2 GMC masses using virial analysis & CO luminosities% HI from 21-cm emission line flux % usually opt. thin : integrated emission line flux! HI mass% multiple HI phases : cold (100K) HI, warm (1000K) gas% Galactic distributions : % H2 centrally concentrated, HI mostly in outer disks% H2 much more closely correlated with SF% evidence that H2 clouds are long-lived but form stars inefficiently%

20 How does H 2 fit??! GMCs self-gravitating, not pressure equilibrium with ext. gas! but M H2 /& free-fall >> SFR! not in free-fall collapse! GMCs may last very long time and form by agglomeration! of ISM (clouds and diffuse gas)%

Theory of Interstellar Phases

Theory of Interstellar Phases Theory of Interstellar Phases 1. Relevant Observations 2. Linear Stability Theory 3. FGH Model 4. Update and Summary References Tielens, Secs. 8.1-5 Field ApJ 142 531 1965 (basic stability theory) Field,

More information

Gas 1: Molecular clouds

Gas 1: Molecular clouds Gas 1: Molecular clouds > 4000 known with masses ~ 10 3 to 10 5 M T ~ 10 to 25 K (cold!); number density n > 10 9 gas particles m 3 Emission bands in IR, mm, radio regions from molecules comprising H,

More information

Lecture 14 Cosmic Rays

Lecture 14 Cosmic Rays Lecture 14 Cosmic Rays 1. Introduction and history 2. Locally observed properties 3. Interactions 4. Demodulation and ionization rate 5. Midplane interstellar pressure General Reference MS Longair, High

More information

Galaxy Simulators Star Formation for Dummies ^

Galaxy Simulators Star Formation for Dummies ^ Galaxy Simulators Star Formation for Dummies ^ Mark Krumholz UC Santa Cruz HIPACC Summer School August 6, 2010 The Challenge of Star Formation ~10 pc ~10 pc ~10 pc Like stars, star formation involves impossibly

More information

Theoretical ideas About Galaxy Wide Star Formation! Star Formation Efficiency!

Theoretical ideas About Galaxy Wide Star Formation! Star Formation Efficiency! Theoretical ideas About Galaxy Wide Star Formation Theoretical predictions are that galaxy formation is most efficient near a mass of 10 12 M based on analyses of supernova feedback and gas cooling times

More information

Lecture 2: Introduction to stellar evolution and the interstellar medium. Stars and their evolution

Lecture 2: Introduction to stellar evolution and the interstellar medium. Stars and their evolution Lecture 2: Introduction to stellar evolution and the interstellar medium Stars and their evolution The Hertzsprung-Russell (HR) Diagram (Color-Magnitude Diagram) Apparent and Absolute Magnitudes; Dust

More information

Stars, Galaxies & the Universe Lecture Outline

Stars, Galaxies & the Universe Lecture Outline Stars, Galaxies & the Universe Lecture Outline A galaxy is a collection of 100 billion stars! Our Milky Way Galaxy (1)Components - HII regions, Dust Nebulae, Atomic Gas (2) Shape & Size (3) Rotation of

More information

Lecture 23 Internal Structure of Molecular Clouds

Lecture 23 Internal Structure of Molecular Clouds Lecture 23 Internal Structure of Molecular Clouds 1. Location of the Molecular Gas 2. The Atomic Hydrogen Content 3. Formation of Clouds 4. Clouds, Clumps and Cores 5. Observing Molecular Cloud Cores References

More information

a few more introductory subjects : equilib. vs non-equil. ISM sources and sinks : matter replenishment, and exhaustion Galactic Energetics

a few more introductory subjects : equilib. vs non-equil. ISM sources and sinks : matter replenishment, and exhaustion Galactic Energetics Today : a few more introductory subjects : equilib. vs non-equil. ISM sources and sinks : matter replenishment, and exhaustion Galactic Energetics photo-ionization of HII assoc. w/ OB stars ionization

More information

Diffuse Interstellar Medium

Diffuse Interstellar Medium Diffuse Interstellar Medium Basics, velocity widths H I 21-cm radiation (emission) Interstellar absorption lines Radiative transfer Resolved Lines, column densities Unresolved lines, curve of growth Abundances,

More information

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines! Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines Idealized 21cm spectra Example observed 21cm spectra HI densities

More information

Astr 5465 Feb. 5, 2018 Kinematics of Nearby Stars

Astr 5465 Feb. 5, 2018 Kinematics of Nearby Stars Astr 5465 Feb. 5, 2018 Kinematics of Nearby Stars Properties of Nearby Stars Most in orbit with the Sun around Galactic Center Stellar Kinematics Reveal Groups of Stars with Common Space Motion (Moving

More information

Physics and chemistry of the interstellar medium. Lecturers: Simon Glover, Rowan Smith Tutor: Raquel Chicharro

Physics and chemistry of the interstellar medium. Lecturers: Simon Glover, Rowan Smith Tutor: Raquel Chicharro Physics and chemistry of the interstellar medium Lecturers: Simon Glover, Rowan Smith Tutor: Raquel Chicharro This course consists of three components: Lectures Exercises Seminar [Wed., 2-4] [Thu., 4-5]

More information

THE GALACTIC CORONA. In honor of. Jerry Ostriker. on his 80 th birthday. Chris McKee Princeton 5/13/2017. with Yakov Faerman Amiel Sternberg

THE GALACTIC CORONA. In honor of. Jerry Ostriker. on his 80 th birthday. Chris McKee Princeton 5/13/2017. with Yakov Faerman Amiel Sternberg THE GALACTIC CORONA In honor of Jerry Ostriker on his 80 th birthday Chris McKee Princeton 5/13/2017 with Yakov Faerman Amiel Sternberg A collaboration that began over 40 years ago and resulted in a lifelong

More information

Three Major Components

Three Major Components The Milky Way Three Major Components Bulge young and old stars Disk young stars located in spiral arms Halo oldest stars and globular clusters Components are chemically, kinematically, and spatially distinct

More information

The Inception of Star Cluster Formation Revealed by [CII] Emission Around an Infrared Dark Cloud Thomas G. Bisbas

The Inception of Star Cluster Formation Revealed by [CII] Emission Around an Infrared Dark Cloud Thomas G. Bisbas The Inception of Star Cluster Formation Revealed by [CII] Emission Around an Infrared Dark Cloud Thomas G. Bisbas tbisbas@gmail.com University of Virginia Outline of the presentation 1. Introduction 2.

More information

ASTR 610 Theory of Galaxy Formation Lecture 16: Star Formation

ASTR 610 Theory of Galaxy Formation Lecture 16: Star Formation ASTR 610 Theory of Galaxy Formation Lecture 16: Star Formation Frank van den Bosch Yale University, spring 2017 Star Formation In this lecture we discuss the formation of stars. After describing the structure

More information

Lecture 26 Clouds, Clumps and Cores. Review of Molecular Clouds

Lecture 26 Clouds, Clumps and Cores. Review of Molecular Clouds Lecture 26 Clouds, Clumps and Cores 1. Review of Dense Gas Observations 2. Atomic Hydrogen and GMCs 3. Formation of Molecular Clouds 4. Internal Structure 5. Observing Cores 6. Preliminary Comments on

More information

Lecture 2: Molecular Clouds: Galactic Context and Observational Tracers. Corona Australis molecular cloud: Andrew Oreshko

Lecture 2: Molecular Clouds: Galactic Context and Observational Tracers. Corona Australis molecular cloud: Andrew Oreshko Lecture 2: Molecular Clouds: Galactic Context and Observational Tracers Corona Australis molecular cloud: Andrew Oreshko Classification of Young Stellar Objects (YSOs) Spectral Index Hartmann: Accretion

More information

ASTRO 310: Galactic & Extragalactic Astronomy Prof. Jeff Kenney

ASTRO 310: Galactic & Extragalactic Astronomy Prof. Jeff Kenney ASTRO 310: Galactic & Extragalactic Astronomy Prof. Jeff Kenney Class 3 January 23, 2017 The Milky Way Galaxy: Vertical Distributions of Stars & the Stellar Disk disks exist in many astrophysical systems

More information

Two Phase Formation of Massive Galaxies

Two Phase Formation of Massive Galaxies Two Phase Formation of Massive Galaxies Focus: High Resolution Cosmological Zoom Simulation of Massive Galaxies ApJ.L.,658,710 (2007) ApJ.,697, 38 (2009) ApJ.L.,699,L178 (2009) ApJ.,725,2312 (2010) ApJ.,744,63(2012)

More information

Ionization of the Local Interstellar Cavity by Hot White Dwarfs

Ionization of the Local Interstellar Cavity by Hot White Dwarfs Ionization of the Local Interstellar Cavity by Hot White Dwarfs Barry Y. Welsh Experimental Astrophysics Group Space Sciences Lab, UC Berkeley Thanks to: Martin Barstow, Nathan Dickinson (Univ of Leicester)

More information

The Effects of Radiative Transfer on Low-Mass Star Formation

The Effects of Radiative Transfer on Low-Mass Star Formation The Effects of Radiative Transfer on Low-Mass Star Formation Stella Offner NSF Fellow, ITC Dense Cores in Dark Clouds Oct 23 2009 Collaborators: Chris McKee (UC Berkeley), Richard Klein (UC Berkeley; LLNL),

More information

The Universe o. Galaxies. The Universe of. Galaxies. Ajit Kembhavi IUCAA

The Universe o. Galaxies. The Universe of. Galaxies. Ajit Kembhavi IUCAA Hello! The Universe of Galaxies The Universe o Galaxies Ajit Kembhavi IUCAA Galaxies: Stars: ~10 11 Mass: ~10 11 M Sun Contain stars, gas and dust, possibly a supermassive black hole at the centre. Much

More information

Remember from Stefan-Boltzmann that 4 2 4

Remember from Stefan-Boltzmann that 4 2 4 Lecture 17 Review Most stars lie on the Main sequence of an H&R diagram including the Sun, Sirius, Procyon, Spica, and Proxima Centauri. This figure is a plot of logl versus logt. The main sequence is

More information

Galaxy formation and evolution II. The physics of galaxy formation

Galaxy formation and evolution II. The physics of galaxy formation Galaxy formation and evolution II. The physics of galaxy formation Gabriella De Lucia Astronomical Observatory of Trieste Outline: ü Observational properties of galaxies ü Galaxies and Cosmology ü Gas

More information

Class #4 11 September 2008

Class #4 11 September 2008 Class #4 11 September 2008 Review Stellar evolution/nucleosynthesis/h-r diagrams Phases of the Interstellar Medium The Hydrogen Atom H-R diagram for 47 Tuc Evolution+nucleosynt hesis each box is a different

More information

Lec 22 Physical Properties of Molecular Clouds

Lec 22 Physical Properties of Molecular Clouds Lec 22 Physical Properties of Molecular Clouds 1. Giant Molecular Clouds 2. Orion s Clouds 3. Correlations of Observed Properties 4. The X-Factor References Origins of Stars & Planetary Systems eds. Lada

More information

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Goals: The Birth Of Stars How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Interstellar Medium Gas and dust between stars is the interstellar

More information

Superbubble Feedback in Galaxy Formation

Superbubble Feedback in Galaxy Formation Superbubble Feedback in Galaxy Formation Ben Keller (McMaster University) James Wadsley, Samantha Benincasa, Hugh Couchman Paper: astro-ph/1405.2625 (Accepted MNRAS) Keller, Wadsley, Benincasa & Couchman

More information

Astr 2310 Thurs. March 23, 2017 Today s Topics

Astr 2310 Thurs. March 23, 2017 Today s Topics Astr 2310 Thurs. March 23, 2017 Today s Topics Chapter 16: The Interstellar Medium and Star Formation Interstellar Dust and Dark Nebulae Interstellar Dust Dark Nebulae Interstellar Reddening Interstellar

More information

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and 6-1 6. Interstellar Medium 6.1 Nebulae Emission nebulae are diffuse patches of emission surrounding hot O and early B-type stars. Gas is ionized and heated by radiation from the parent stars. In size,

More information

Motivation Q: WHY IS STAR FORMATION SO INEFFICIENT? Ṁ M gas / dyn. Log SFR. Kennicutt Log. gas / dyn

Motivation Q: WHY IS STAR FORMATION SO INEFFICIENT? Ṁ M gas / dyn. Log SFR. Kennicutt Log. gas / dyn Motivation Q: WHY IS STAR FORMATION SO INEFFICIENT? Ṁ 0.017 M gas / dyn Log SFR Kennicutt 1998 Log gas / dyn Motivation Q: WHY IS STAR FORMATION SO INEFFICIENT? Moster 2009 No Feedback 10% of baryons Log(

More information

II- Molecular clouds

II- Molecular clouds 2. II- Molecular clouds 3. Introduction 4. Observations of MC Pierre Hily-Blant (Master2) The ISM 2012-2013 218 / 290 3. Introduction 3. Introduction Pierre Hily-Blant (Master2) The ISM 2012-2013 219 /

More information

STAR FORMATION RATES observational overview. Ulrike Kuchner

STAR FORMATION RATES observational overview. Ulrike Kuchner STAR FORMATION RATES observational overview Ulrike Kuchner Remember, remember.. Outline! measurements of SFRs: - techniques to see what the SF rate is - importance of massive stars and HII regions - the

More information

An Introduction to Galaxies and Cosmology

An Introduction to Galaxies and Cosmology An Introduction to Galaxies and Cosmology 1.1 Introduction Milky Way (our galaxy - Galaxy) Fig. 1.1 A photograph of one hemisphere of the night sky. (D.di Cicco, Sky Publishing Corp.) 1011 stars 1012

More information

Galactic Scale Winds. Elizabeth Harper-Clark, Mubdi Rahman, Brice Ménard, Eve Lee, Eliot Quataert, Phil Hopkins,Todd Thompson

Galactic Scale Winds. Elizabeth Harper-Clark, Mubdi Rahman, Brice Ménard, Eve Lee, Eliot Quataert, Phil Hopkins,Todd Thompson Galactic Scale Winds Elizabeth Harper-Clark, Mubdi Rahman, Brice Ménard, Eve Lee, Eliot Quataert, Phil Hopkins,Todd Thompson Phenomenology Weiner, Koo: we see winds in most high z star forming galaxies

More information

Lecture 21 Formation of Stars November 15, 2017

Lecture 21 Formation of Stars November 15, 2017 Lecture 21 Formation of Stars November 15, 2017 1 2 Birth of Stars Stars originally condense out of a COLD, interstellar cloud composed of H and He + trace elements. cloud breaks into clumps (gravity)

More information

Components of Galaxies Gas The Importance of Gas

Components of Galaxies Gas The Importance of Gas Components of Galaxies Gas The Importance of Gas Fuel for star formation (H 2 ) Tracer of galaxy kinematics/mass (HI) Tracer of dynamical history of interaction between galaxies (HI) The Two-Level Atom

More information

Stellar evolution Part I of III Star formation

Stellar evolution Part I of III Star formation Stellar evolution Part I of III Star formation The interstellar medium (ISM) The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful

More information

Interstellar Medium by Eye

Interstellar Medium by Eye Interstellar Medium by Eye Nebula Latin for cloud = cloud of interstellar gas & dust Wide angle: Milky Way Summer Triangle (right) α&β Centauri, Coal Sack Southern Cross (below) Dust-Found in the Plane

More information

ORIGIN OF THE SPIRAL-ARM INSTABILITY

ORIGIN OF THE SPIRAL-ARM INSTABILITY THE POSSIBLE ORIGIN OF THE SPIRAL-ARM INSTABILITY J. G. HILLS Department of Astronomy, The University of Michigan, Ann Arbor, Michigan, U.S.A. (Received 26 February, 1976) Abstract. Physical argumenls

More information

ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney. Class 7 Sept 19, 2018 The Milky Way Galaxy: Gas: HII Regions

ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney. Class 7 Sept 19, 2018 The Milky Way Galaxy: Gas: HII Regions ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney Class 7 Sept 19, 2018 The Milky Way Galaxy: Gas: HII Regions importance of HII regions one of main ISM phases great example for understanding

More information

Lecture 22 Stability of Molecular Clouds

Lecture 22 Stability of Molecular Clouds Lecture 22 Stability of Molecular Clouds 1. Stability of Cloud Cores 2. Collapse and Fragmentation of Clouds 3. Applying the Virial Theorem References Myers, Physical Conditions in Molecular Clouds in

More information

arxiv:astro-ph/ v1 14 Jan 2002

arxiv:astro-ph/ v1 14 Jan 2002 The Central kpc of Starbursts and AGN ASP Conference Series, Vol. xxx, 2001 J. H. Knapen, J. E. Beckman, I. Shlosman, and T. J. Mahoney Molecular Gas in The Central Kpc of Starbursts and AGN Shardha Jogee

More information

Birth & Death of Stars

Birth & Death of Stars Birth & Death of Stars Objectives How are stars formed How do they die How do we measure this The Interstellar Medium (ISM) Vast clouds of gas & dust lie between stars Diffuse hydrogen clouds: dozens of

More information

IX. Star and planet formation. h"p://sgoodwin.staff.shef.ac.uk/phy111.html

IX. Star and planet formation. hp://sgoodwin.staff.shef.ac.uk/phy111.html IX. Star and planet formation h"p://sgoodwin.staff.shef.ac.uk/phy111.html 1. The ISM Most of the volume of space around us contains the diffuse ISM at 10 4-10 6 K with densities of only a few atoms per

More information

Enrique Vázquez-Semadeni. Instituto de Radioastronomía y Astrofísica, UNAM, México

Enrique Vázquez-Semadeni. Instituto de Radioastronomía y Astrofísica, UNAM, México Enrique Vázquez-Semadeni Instituto de Radioastronomía y Astrofísica, UNAM, México 1 Collaborators: CRyA UNAM: Javier Ballesteros-Paredes Pedro Colín Gilberto Gómez Manuel Zamora-Avilés Abroad: Robi Banerjee

More information

Interstellar Medium and Star Birth

Interstellar Medium and Star Birth Interstellar Medium and Star Birth Interstellar dust Lagoon nebula: dust + gas Interstellar Dust Extinction and scattering responsible for localized patches of darkness (dark clouds), as well as widespread

More information

Regularity and Turbulence in Galactic Star Formation

Regularity and Turbulence in Galactic Star Formation Regularity and Turbulence in Galactic Star Formation APOD 10/9/11 Bruce G. Elmegreen IBM T.J. Watson Research Center Yorktown Heights, NY USA bge@us.ibm.com Overview HI to H 2 conversion Spiral wave star

More information

Clicker Question: Clicker Question: What is the expected lifetime for a G2 star (one just like our Sun)?

Clicker Question: Clicker Question: What is the expected lifetime for a G2 star (one just like our Sun)? How Long do Stars Live (as Main Sequence Stars)? A star on Main Sequence has fusion of H to He in its core. How fast depends on mass of H available and rate of fusion. Mass of H in core depends on mass

More information

Chapter 10 The Interstellar Medium

Chapter 10 The Interstellar Medium Chapter 10 The Interstellar Medium Guidepost You have begun your study of the sun and other stars, but now it is time to study the thin gas and dust that drifts through space between the stars. This chapter

More information

Star Formation. Spitzer Key Contributions to Date

Star Formation. Spitzer Key Contributions to Date Star Formation Answering Fundamental Questions During the Spitzer Warm Mission Phase Lori Allen CfA John Carpenter, Caltech Lee Hartmann, University of Michigan Michael Liu, University of Hawaii Tom Megeath,

More information

6: Observing Warm Phases: Dispersion ( n e dl ) & Emission ( n

6: Observing Warm Phases: Dispersion ( n e dl ) & Emission ( n 6: Observing Warm Phases: Dispersion ( n e dl ) & Emission ( n 2 e dl ) Measure James R. Graham University of California Berkeley NGC 891 NGC 891 AY 216 2 Techniques & Components The Warm Ionized Medium

More information

The Interstellar Medium

The Interstellar Medium The Interstellar Medium Fall 2014 Lecturer: Dr. Paul van der Werf Oortgebouw 565, ext 5883 pvdwerf@strw.leidenuniv.nl Assistant: Kirstin Doney Huygenslaboratorium 528 doney@strw.leidenuniv.nl Class Schedule

More information

Guiding Questions. The Birth of Stars

Guiding Questions. The Birth of Stars Guiding Questions The Birth of Stars 1 1. Why do astronomers think that stars evolve (bad use of term this is about the birth, life and death of stars and that is NOT evolution)? 2. What kind of matter

More information

Today in Milky Way. Clicker on deductions about Milky Way s s stars. Why spiral arms? ASTR 1040 Accel Astro: Stars & Galaxies

Today in Milky Way. Clicker on deductions about Milky Way s s stars. Why spiral arms? ASTR 1040 Accel Astro: Stars & Galaxies ASTR 1040 Accel Astro: Stars & Galaxies Prof. Juri Toomre TA: Nick Featherstone Lecture 21 Tues 3 Apr 07 zeus.colorado.edu/astr1040-toomre toomre Superbubble NGC 3079 Today in Milky Way Look at why spiral

More information

Chapter 9. The Formation and Structure of Stars

Chapter 9. The Formation and Structure of Stars Chapter 9 The Formation and Structure of Stars The Interstellar Medium (ISM) The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful

More information

A World of Dust. Bare-Eye Nebula: Orion. Interstellar Medium

A World of Dust. Bare-Eye Nebula: Orion. Interstellar Medium Interstellar Medium Physics 113 Goderya Chapter(s): 10 Learning Outcomes: A World of Dust The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of

More information

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc) THE MILKY WAY GALAXY Type: Spiral galaxy composed of a highly flattened disk and a central elliptical bulge. The disk is about 100,000 light years (30kpc) in diameter. The term spiral arises from the external

More information

Star Formation in Disk Galaxies: From Kiloparsec to Giant Molecular Cloud Scales

Star Formation in Disk Galaxies: From Kiloparsec to Giant Molecular Cloud Scales Star Formation in Disk Galaxies: From Kiloparsec to Giant Molecular Cloud Scales Suzanne N. Shaske1 and Dr. Jonathan C. Tan2 1 2 Department of Chemical Engineering, University of Florida Departments of

More information

Convection When the radial flux of energy is carried by radiation, we derived an expression for the temperature gradient: dt dr = - 3

Convection When the radial flux of energy is carried by radiation, we derived an expression for the temperature gradient: dt dr = - 3 Convection When the radial flux of energy is carried by radiation, we derived an expression for the temperature gradient: dt dr = - 3 4ac kr L T 3 4pr 2 Large luminosity and / or a large opacity k implies

More information

THE INTERSTELLAR MEDIUM

THE INTERSTELLAR MEDIUM THE INTERSTELLAR MEDIUM An IR view of dust clouds In particular, light from polycyclic aromatic hydrocarbons (PAH s) Little bit of carbon out there, forms hydrocarbons like car exhaust Associated with

More information

Gravitational collapse of gas

Gravitational collapse of gas Gravitational collapse of gas Assume a gas cloud of mass M and diameter D Sound speed for ideal gas is c s = γ P ρ = γ nkt ρ = γ kt m Time for sound wave to cross the cloud t sound = D == D m c s γ kt

More information

Starburst Dwarf Galaxies

Starburst Dwarf Galaxies Starburst Dwarf Galaxies 1 Starburst Dwarf Galaxies The star-formation history does in general not show a continuous evolution but preferably an episoidal behaviour. 2 1 Definition: Starburst ( t0) 10....100

More information

15. SNRs, STELLAR WIND BUBBLES, AND THE HOT ISM Blast Wave Dynamics Equation of motion

15. SNRs, STELLAR WIND BUBBLES, AND THE HOT ISM Blast Wave Dynamics Equation of motion 1 15. SNRs, STELLAR WIND BUBBLES, AND THE HOT ISM 15.1. Blast Wave Dynamics 15.1.1. Equation of motion Energy injection by stars H II regions, stellar winds, supernovae leads to supersonically expanding

More information

The Interstellar Medium.

The Interstellar Medium. The Interstellar Medium http://apod.nasa.gov/apod/astropix.html THE INTERSTELLAR MEDIUM Total mass ~ 5 to 10 x 10 9 solar masses of about 5 10% of the mass of the Milky Way Galaxy interior to the sun s

More information

On Today s s Radar. Reading and Events SECOND MID-TERM EXAM. ASTR 1040 Accel Astro: Stars & Galaxies. Another useful experience (we hope)

On Today s s Radar. Reading and Events SECOND MID-TERM EXAM. ASTR 1040 Accel Astro: Stars & Galaxies. Another useful experience (we hope) ASTR 1040 Accel Astro: Stars & Galaxies Prof. Juri Toomre TA: Nicholas Nelson Lecture 20 Thur 17 Mar 2011 zeus.colorado.edu/astr1040-toomre toomre Edge-on spiral galaxy NGG 4013 On Today s s Radar Look

More information

Galaxy Formation: Overview

Galaxy Formation: Overview Galaxy Formation: Overview Houjun Mo March 30, 2004 The basic picture Formation of dark matter halos. Gas cooling in dark matter halos Star formation in cold gas Evolution of the stellar populaion Metal

More information

Astrochemistry. Lecture 10, Primordial chemistry. Jorma Harju. Department of Physics. Friday, April 5, 2013, 12:15-13:45, Lecture room D117

Astrochemistry. Lecture 10, Primordial chemistry. Jorma Harju. Department of Physics. Friday, April 5, 2013, 12:15-13:45, Lecture room D117 Astrochemistry Lecture 10, Primordial chemistry Jorma Harju Department of Physics Friday, April 5, 2013, 12:15-13:45, Lecture room D117 The first atoms (1) SBBN (Standard Big Bang Nucleosynthesis): elements

More information

Lecture 5: As Long as the Sun Shines. Temperature of the Sun. Spectrum of the Sun Sunspots. Chromosphere. Sodium. Hydrogen.

Lecture 5: As Long as the Sun Shines. Temperature of the Sun. Spectrum of the Sun Sunspots. Chromosphere. Sodium. Hydrogen. Lecture 5: As Long as the Sun Shines Temperature of the Sun Spectrum of the Sun Sunspots Sodium Hydrogen Magnesium Chromosphere In astronomy, we often see gas glowing in red because of H emission lines.

More information

The Interstellar Medium

The Interstellar Medium THE INTERSTELLAR MEDIUM Total mass ~ 0.5 to 1 x 10 10 solar masses of about 5 10% of the mass of the Milky Way Galaxy interior to the sun s orbit The Interstellar http://apod.nasa.gov/apod/astropix.html

More information

The Diffuse ISM Friday, February 11, 2011

The Diffuse ISM Friday, February 11, 2011 The Diffuse ISM Friday, February 11, 2011 CONTENTS: 1. Introduction 2. Diffuse Cold and Warm Gas A. Ionization B. Cooling C. Thermal Equlibrium D. The Warm Ionized Medium 3. Hot Gas A. Ionization B. Cooling

More information

FORMATION OF PRIMORDIAL STARS

FORMATION OF PRIMORDIAL STARS Talk@INT, UW, July 5, 2006 FORMATION OF PRIMORDIAL STARS Naoki Yoshida Department of Physics Nagoya University Outline Thermal evolution of a primordial gas - Physics at high densities (cooling, chem.

More information

EVOLUTION OF STARS: A DETAILED PICTURE

EVOLUTION OF STARS: A DETAILED PICTURE EVOLUTION OF STARS: A DETAILED PICTURE PRE-MAIN SEQUENCE PHASE CH 9: 9.1 All questions 9.1, 9.2, 9.3, 9.4 at the end of this chapter are advised PRE-PROTOSTELLAR PHASE SELF -GRAVITATIONAL COLL APSE p 6

More information

The Milky Way - Chapter 23

The Milky Way - Chapter 23 The Milky Way - Chapter 23 The Milky Way Galaxy A galaxy: huge collection of stars (10 7-10 13 ) and interstellar matter (gas & dust). Held together by gravity. Much bigger than any star cluster we have

More information

Orianne ROOS CEA-Saclay Collaborators : F. Bournaud, J. Gabor, S. Juneau

Orianne ROOS CEA-Saclay Collaborators : F. Bournaud, J. Gabor, S. Juneau Orianne ROOS CEA-Saclay Collaborators : F. Bournaud, J. Gabor, S. Juneau Bachelor of Physics, Master of Astrophysics Université de Strasbourg PhD, Université Paris-Diderot Observatoire de Strasbourg Les

More information

The Physics of the Interstellar Medium

The Physics of the Interstellar Medium The Physics of the Interstellar Medium Ulrike Heiter Contact: 471 5970 ulrike@astro.uu.se www.astro.uu.se Matter between stars Average distance between stars in solar neighbourhood: 1 pc = 3 x 1013 km,

More information

The Importance of Winds and Radiative Feedback in Massive Star Formation

The Importance of Winds and Radiative Feedback in Massive Star Formation The Importance of Winds and Radiative Feedback in Massive Star Formation Anna Rosen (UCSC) Mark Krumholz (UCSC), Enrico Ramirez-Ruiz (UCSC), Laura Lopez (CfA), Jeff Oishi (AMNH), Aaron Lee (UCB), Chris

More information

Star Formation. Answering Fundamental Questions During the Spitzer Warm Mission Phase

Star Formation. Answering Fundamental Questions During the Spitzer Warm Mission Phase Star Formation Answering Fundamental Questions During the Spitzer Warm Mission Phase Lori Allen CfA John Carpenter, Caltech Lee Hartmann, University of Michigan Michael Liu, University of Hawaii Tom Megeath,

More information

The Evolution of Low Mass Stars

The Evolution of Low Mass Stars The Evolution of Low Mass Stars Key Ideas: Low Mass = M < 4 M sun Stages of Evolution of a Low Mass star: Main Sequence star star star Asymptotic Giant Branch star Planetary Nebula phase White Dwarf star

More information

Lecture 16: The life of a low-mass star. Astronomy 111 Monday October 23, 2017

Lecture 16: The life of a low-mass star. Astronomy 111 Monday October 23, 2017 Lecture 16: The life of a low-mass star Astronomy 111 Monday October 23, 2017 Reminders Online homework #8 due Monday at 3pm Exam #2: Monday, 6 November 2017 The Main Sequence ASTR111 Lecture 16 Main sequence

More information

PROPERTIES, DYNAMICS, & SPECTRAL SIGNATURES OF CLOUDS IN AGN TIM WATERS PHD CANDIDATE UNLV (ADVISOR: DANIEL PROGA)

PROPERTIES, DYNAMICS, & SPECTRAL SIGNATURES OF CLOUDS IN AGN TIM WATERS PHD CANDIDATE UNLV (ADVISOR: DANIEL PROGA) PROPERTIES, DYNAMICS, & SPECTRAL SIGNATURES OF CLOUDS IN AGN TIM WATERS PHD CANDIDATE UNLV (ADVISOR: DANIEL PROGA) Figure credit: Active Galactic Nuclei, Wiley 2012 COMMON VIEW LOCAL SIMULATIONS Property

More information

Lecture 18 - Photon Dominated Regions

Lecture 18 - Photon Dominated Regions Lecture 18 - Photon Dominated Regions 1. What is a PDR? 2. Physical and Chemical Concepts 3. Molecules in Diffuse Clouds 4. Galactic and Extragalactic PDRs References Tielens, Ch. 9 Hollenbach & Tielens,

More information

Lecture 28: Spiral Galaxies Readings: Section 25-4, 25-5, and 26-3

Lecture 28: Spiral Galaxies Readings: Section 25-4, 25-5, and 26-3 Lecture 28: Spiral Galaxies Readings: Section 25-4, 25-5, and 26-3 Key Ideas: Disk & Spheroid Components Old Stars in Spheroid Old & Young Stars in Disk Rotation of the Disk: Differential Rotation Pattern

More information

arxiv:astro-ph/ May 2000

arxiv:astro-ph/ May 2000 KUNS-1629 Preprint typeset using LATEX style emulateapj v. 20/04/00 arxiv:astro-ph/0005362 17 May 2000 ON THE THERMAL INSTABILITY IN A CONTRACTING GAS CLOUD AND FORMATION OF A BOUND CLUSTER MOTOMICHI TASHIRO

More information

Energy Sources of the Far IR Emission of M33

Energy Sources of the Far IR Emission of M33 Energy Sources of the Far IR Emission of M33 Hinz, Reike et al., ApJ 154: S259 265 (2004). Presented by James Ledoux 24 µm 70 µm 160 µm Slide 1 M33 Properties Distance 840kpc = 2.7 Mlyr (1'' ~ 4 pc) Also

More information

Guiding Questions. Stellar Evolution. Stars Evolve. Interstellar Medium and Nebulae

Guiding Questions. Stellar Evolution. Stars Evolve. Interstellar Medium and Nebulae Guiding Questions Stellar Evolution 1. Why do astronomers think that stars evolve? 2. What kind of matter exists in the spaces between the stars? 3. What steps are involved in forming a star like the Sun?

More information

Radio Observations of TeV and GeV emitting Supernova Remnants

Radio Observations of TeV and GeV emitting Supernova Remnants Radio Observations of TeV and GeV emitting Supernova Remnants Denis Leahy University of Calgary, Calgary, Alberta, Canada (collaborator Wenwu Tian, National Astronomical Observatories of China) outline

More information

The Interstellar Medium

The Interstellar Medium http://www.strw.leidenuniv.nl/~pvdwerf/teaching/ The Interstellar Medium Lecturer: Dr. Paul van der Werf Fall 2014 Oortgebouw 565, ext 5883 pvdwerf@strw.leidenuniv.nl Assistant: Kirstin Doney Huygenslaboratorium

More information

Astronomy 730. Evolution

Astronomy 730. Evolution Astronomy 730 Evolution Outline } Evolution } Formation of structure } Processes on the galaxy scale } Gravitational collapse, merging, and infall } SF, feedback and chemical enrichment } Environment }

More information

Cooling, dynamics and fragmentation of massive gas clouds: clues to the masses and radii of galaxies and clusters

Cooling, dynamics and fragmentation of massive gas clouds: clues to the masses and radii of galaxies and clusters of massive gas and radii of M. Rees, J. Ostriker 1977 March 5, 2009 Talk contents: The global picture The relevant theory Implications of the theory Conclusions The global picture Galaxies and have characteristic

More information

The life of a low-mass star. Astronomy 111

The life of a low-mass star. Astronomy 111 Lecture 16: The life of a low-mass star Astronomy 111 Main sequence membership For a star to be located on the Main Sequence in the H-R diagram: must fuse Hydrogen into Helium in its core. must be in a

More information

Ionized Hydrogen (HII)

Ionized Hydrogen (HII) Ionized Hydrogen (HII) While ionized hydrogen (protons, electrons) forms the majority of the ionized phase of the ISM, it also contains ionized forms of other elements: e.g., OII, OIII, CIV, MgII. Highest

More information

arxiv:astro-ph/ v1 5 Feb 2006

arxiv:astro-ph/ v1 5 Feb 2006 Mon. Not. R. Astron. Soc. 000, 1 6 (0000) Printed 5 February 2008 (MN LATEX style file v2.2) Spurs and feathering in spiral galaxies C. L. Dobbs 1 and I. A. Bonnell 1 1 School of Physics and Astronomy,

More information

In a dense region all roads lead to a black Hole (Rees 1984 ARAA) Deriving the Mass of SuperMassive Black Holes

In a dense region all roads lead to a black Hole (Rees 1984 ARAA) Deriving the Mass of SuperMassive Black Holes In a dense region all roads lead to a black Hole (Rees 1984 ARAA) Deriving the Mass of SuperMassive Black Holes Stellar velocity fields MW Distant galaxies Gas motions gas disks around nearby black holes

More information

What tool do astronomers use to understand the evolution of stars?

What tool do astronomers use to understand the evolution of stars? What tool do astronomers use to understand the evolution of stars? Groups indicate types of stars or stages in their evolution. What is plotted? How does an individual star move around the diagram? What

More information

Cosmic ray feedback in hydrodynamical simulations. simulations of galaxy and structure formation

Cosmic ray feedback in hydrodynamical simulations. simulations of galaxy and structure formation Cosmic ray feedback in hydrodynamical simulations of galaxy and structure formation Canadian Institute for Theoretical Astrophysics, Toronto April, 11 26 / Colloquium University of Victoria Outline 1 Cosmic

More information

high density low density Rayleigh-Taylor Test: High density medium starts on top of low density medium and they mix (oil+vinegar) Springel (2010)

high density low density Rayleigh-Taylor Test: High density medium starts on top of low density medium and they mix (oil+vinegar) Springel (2010) GAS MIXES high density Springel (2010) low density Rayleigh-Taylor Test: High density medium starts on top of low density medium and they mix (oil+vinegar) HOT HALO highest resolved density nth= 50x10

More information

Components of Galaxies: Dark Matter

Components of Galaxies: Dark Matter Components of Galaxies: Dark Matter Dark Matter: Any Form of matter whose existence is inferred solely through its gravitational effects. -B&T, pg 590 Nature of Major Component of Universe Galaxy Formation

More information