# Remember from Stefan-Boltzmann that 4 2 4

Size: px
Start display at page:

Transcription

1 Lecture 17 Review Most stars lie on the Main sequence of an H&R diagram including the Sun, Sirius, Procyon, Spica, and Proxima Centauri. This figure is a plot of logl versus logt. The main sequence is explained by the stable burning of hydrogen, the most efficient, lowest temperature energy producer. The radiation produced keeps the star in hydrostatic equilibrium with the Helmholtz gravitational contraction forces.

2 Remember from Stefan-Boltzmann that L = σat = 4 πσr T, thus log L = log( 4 πσr ) + 4 log T This says that lines of constant radius are straight lines on this H&R diagram. These are shown. Note that over about b of this plot, radius changes very slowly for stars on the main sequence, i.e. increased mass contributes to increased density with little change in radius. While the Main Sequence represents stable hydrogen burning for a variety of different mass stars, there are stars off the main sequence: White Dwarfs: Giants: Super Giants: T 2 T u, hotter than the Sun R R Sun /100 L L Sun /100 T T Sun, same temperature as the Sun R 10R Sun L 100 L Sun T T Sun /2, cooler than the Sun R 1000 R Sun L 10,000 L Sun The Russell-Vogt Theorem (1926) states that the equilibrium structure of a main sequence star is uniquely determined by 1) mass 1) chemical composition This implies that all 1 M Sun stars with the same chemical composition occupy the same spot on the H&R diagram with the same temperature, radius, and luminosity. This is a way to distinguish the Sun from white dwarfs and certain giants. More important, this gives us a way to measure distances beyond 100 pc, the limit of parallax measurements. 1) Measure temperature and spectra to determine where on the H&R plot a star belongs. 2) This determines the absolute magnitude and luminosity. 3) Use 1/r 2 dependence and apparent magnitude to determine distance from the Sun. This is called the method of spectrographic parallax and is good for measurements out to the edge of the Milky Way. The method is unreliable where the interstellar medium dims the star in an unmeasurable way.

3 Example: 1) Spica has an apparent brightness of m V = 1 and a spectrographic temperature of 20,000 K. 2) From the H&R plot you can determine that L = 2300 L u and M = -4. 3) Correct for 1/r 2 using the following figure and you find that Spica is 84 pc from the Sun. Stars form from large clouds of gas. The process usually involves the formation of clusters of stars, many bound gravitationally together. Binary stars revolve around each other. Time and position measurements tell us the masses of the binary pair. From this sample of stars we find that there is a linear relationship between luminosity and mass to some power. This is the mass-luminosity relation and leads to the following figure showing masses along the main sequence. Masses of the giants and dwarfs can be determined in the same way.

4 How stars evolve and die depends totally on mass. You might guess that a more massive star would live longer because it has more fuel to burn, but no. energy available Hydrogen burning time = rate of burning mass lu minosity mass burning time For stars more massive than the Sun the mass-luminosity relationship says that 3. 8 L ~ M M 2. 8 t = = MSun time ~ 3. 8 M M t M 2. 8 For M = 10 M u t = tsun billionyears million years 1 1 = This implies that big stars have a much shorter life than the Sun. Also, if you see a big star, it is relatively young. Thus, in the night sky you see a mixture of old dim stars and bright young stars. Sun 2. 8

5 Relative ages of stars can be inferred from an H&R plot of stars in an open cluster. These stars are presumed to be formed from a common gas cloud and all to be roughly the same age. This plot of stars in the Pleiades is an example. Where do stars come from? Are they still being formed? The evidence for current star formation is the presence of much gas and dust in space. This is called the interstellar medium and where the densities are large the gas and dust formed clouds called nebula. Emission nebula to 10 4 solar masses of dust and gas, very low density, found near hot stars. Ultraviolet radiation emitted from the stars is absorbed by the gas, ionizing the hydrogen which emits photons characteristic of hydrogen. These are called HII regions. Dark nebula - Dust grains block light. The nebula appears dark in front of a bright region. Reflection nebula - Small dust grains at low concentration scatter light. Like the scattering of sunlight in Earth s sky, the process is most efficient for blue light; therefore, the nebula have a blue cast.

6 Interstellar reddening - As light from stars passes through the interstellar medium blue light is slowly scattered out of the path, leaving the resultant light with a reddish color. Thus, remote clusters appear dimmer and redder than expected from their distance and age. Interstellar extinction - When enough gas and dust is in the way, far away objects cannot be seen because light is scattered out of the line of sight. Thus, we cannot see the galactic center with visible light. That these clouds are the source of stars follows from several observations: 1) The solar system is only 4.6 billion years old while the Milky Way (with 100 billion stars) is believed to be around 12 billion years old and the Big Bang is on the order of 14 billion years old. 2) Open star clusters like the Pleiades had some hot blue stars but no giants. This implies that the cluster is only about 50 million years old. Very young in Big Bang terms. 3) Short-lived massive stars, 20 to 40 solar masses, live only a few million years but we see them. The process for star formation is thought to involve a large cloud of gas, say kg or 10 5 solar masses, cold enough so that gravity can overcome random thermal motion. The cloud contracts gravitationally. Fragmentation and sub-fragmentation produce clusters of stars, some individual stars, others binaries, some other larger groupings. These may disperse with time due to random motion. Clusters 1) Population II clusters - globular clusters - are old stars in groups of 10 4 to l0 5 stars. They form a halo about the galaxy formed when the galaxy was a huge sphere of gas, before gravity and angular momentum had collapsed the gas into a disk. Their paths are typically very elliptical, passing through the center of the galaxy and then out again. They are very old, with many stars off the main sequence. These stars contain few heavy elements. 2) Population I clusters - open clusters - are relatively new stars in groups of approximately 10 3 stars. The are 100,00 to 100 million years old with mainly main sequence stars. The Pleiades is an example. Their spectra are metal rich.

7

8 Stellar Evolution 1) As gas collapses towards a single star, it heats up. When the cloud has the dimensions of the current solar system is may have a temperature of 2000 K, highly luminous, but radiating mostly in the infrared. This is called a protostar. 2) As the contracts, it surface area diminishes so it becomes less luminous. 3) As the temperature increases the cloud becomes more opaque, thus, trapping the radiation inside the cloud and increasing the temperature within. 4) At some point the core temperature reaches the ignition point and the protostar becomes a star. The star is still hidden from view by much remaining gas. 5) Magnetic fields sweep the remaining dust away, sometimes huge amounts, to reveal the new star.

9 The question is, what if the mass is greater than about 50 solar masses? If the forming star is too large, the gas cloud condenses quite fast, is unstable, gets very hot, and either explodes or fragments into smaller clouds which form individual stars. A second question is, can the mass of the gas be too small. The answer is yes. If the mass of the cloud is too small it heats up from gravitational contraction, but never gets hot enough to ignite. The gas ball then reaches some equilibrium and cools off. Jupiter is a case in point. It still radiates more energy than it absorbs from the Sun, but the source of the radiation is not thermonuclear processes. This type of gas giant is called a brown dwarf. The process is shown below.

### The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation

Goals: The Birth Of Stars How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Interstellar Medium Gas and dust between stars is the interstellar

### Chapter 11 Review. 1) Light from distant stars that must pass through dust arrives bluer than when it left its star. 1)

Chapter 11 Review TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) Light from distant stars that must pass through dust arrives bluer than when it left its star. 1)

### Clicker Question: Clicker Question: What is the expected lifetime for a G2 star (one just like our Sun)?

How Long do Stars Live (as Main Sequence Stars)? A star on Main Sequence has fusion of H to He in its core. How fast depends on mass of H available and rate of fusion. Mass of H in core depends on mass

### Review Questions for the new topics that will be on the Final Exam

Review Questions for the new topics that will be on the Final Exam Be sure to review the lecture-tutorials and the material we covered on the first three exams. How does speed differ from velocity? Give

### The physics of stars. A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and it s own pressure.

Lecture 4 Stars The physics of stars A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and it s own pressure. X-ray ultraviolet infrared radio To understand

### The Ecology of Stars

The Ecology of Stars We have been considering stars as individuals; what they are doing and what will happen to them Now we want to look at their surroundings And their births 1 Interstellar Matter Space

### Guiding Questions. Stellar Evolution. Stars Evolve. Interstellar Medium and Nebulae

Guiding Questions Stellar Evolution 1. Why do astronomers think that stars evolve? 2. What kind of matter exists in the spaces between the stars? 3. What steps are involved in forming a star like the Sun?

### Stars, Galaxies & the Universe Lecture Outline

Stars, Galaxies & the Universe Lecture Outline A galaxy is a collection of 100 billion stars! Our Milky Way Galaxy (1)Components - HII regions, Dust Nebulae, Atomic Gas (2) Shape & Size (3) Rotation of

### Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti INSTRUCTIONS: Please, use the `bubble sheet and a pencil # 2 to answer the exam questions, by marking

### 18. Stellar Birth. Initiation of Star Formation. The Orion Nebula: A Close-Up View. Interstellar Gas & Dust in Our Galaxy

18. Stellar Birth Star observations & theories aid understanding Interstellar gas & dust in our galaxy Protostars form in cold, dark nebulae Protostars evolve into main-sequence stars Protostars both gain

### Exam #2 Review Sheet. Part #1 Clicker Questions

Exam #2 Review Sheet Part #1 Clicker Questions 1) The energy of a photon emitted by thermonuclear processes in the core of the Sun takes thousands or even millions of years to emerge from the surface because

### GALAXIES AND STARS. 2. Which star has a higher luminosity and a lower temperature than the Sun? A Rigel B Barnard s Star C Alpha Centauri D Aldebaran

GALAXIES AND STARS 1. Compared with our Sun, the star Betelgeuse is A smaller, hotter, and less luminous B smaller, cooler, and more luminous C larger, hotter, and less luminous D larger, cooler, and more

### Stellar Birth. Stellar Formation. A. Interstellar Clouds. 1b. What is the stuff. Astrophysics: Stellar Evolution. A. Interstellar Clouds (Nebulae)

Astrophysics: Stellar Evolution 1 Stellar Birth Stellar Formation A. Interstellar Clouds (Nebulae) B. Protostellar Clouds 2 C. Protostars Dr. Bill Pezzaglia Updated: 10/02/2006 A. Interstellar Clouds 1.

### Life Cycle of a Star - Activities

Name: Class Period: Life Cycle of a Star - Activities A STAR IS BORN STAGES COMMON TO ALL STARS All stars start as a nebula. A nebula is a large cloud of gas and dust. Gravity can pull some of the gas

### 5) What spectral type of star that is still around formed longest ago? 5) A) F B) A C) M D) K E) O

HW2 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The polarization of light passing though the dust grains shows that: 1) A) the dust grains

### Stars III The Hertzsprung-Russell Diagram

Stars III The Hertzsprung-Russell Diagram Attendance Quiz Are you here today? (a) yes Here! (b) no (c) here is such a 90 s concept Today s Topics (first half) Spectral sequence and spectral types Spectral

### Beyond the Solar System 2006 Oct 17 Page 1 of 5

I. Stars have color, brightness, mass, temperature and size. II. Distances to stars are measured using stellar parallax a. The further away, the less offset b. Parallax angles are extremely small c. Measured

### Birth & Death of Stars

Birth & Death of Stars Objectives How are stars formed How do they die How do we measure this The Interstellar Medium (ISM) Vast clouds of gas & dust lie between stars Diffuse hydrogen clouds: dozens of

### Chapter 15 Lecture. The Cosmic Perspective Seventh Edition. Surveying the Stars Pearson Education, Inc.

Chapter 15 Lecture The Cosmic Perspective Seventh Edition Surveying the Stars 15.1 Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures?

### Chapter 33 The History of a Star. Introduction. Radio telescopes allow us to look into the center of the galaxy. The milky way

Chapter 33 The History of a Star Introduction Did you read chapter 33 before coming to class? A. Yes B. No You can see about 10,000 stars with the naked eye. The milky way Radio telescopes allow us to

### Chapter 16 Lecture. The Cosmic Perspective Seventh Edition. Star Birth Pearson Education, Inc.

Chapter 16 Lecture The Cosmic Perspective Seventh Edition Star Birth 2014 Pearson Education, Inc. Star Birth The dust and gas between the star in our galaxy is referred to as the Interstellar medium (ISM).

### The Electromagnetic Spectrum

The Electromagnetic Spectrum Three Kinds of Spectra Sun: The Nearest Star Radius 696,000 km 109 Re Mass 2 x 10^30 kg 300,000 Me Density 1400 kg/m^3 Luminosity 3.8x10^26 Watts (board calc.) Comp. 70% H,

### The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14

The Night Sky The Universe Chapter 14 Homework: All the multiple choice questions in Applying the Concepts and Group A questions in Parallel Exercises. Celestial observation dates to ancient civilizations

### CHAPTER 29: STARS BELL RINGER:

CHAPTER 29: STARS BELL RINGER: Where does the energy of the Sun come from? Compare the size of the Sun to the size of Earth. 1 CHAPTER 29.1: THE SUN What are the properties of the Sun? What are the layers

### Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

THE MILKY WAY GALAXY Type: Spiral galaxy composed of a highly flattened disk and a central elliptical bulge. The disk is about 100,000 light years (30kpc) in diameter. The term spiral arises from the external

### Beyond Our Solar System Chapter 24

Beyond Our Solar System Chapter 24 PROPERTIES OF STARS Distance Measuring a star's distance can be very difficult Stellar parallax Used for measuring distance to a star Apparent shift in a star's position

### Astronomy 1 Fall 2016

Astronomy 1 Fall 2016 Lecture11; November 1, 2016 Previously on Astro-1 Introduction to stars Measuring distances Inverse square law: luminosity vs brightness Colors and spectral types, the H-R diagram

### Chapter 15 Surveying the Stars Properties of Stars

Chapter 15 Surveying the Stars 15.1 Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures? How do we measure stellar masses? Luminosity:

### Galaxies and Stars. 3. Base your answer to the following question on The reaction below represents an energy-producing process.

Galaxies and Stars 1. To an observer on Earth, the Sun appears brighter than the star Rigel because the Sun is A) hotter than Rigel B) more luminous than Rigel C) closer than Rigel D) larger than Rigel

### Chapter 15: Surveying the Stars

Chapter 15 Lecture Chapter 15: Surveying the Stars Surveying the Stars 15.1 Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures? How

### 18. Which graph best represents the relationship between the number of sunspots and the amount of magnetic activity in the Sun?

1. Which star has a surface temperature most similar to the surface temperature of Alpha Centauri? A) Polaris B) Betelgeuse C) Procyon B D) Sirius 2. Giant stars have greater luminosity than our sun mainly

### Lecture 21 Formation of Stars November 15, 2017

Lecture 21 Formation of Stars November 15, 2017 1 2 Birth of Stars Stars originally condense out of a COLD, interstellar cloud composed of H and He + trace elements. cloud breaks into clumps (gravity)

### Star-Forming Clouds. Stars form in dark clouds of dusty gas in interstellar space. The gas between the stars is called the interstellar medium.

Star Birth Chapter 16 Lecture 16.1 Stellar Nurseries The Cosmic Perspective Our goals for learning: Where do stars form? Why do stars form? Seventh Edition Star Birth Where do stars form? Star-Forming

### The Milky Way Galaxy. Sun you are here. This is what our Galaxy would look like if we were looking at it from another galaxy.

The Milky Way Galaxy Sun you are here. This is what our Galaxy would look like if we were looking at it from another galaxy. Examples of three Milky-Way like Galaxies 1. Roughly 100,000 light years across

### Astro 21 first lecture. stars are born but also helps us study how. Density increases in the center of the star. The core does change from hydrogen to

Astro 21 first lecture The H-R H R Diagram helps us study how stars are born but also helps us study how they die. Stars spend most of their lives as main sequence stars. The core does change from hydrogen

### The Cosmic Perspective. Surveying the Properties of Stars. Surveying the Stars. How do we measure stellar luminosities?

Surveying the Stars Chapter 15 Lecture The Cosmic Perspective 15.1 Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures? How do we

### Stellar evolution Part I of III Star formation

Stellar evolution Part I of III Star formation The interstellar medium (ISM) The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful

### Energy. mosquito lands on your arm = 1 erg. Firecracker = 5 x 10 9 ergs. 1 stick of dynamite = 2 x ergs. 1 ton of TNT = 4 x ergs

Energy mosquito lands on your arm = 1 erg Firecracker = 5 x 10 9 ergs 1 stick of dynamite = 2 x 10 13 ergs 1 ton of TNT = 4 x 10 16 ergs 1 atomic bomb = 1 x 10 21 ergs Magnitude 8 earthquake = 1 x 10 26

### Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 25 Beyond Our Solar System 25.1 Properties of Stars Characteristics of Stars A constellation is an apparent group of stars originally named for mythical

### Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 9

Phys 0 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 9 MULTIPLE CHOICE 1. We know that giant stars are larger in diameter than the sun because * a. they are more luminous but have about the

### The Milky Way Galaxy. sun. Examples of three Milky-Way like Galaxies

The Milky Way Galaxy sun This is what our Galaxy would look like if we were looking at it from another galaxy. Examples of three Milky-Way like Galaxies 1. Roughly 100,000 light years across 2. Roughly

### Chapter 28 Stars and Their Characteristics

Chapter 28 Stars and Their Characteristics Origin of the Universe Big Bang Theory about 10-20 bya all matter in the universe existed in a hot dense state about the size of an atom (tiny). That matter sort

### the nature of the universe, galaxies, and stars can be determined by observations over time by using telescopes

the nature of the universe, galaxies, and stars can be determined by observations over time by using telescopes The spectral lines of stars tell us their approximate composition Remember last year in Physics?

### Chapter 12: The Lives of Stars. How do we know it s there? Three Kinds of Nebulae 11/7/11. 1) Emission Nebulae 2) Reflection Nebulae 3) Dark Nebulae

11/7/11 Chapter 12: The Lives of Stars Space is Not Empty The Constellation Orion The Orion Nebula This material between the stars is called the Interstellar Medium It is very diffuse and thin. In fact

### Chapter 16: Star Birth

Chapter 16 Lecture Chapter 16: Star Birth Star Birth 16.1 Stellar Nurseries Our goals for learning: Where do stars form? Why do stars form? Where do stars form? Star-Forming Clouds Stars form in dark clouds

### ANSWER KEY. Stars, Galaxies, and the Universe. Telescopes Guided Reading and Study. Characteristics of Stars Guided Reading and Study

Stars, Galaxies, a the Universe Stars, Galaxies, and the Universe Telescopes Use Target Reading Skills Check student definitions for accuracy. 1. Electromagneticradiationisenergythatcan travel through

### Properties of Stars. Characteristics of Stars

Properties of Stars Characteristics of Stars A constellation is an apparent group of stars originally named for mythical characters. The sky contains 88 constellations. Star Color and Temperature Color

### Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc.

Reading Quiz Clickers The Cosmic Perspective Seventh Edition Our Galaxy 19.1 The Milky Way Revealed What does our galaxy look like? How do stars orbit in our galaxy? Where are globular clusters located

### Based on the reduction of the intensity of the light from a star with distance. It drops off with the inverse square of the distance.

6/28 Based on the reduction of the intensity of the light from a star with distance. It drops off with the inverse square of the distance. Intensity is power per unit area of electromagnetic radiation.

### Chapter 16 Lecture. The Cosmic Perspective Seventh Edition. Star Birth Pearson Education, Inc.

Chapter 16 Lecture The Cosmic Perspective Seventh Edition Star Birth Star Birth 16.1 Stellar Nurseries Our goals for learning: Where do stars form? Why do stars form? Where do stars form? Star-Forming

### Our Galaxy. Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust. Held together by gravity! The Milky Way with the Naked Eye

Our Galaxy Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust Held together by gravity! The Milky Way with the Naked Eye We get a special view of our own galaxy because we are part of it!

### Chapter 15 Surveying the Stars

Chapter 15 Surveying the Stars 15.1 Properties of Stars Our goals for learning How do we measure stellar luminosities? How do we measure stellar temperatures? How do we measure stellar masses? How do we

### Mass-Luminosity and Stellar Lifetimes WS

Name Mass-Luminosity and Stellar Lifetimes WS The graph shows the Mass-Luminosity Relationship for main sequence stars. Use it to answer questions 1-3. 1) A star with a mass of 0.5 solar masses would be

### Stars and their properties: (Chapters 11 and 12)

Stars and their properties: (Chapters 11 and 12) To classify stars we determine the following properties for stars: 1. Distance : Needed to determine how much energy stars produce and radiate away by using

### STARS AND GALAXIES STARS

STARS AND GALAXIES STARS enormous spheres of plasma formed from strong gravitational forces PLASMA the most energetic state of matter; responsible for the characteristic glow emitted by these heavenly

### The Interstellar Medium. Papillon Nebula. Neutral Hydrogen Clouds. Interstellar Gas. The remaining 1% exists as interstellar grains or

The Interstellar Medium About 99% of the material between the stars is in the form of a gas The remaining 1% exists as interstellar grains or interstellar dust If all the interstellar gas were spread evenly,

### TA feedback forms are online!

1 Announcements TA feedback forms are online! find the link at the class website. Please take 5 minutes to tell your TAs your opinion. In case you did not notice, the Final is set for 03/21 from 12:00-3:00

### Earth Science, 13e Tarbuck & Lutgens

Earth Science, 13e Tarbuck & Lutgens Beyond Our Solar System Earth Science, 13e Chapter 24 Stanley C. Hatfield Southwestern Illinois College Properties of stars Distance Distances to the stars are very

### Physics Homework Set 2 Sp 2015

1) A large gas cloud in the interstellar medium that contains several type O and B stars would appear to us as 1) A) a reflection nebula. B) a dark patch against a bright background. C) a dark nebula.

### Astronomy 100 Spring 2006 Lecture Questions Twelve Weeks Review

Astronomy 100 Spring 2006 Lecture Questions Twelve Weeks Review 16-1 Fusion in the Sun The solar corona has temperatures roughly the same as temperatures in the Sun's core, where nuclear fusion takes place.

### ASTRONOMY 1 EXAM 3 a Name

ASTRONOMY 1 EXAM 3 a Name Identify Terms - Matching (20 @ 1 point each = 20 pts.) Multiple Choice (25 @ 2 points each = 50 pts.) Essays (choose 3 of 4 @ 10 points each = 30 pt 1.Luminosity D 8.White dwarf

### Chapter 15 Star Birth. Star-Forming Clouds. Stars form in dark clouds of dusty gas in interstellar space

Chapter 15 Star Birth Star-Forming Clouds Stars form in dark clouds of dusty gas in interstellar space The gas between the stars is called the interstellar medium Visible light (Hubble Space Telescope)

### The Milky Way Galaxy and Interstellar Medium

The Milky Way Galaxy and Interstellar Medium Shape of the Milky Way Uniform distribution of stars in a band across the sky lead Thomas Wright, Immanuel Kant, and William Herschel in the 18th century to

### NSCI 314 LIFE IN THE COSMOS

NSCI 314 LIFE IN THE COSMOS 2 BASIC ASTRONOMY, AND STARS AND THEIR EVOLUTION Dr. Karen Kolehmainen Department of Physics CSUSB COURSE WEBPAGE: http://physics.csusb.edu/~karen MOTIONS IN THE SOLAR SYSTEM

### THE UNIVERSE CHAPTER 20

THE UNIVERSE CHAPTER 20 THE UNIVERSE UNIVERSE everything physical in and Includes all space, matter, and energy that has existed, now exists, and will exist in the future. How did our universe form, how

### Stars and Galaxies 1

Stars and Galaxies 1 Characteristics of Stars 2 Star - body of gases that gives off great amounts of radiant energy as light and heat 3 Most stars look white but are actually different colors Antares -

### Our Galaxy. We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky.

Our Galaxy Our Galaxy We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky. Early attempts to locate our solar system produced erroneous results.

### Review: HR Diagram. Label A, B, C respectively

Stellar Evolution Review: HR Diagram Label A, B, C respectively A C B a) A: White dwarfs, B: Giants, C: Main sequence b) A: Main sequence, B: Giants, C: White dwarfs c) A: Main sequence, B: White Dwarfs,

### Astronomical Study: A Multi-Perspective Approach

Astronomical Study: A Multi-Perspective Approach Overview of Stars Motion Distances Physical Properties Spectral Properties Magnitudes Luminosity class Spectral trends Binary stars and getting masses Stellar

### Recall what you know about the Big Bang.

What is this? Recall what you know about the Big Bang. Most of the normal matter in the universe is made of what elements? Where do we find most of this normal matter? Interstellar medium (ISM) The universe

### What tool do astronomers use to understand the evolution of stars?

What tool do astronomers use to understand the evolution of stars? Groups indicate types of stars or stages in their evolution. What is plotted? How does an individual star move around the diagram? What

### Chapter 14 The Milky Way Galaxy

Chapter 14 The Milky Way Galaxy Spiral Galaxy M81 - similar to our Milky Way Galaxy Our Parent Galaxy A galaxy is a giant collection of stellar and interstellar matter held together by gravity Billions

### Where do Stars Form?

Where do Stars Form? Coldest spots in the galaxy: T ~ 10 K Composition: Mainly molecular hydrogen 1% dust EGGs = Evaporating Gaseous Globules ftp://ftp.hq.nasa.gov/pub/pao/pressrel/1995/95-190.txt Slide

### AST 101 Introduction to Astronomy: Stars & Galaxies

AST 101 Introduction to Astronomy: Stars & Galaxies The H-R Diagram review So far: Stars on Main Sequence (MS) Next: - Pre MS (Star Birth) - Post MS: Giants, Super Giants, White dwarfs Star Birth We start

### HR Diagram, Star Clusters, and Stellar Evolution

Ay 1 Lecture 9 M7 ESO HR Diagram, Star Clusters, and Stellar Evolution 9.1 The HR Diagram Stellar Spectral Types Temperature L T Y The Hertzsprung-Russel (HR) Diagram It is a plot of stellar luminosity

### 10/26/ Star Birth. Chapter 13: Star Stuff. How do stars form? Star-Forming Clouds. Mass of a Star-Forming Cloud. Gravity Versus Pressure

10/26/16 Lecture Outline 13.1 Star Birth Chapter 13: Star Stuff How do stars form? Our goals for learning: How do stars form? How massive are newborn stars? Star-Forming Clouds Stars form in dark clouds

### Stellar Astronomy Sample Questions for Exam 4

Stellar Astronomy Sample Questions for Exam 4 Chapter 15 1. Emission nebulas emit light because a) they absorb high energy radiation (mostly UV) from nearby bright hot stars and re-emit it in visible wavelengths.

### A star is at a distance of 1.3 parsecs, what is its parallax?

Stars Spectral lines from stars Binaries and the masses of stars Classifying stars: HR diagram Luminosity, radius, and temperature Vogt-Russell theorem Main sequence Evolution on the HR diagram A star

### Astr 2310 Thurs. March 23, 2017 Today s Topics

Astr 2310 Thurs. March 23, 2017 Today s Topics Chapter 16: The Interstellar Medium and Star Formation Interstellar Dust and Dark Nebulae Interstellar Dust Dark Nebulae Interstellar Reddening Interstellar

### AST Section 2: Test 2

AST1002 - Section 2: Test 2 Date: 11/05/2009 Name: Equations: E = m c 2 Question 1: The Sun is a stable star because 1. gravity balances forces from pressure. (!) Miniquiz 7, Q3 2. the rate of fusion equals

### Other stellar types. Open and globular clusters: chemical compositions

Other stellar types Some clusters have hotter stars than we find in the solar neighbourhood -- O, B, A stars -- as well as F stars, and cooler stars (G, K, M) Hence we can establish intrinsic values (M

### A100 Exploring the Universe: The Milky Way as a Galaxy. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe: The Milky Way as a Galaxy Martin D. Weinberg UMass Astronomy astron100-mdw@courses.umass.edu November 12, 2014 Read: Chap 19 11/12/14 slide 1 Exam #2 Returned and posted tomorrow

### Study Guide Chapter 2

Section: Stars Pages 32-38 Study Guide Chapter 2 Circle the letter of the best answer for each question. 1. What do scientists study to learn about stars? a. gravity c. space b. starlight d. colors COLOR

### Chapters 12 and 13 Review: The Life Cycle and Death of Stars. How are stars born, and how do they die? 4/1/2009 Habbal Astro Lecture 27 1

Chapters 12 and 13 Review: The Life Cycle and Death of Stars How are stars born, and how do they die? 4/1/2009 Habbal Astro 110-01 Lecture 27 1 Stars are born in molecular clouds Clouds are very cold:

### The Milky Way Galaxy

1/5/011 The Milky Way Galaxy Distribution of Globular Clusters around a Point in Sagittarius About 00 globular clusters are distributed in random directions around the center of our galaxy. 1 1/5/011 Structure

### Chapter 19: Our Galaxy

Chapter 19 Lecture Chapter 19: Our Galaxy Our Galaxy 19.1 The Milky Way Revealed Our goals for learning: What does our galaxy look like? How do stars orbit in our galaxy? What does our galaxy look like?

### 25.2 Stellar Evolution. By studying stars of different ages, astronomers have been able to piece together the evolution of a star.

25.2 Stellar Evolution By studying stars of different ages, astronomers have been able to piece together the evolution of a star. Star Birth The birthplaces of stars are dark, cool interstellar clouds,

### LECTURE 1: Introduction to Galaxies. The Milky Way on a clear night

LECTURE 1: Introduction to Galaxies The Milky Way on a clear night VISIBLE COMPONENTS OF THE MILKY WAY Our Sun is located 28,000 light years (8.58 kiloparsecs from the center of our Galaxy) in the Orion

### Stars & Galaxies. Chapter 27, Section 1. Composition & Temperature. Chapter 27 Modern Earth Science Characteristics of Stars

Stars & Galaxies Chapter 27 Modern Earth Science Chapter 27, Section 1 27.1 Characteristics of Stars Composition & Temperature Scientists use the following tools to study stars Telescope Observation Spectral

### Astro Fall 2012 Lecture 8. T. Howard

Astro 101 003 Fall 2012 Lecture 8 T. Howard Measuring the Stars How big are stars? How far away? How luminous? How hot? How old & how much longer to live? Chemical composition? How are they moving? Are

### Directed Reading A. Section: The Life Cycle of Stars TYPES OF STARS THE LIFE CYCLE OF SUNLIKE STARS A TOOL FOR STUDYING STARS.

Skills Worksheet Directed Reading A Section: The Life Cycle of Stars TYPES OF STARS (pp. 444 449) 1. Besides by mass, size, brightness, color, temperature, and composition, how are stars classified? a.

### Astronomy 104: Second Exam

Astronomy 104: Second Exam Stephen Lepp October 29, 2014 Each question is worth 2 points. Write your name on this exam and on the scantron. Short Answer A The Sun is powered by converting hydrogen to what?

### Guiding Questions. The Birth of Stars

Guiding Questions The Birth of Stars 1 1. Why do astronomers think that stars evolve (bad use of term this is about the birth, life and death of stars and that is NOT evolution)? 2. What kind of matter

### What is a star? A body of gases that gives off tremendous amounts of energy in the form of light & heat. What star is closest to the earth?

Stars What is a star? A body of gases that gives off tremendous amounts of energy in the form of light & heat. What star is closest to the earth? Answer: The SUN It s about 150,000,000 km from earth =

### OPEN CLUSTER PRELAB The first place to look for answers is in the lab script!

NAME: 1. Define using complete sentences: Globular Cluster: OPEN CLUSTER PRELAB The first place to look for answers is in the lab script! Open Cluster: Main Sequence: Turnoff point: Answer the following

### Chapter 12 Stellar Evolution

Chapter 12 Stellar Evolution Guidepost This chapter is the heart of any discussion of astronomy. Previous chapters showed how astronomers make observations with telescopes and how they analyze their observations

### Our goals for learning: 2014 Pearson Education, Inc. We see our galaxy edge-on. Primary features: disk, bulge, halo, globular clusters All-Sky View

Our Galaxy Chapter 19 Lecture The Cosmic Perspective 19.1 The Milky Way Revealed What does our galaxy look like? What does our galaxy look like? How do stars orbit in our galaxy? Seventh Edition Our Galaxy

### Astronomy 102: Stars and Galaxies Examination 3 Review Problems

Astronomy 102: Stars and Galaxies Examination 3 Review Problems Multiple Choice Questions: The first eight questions are multiple choice. Except where explicitly noted, only one answer is correct for each

### Chapter 9: Measuring the Stars

Chapter 9: Measuring the Stars About 10 11 (100,000,000,000) stars in a galaxy; also about 10 11 galaxies in the universe Stars have various major characteristics, the majority of which fall into several

### Topics for Today s Class

Foundations of Astronomy 13e Seeds Chapter 11 Formation of Stars and Structure of Stars Topics for Today s Class 1. Making Stars from the Interstellar Medium 2. Evidence of Star Formation: The Orion Nebula