Cosmic ray feedback in hydrodynamical simulations. simulations of galaxy and structure formation

Size: px
Start display at page:

Download "Cosmic ray feedback in hydrodynamical simulations. simulations of galaxy and structure formation"

Transcription

1 Cosmic ray feedback in hydrodynamical simulations of galaxy and structure formation Canadian Institute for Theoretical Astrophysics, Toronto April, / Colloquium University of Victoria

2 Outline 1 Cosmic rays in galaxies Violent structure formation Gravitational heating by shocks 2 Cosmic rays in GADGET Cosmic rays in isolated galaxies Dwarf galaxy formation 3

3 Cosmic rays in galaxies Violent structure formation Gravitational heating by shocks M51: cosmic ray electron population Fletcher, Beck, Berkhuijsen und Horellou, in prep.

4 Cosmic rays in galaxies Violent structure formation Gravitational heating by shocks M82: optical disk, H-α wind, & CR electron halo Thierbach, Wielebinski, Neininger (24, unpublished)

5 Cosmic rays in galaxies Violent structure formation Gravitational heating by shocks Observations of cluster shock waves 1E ( Bullet cluster ) (NASA/SAO/CXC/M.Markevitch et al.) Abell 3667 (Radio: Austr.TC Array. X-ray: ROSAT/PSPC.)

6 Cosmic rays in galaxies Violent structure formation Gravitational heating by shocks Abell 2256: giant radio relic & small halo X-ray (red) & radio (blue, contours) fractional polarisation in color Clarke & Enßlin (26)

7 Gravitational heating by shocks Cosmic rays in galaxies Violent structure formation Gravitational heating by shocks The "cosmic web" today. Left: the projected gas density in a cosmological simulation. Right: gravitationally heated intracluster medium through cosmological shock waves.

8 Cosmic rays in GADGET Cosmic rays in isolated galaxies Dwarf galaxy formation Cosmic rays in GADGET collaboration The talk is based on the following papers: Detecting shock waves in cosmological smoothed particle hydrodynamics simulations, Pfrommer, Springel, Enßlin, & Jubelgas 26, MNRAS, 367, 113, astro-ph/63483 Cosmic ray physics in calculations of cosmological structure formation Enßlin, Pfrommer, Springel, & Jubelgas astro-ph/63484 of galaxy formation Jubelgas, Springel, Enßlin, & Pfrommer astro-ph/63485

9 Philosophy and description Cosmic rays in GADGET Cosmic rays in isolated galaxies Dwarf galaxy formation An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics. We seek a compromise between capturing as many physical properties as possible requiring as little computational resources as possible Assumptions: protons dominate the CR population a momentum power-law is a typical spectrum CR energy & particle number conservation

10 Philosophy and description Cosmic rays in GADGET Cosmic rays in isolated galaxies Dwarf galaxy formation An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics. We seek a compromise between capturing as many physical properties as possible requiring as little computational resources as possible Assumptions: protons dominate the CR population a momentum power-law is a typical spectrum CR energy & particle number conservation

11 Philosophy and description Cosmic rays in GADGET Cosmic rays in isolated galaxies Dwarf galaxy formation An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics. We seek a compromise between capturing as many physical properties as possible requiring as little computational resources as possible Assumptions: protons dominate the CR population a momentum power-law is a typical spectrum CR energy & particle number conservation

12 CR spectral description Cosmic rays in GADGET Cosmic rays in isolated galaxies Dwarf galaxy formation f (p) = q(ρ) = C(ρ) = dn dp dv = C p α θ(p q) ( ρ ρ ) 1 3 q ( ρ ρ ) α+2 3 C p = P p /m p c n CR = C q1 α α 1 P CR = C ( mpc2 6 B α q 2 2, 3 α ) 2

13 Thermal & CR energy spectra Cosmic rays in GADGET Cosmic rays in isolated galaxies Dwarf galaxy formation Kinetic energy per logarithmic momentum interval: 1 ev 1 kev.1mev PSfrag replacements dtcr/d log p = p T p(p) f (p) in mp c α = 2.25 α = 2.5 α = MeV p

14 Radiative cooling Cosmic rays in GADGET Cosmic rays in isolated galaxies Dwarf galaxy formation Cooling of primordial gas: Cooling of cosmic rays: 1 1. ρ = 2.386*1-25 g/cm τ cool [ Gyr ] 1-3 τ cool [ Gyr ] ρ = 2.386*1-25 g/cm T [ K ] q

15 Cosmic rays in GADGET Cosmic rays in isolated galaxies Dwarf galaxy formation Cosmic rays in GADGET flowchart

16 Isolated galaxies projections Cosmic rays in GADGET Cosmic rays in isolated galaxies Dwarf galaxy formation 1 1 M 1 11 M 1 12 M z [ h -1 kpc ] x [ h -1 kpc ] z [ h -1 kpc ] x [ h -1 kpc ] z [ h -1 kpc ] x [ h -1 kpc ] z [ h -1 kpc ] z [ h -1 kpc ] z [ h -1 kpc ] x [ h -1 kpc ] x [ h -1 kpc ] -1 1 x [ h -1 kpc ]

17 ] ] ] Isolated galaxies stellar profiles Cosmic rays in GADGET Cosmic rays in isolated galaxies Dwarf galaxy formation 1 1 M 1 11 M 1 12 M z [ h -1 kpc ] x [ h -1 kpc ] z [ h -1 kpc ] x [ h -1 kpc ] z [ h -1 kpc ] x [ h -1 kpc ] Σ(R) [ h M O kpc -12 Σ(R) [ h M O kpc Σ(R) [ h M O kpc R [ h -1 kpc ] R [ h -1 kpc ] R [ h -1 kpc ]

18 Cosmic rays in GADGET Cosmic rays in isolated galaxies Dwarf galaxy formation Isolated galaxies star formation history 1 1 M 1 11 M 1 12 M z [ h -1 kpc ] x [ h -1 kpc ] z [ h -1 kpc ] x [ h -1 kpc ] z [ h -1 kpc ] x [ h -1 kpc ] 6.5 M halo = 1 1 M O M halo = 1 11 M O M halo = 1 12 M O SFR [ M O / yr ].3 SFR [ M O / yr ] 4 SFR [ M O / yr ] T [ Gyr ] T [ Gyr ] T [ Gyr ]

19 Effective equation of state Cosmic rays in GADGET Cosmic rays in isolated galaxies Dwarf galaxy formation Supernova heating balances cooling P [ dyn ] ζ SN =.3 ζ SN = ρ / ρ

20 Cosmic rays in GADGET Cosmic rays in isolated galaxies Dwarf galaxy formation Effective equation of state & phase space distribution Supernova heating balances cooling M galaxy M halo = 1 12 M O P [ dyn ] ζ SN =.3 ζ SN =.1 T eff [ K ] ρ / ρ ρ / ρ

21 Cosmic rays in GADGET Cosmic rays in isolated galaxies Dwarf galaxy formation Effective equation of state & phase space distribution 1 9 M galaxy 1 12 M galaxy M halo = 1 9 M O M halo = 1 12 M O T eff [ K ] T eff [ K ] ρ / ρ ρ / ρ

22 Quenching of dwarf galaxies Cosmic rays in GADGET Cosmic rays in isolated galaxies Dwarf galaxy formation Star formation efficiency suppressed in small halos: 1. no CR M * / Mbaryons.1 z SN =.1 z SN = M halo [ h -1 M O ]

23 Quenching of dwarf galaxies Cosmic rays in GADGET Cosmic rays in isolated galaxies Dwarf galaxy formation Star formation efficiency suppressed in small halos: Averaged mass-to-light ratio: 1 with CR feedback without CR feedback 1. M * / Mbaryons.1 no CR z SN =.1 M halo / M star 1 z SN =.3 1 z = M halo [ h -1 M O ] M halo [ h -1 M O ]

24 Quenching of small galaxies Cosmic rays in GADGET Cosmic rays in isolated galaxies Dwarf galaxy formation Luminosity function (z=3): Averaged mass-to-light ratio: 1 z = 3 1 with CR feedback without CR feedback number of galaxies 1 M halo / M star z = Μ K M halo [ h -1 M O ]

25 Cosmic rays in GADGET flowchart

26 Diffusive shock acceleration Fermi 1 mechanism Cosmic rays gain energy E/E υ 1 υ 2 through bouncing back and forth the shock front. Accounting for the loss probability υ 2 of particles leaving the shock downstream leads to power-law CR population. log f strong shock weak shock kev 1 GeV log p

27 for the cosmological shocks dissipate gravitational energy into thermal gas energy: where and when is the gas heated, and which shocks are mainly responsible for it? shock waves are tracers of the large scale structure and contain information about its dynamical history (warm-hot intergalactic medium) shocks accelerate cosmic rays through diffusive shock acceleration at structure formation shocks: what are the cosmological implications of such a CR component, and does this influence the cosmic thermal history? simulating realistic CR distributions within galaxy clusters provides detailed predictions for the expected radio synchrotron and γ-ray emission

28 Idea of the in SPH SPH shock is broadened to a scale of the order of the smoothing length h, i.e. f h h, and f h 2 approximate instantaneous particle velocity by pre-shock velocity (denoted by υ 1 = M 1 c 1 ) Using the entropy conserving formalism of Springel & Hernquist 22 (A(s) = Pρ γ is the entropic function): A 2 = A 1 + da 1 = 1 + f hh da 1 A 1 A 1 M 1 c 1 A 1 dt ρ 2 ρ 1 = (γ + 1)M 2 1 (γ 1)M P 2 = 2γM2 1 (γ 1) P 1 γ + 1 = P 2 P 1 ( ) γ ρ1 ρ 2

29 Shock tube (CRs & gas, M = 1): thermodynamics Density Velocity Pressure Mach number

30 Shock tube (CRs & gas): Mach number statistics duth dt d log M log M replacements du th dt log M

31 Shock tube (th. gas): Mach number statistics duth dt d log M log M replacements du th dt log M

32 Cosmological Mach numbers: weighted by ε diss y [ h -1 Mpc ] 6 4 Mach number x [ h -1 Mpc ] 1

33 Cosmological Mach numbers: weighted by ε CR y [ h -1 Mpc ] 6 4 Mach number x [ h -1 Mpc ] 1

34 Cosmological Mach number statistics more energy is dissipated in weak shocks internal to collapsed structures than in external strong shocks more energy is dissipated at later times mean Mach number decreases with time

35 Cosmological statistics: influence of reionization reionization epoch at z reion = 1 suppresses efficiently strong shocks at z < z reion due to jump in sound velocity cosmological constant causes structure formation to cease

36 Cosmological statistics: resolution study Differential distributions: versus differential Mach number distributions are converged for z < 3 at earlier epochs, weak internal shocks are missing in low resolution simulations

37 Cosmological statistics: resolution study in higher resolution simulations structure forms earlier integrated Mach number distribution converged

38 Adiabatic cluster simulation: gas density y [ h -1 Mpc ] δ gas x [ h -1 Mpc ]

39 Mass weighted temperature y [ h -1 Mpc ] <( 1 + δ gas ) T > [ K ] x [ h -1 Mpc ]

40 Mach number distribution weighted by ε diss y [ h -1 Mpc ] Mach number x [ h -1 Mpc ] 1

41 Relative CR pressure P CR /P total y [ h -1 Mpc ] P CR / ( P th + P CR ) x [ h -1 Mpc ] 1-3

42 Radio halos as window for non-equilibrium processes Coma radio halo, ν = 1.4 GHz, largest emission diameter 3 Mpc Coma thermal X-ray emission, ( , credit: ROSAT/MPE/Snowden) (2.5 2., credit: Deiss/Effelsberg)

43 Models for radio synchrotron halos in clusters Halo characteristics: smooth unpolarized radio emission at scales of 3 Mpc. Different CR electron populations: Primary accelerated CR electrons: synchrotron/ic cooling times too short to account for extended diffuse emission Re-accelerated CR electrons through resonant interaction with turbulent Alfvén waves: possibly too inefficient, no first principle calculations (Jaffe 1977, Schlickeiser 1987, Brunetti 21) Hadronically produced CR electrons in inelastic collisions of CR protons with the ambient gas (Dennison 198, Vestrad 1982, Miniati 21, Pfrommer 24)

44 Hadronic cosmic ray proton interaction

45 Minimum energy criterion (MEC): the idea ε NT What is the energetically least expensive distribution of non-thermal energy density ε NT given the observed synchrotron emissivity? ε NT = ε B + ε CRp + ε CRe minimum energy criterion: ε NT jν! = ε B defining tolerance levels: deviation from minimum by one e-fold ε B min ε B

46 Energetically preferred CR pressure profiles.1 Coma cluster: hadronic minimum energy condition X CRpmin X Bmin XBmin (r), X CRp min (r).1 PSfrag replacements r [h 1 7 kpc] X CRp (r) = ε CRp ε th (r), X B (r) = ε B ε th (r) B Coma, min () = µg

47 Compton y parameter in radiative cluster simulation y [ h -1 Mpc ]. Compton y x [ h -1 Mpc ]

48 Compton y difference map: y CR y th y [ h -1 Mpc ] Compton-y difference map: y CR - y th x [ h -1 Mpc ] -1-5

49 Simulated CBI observation of y CR y th (with Sievers & Bond)

50 Pressure profiles with and without CRs P CR, P th [Code units] R [ h -1 kpc ]

51 Phase-space diagram of radiative cluster simulation log[ P CR / P th ] probability density [arbitrary units] log[ 1 + δ gas ] 1

52 Summary Galaxy evolution: CRs significantly reduce the star formation efficiency in small galaxies Understanding non-thermal processes is crucial for using clusters as cosmological probes (high-z scaling relations). Radio halos might be of hadronic origin as our simulations suggests tracer of structure formation Outlook Galaxy evolution: CRs might influence energetic feedback, galactic winds, and disk galaxy formation Huge potential and predictive power of cosmological CR simulations/ provides detailed γ-ray/radio emission maps

Cosmic ray feedback in hydrodynamical simulations. simulations of galaxy and structure formation

Cosmic ray feedback in hydrodynamical simulations. simulations of galaxy and structure formation Cosmic ray feedback in hydrodynamical simulations of galaxy and structure formation Canadian Institute for Theoretical Astrophysics, Toronto April, 13 26 / Workshop Dark halos, UBC Vancouver Outline 1

More information

Cosmic Rays in Galaxy Clusters: Simulations and Perspectives

Cosmic Rays in Galaxy Clusters: Simulations and Perspectives Cosmic Rays in Galaxy Clusters: Simulations and Perspectives 1 in collaboration with Volker Springel 2, Torsten Enßlin 2 1 Canadian Institute for Theoretical Astrophysics, Canada 2 Max-Planck Institute

More information

Cosmic Rays in Galaxy Clusters Simulations and Reality

Cosmic Rays in Galaxy Clusters Simulations and Reality Simulations and Reality 1,2 in collaboration with Torsten Enßlin 3, Volker Springel 3, Anders Pinzke 4, Nick Battaglia 1, Jon Sievers 1, Dick Bond 1 1 Canadian Institute for Theoretical Astrophysics, Canada

More information

Literature on which the following results are based:

Literature on which the following results are based: Cosmic rays in galaxy clusters Physical processes in galaxy clusters High-resolution simulations of galaxy clusters Literature on which the following results are based: Pfrommer, 28, MNRAS, in print, ArXiv:77.1693,

More information

Particle Acceleration and Radiation from Galaxy Clusters

Particle Acceleration and Radiation from Galaxy Clusters Particle Acceleration and Radiation from Galaxy Clusters 1,2 in collaboration with Anders Pinzke 3, Torsten Enßlin 4, Volker Springel 4, Nick Battaglia 1, Jon Sievers 1, Dick Bond 1 1 Canadian Institute

More information

Fermi-LAT Analysis of the Coma Cluster

Fermi-LAT Analysis of the Coma Cluster Fermi-LAT Analysis of the Coma Cluster a Fabio Zandanel GRAPPA Institute University of Amsterdam f.zandanel@uva.nl In collaboration with S. Ando (GRAPPA) 18 th Symposium on Astroparticle Physics in the

More information

The Superbubble Power Problem: Overview and Recent Developments. S. Oey

The Superbubble Power Problem: Overview and Recent Developments. S. Oey The Superbubble Power Problem: Overview and Recent Developments S. Oey It has been known for decades that superbubbles generated by massive star winds and supernovae are smaller than expected based on

More information

Intracluster Shock Waves

Intracluster Shock Waves ρ Intracluster Shock Waves T R 200 Dongsu Ryu (UNIST, Ulsan National Institute of Science and Technology, Korea) Hyesung Kang (Pusan National U, Korea) Sungwook E. Hong (Korea Institute for Advanced Study)

More information

Cosmic Ray acceleration in clusters of galaxies. Gianfranco Brunetti. Istituto di Radioastronomia INAF, Bologna, ITALY

Cosmic Ray acceleration in clusters of galaxies. Gianfranco Brunetti. Istituto di Radioastronomia INAF, Bologna, ITALY Cosmic Ray acceleration in clusters of galaxies Gianfranco Brunetti Istituto di Radioastronomia INAF, Bologna, ITALY Outline NT components (CRe,CRp,B) in galaxy clusters : observations Physics and dynamics

More information

Dynamics of galaxy clusters A radio perspective

Dynamics of galaxy clusters A radio perspective Dynamics of galaxy clusters A radio perspective Tiziana Venturi, INAF, Istituto di Radioastronomia Collaborators S. Giacintucci, D. Dallacasa, R. Kale, G. Brunetti, R. Cassano, M. Rossetti GEE 3 Padova,

More information

Radio Continuum: Cosmic Rays & Magnetic Fields. Rainer Beck MPIfR Bonn

Radio Continuum: Cosmic Rays & Magnetic Fields. Rainer Beck MPIfR Bonn Radio Continuum: Cosmic Rays & Magnetic Fields Rainer Beck MPIfR Bonn Synchrotron emission Beam angle: Ψ/2=1/γ=E o /E Radio continuum tools to study GeV Cosmic ray electrons (CRE) Synchrotron spectrum:

More information

Origin of Magnetic Fields in Galaxies

Origin of Magnetic Fields in Galaxies Lecture 4: Origin of Magnetic Fields in Galaxies Rainer Beck, MPIfR Bonn Generation and amplification of cosmic magnetic fields Stage 1: Field seeding Stage 2: Field amplification Stage 3: Coherent field

More information

Astronomy. Astrophysics. Cosmic ray feedback in hydrodynamical simulations of galaxy formation

Astronomy. Astrophysics. Cosmic ray feedback in hydrodynamical simulations of galaxy formation A&A 481, 33 63 (8) DOI: 1.151/4-6361:6595 c ESO 8 Astronomy & Astrophysics Cosmic ray feedback in hydrodynamical simulations of galaxy formation M. Jubelgas 1, V. Springel 1, T. Enßlin 1, and C. Pfrommer

More information

Radio emission in clusters of galaxies. An observational perspective

Radio emission in clusters of galaxies. An observational perspective Radio emission in clusters of galaxies An observational perspective Tiziana Venturi INAF, IRA, Bologna IV ESTRELA Workshop, Bologna, 19 January 2009 Overview - What are galaxy clusters - Radio emission

More information

Uri Keshet / CfA Impact of upcoming high-energy astrophysics experiments Workshop, KAVLI, October 2008

Uri Keshet / CfA Impact of upcoming high-energy astrophysics experiments Workshop, KAVLI, October 2008 Uri Keshet / CfA Impact of upcoming high-energy astrophysics experiments Workshop, KAVLI, October 008 Impact of upcoming high-energy astrophysics experiments Workshop, KAVLI, October 008 Relaxed, cool

More information

Magnetic Fields in Evolving Spiral Galaxies and their Observation with the SKA

Magnetic Fields in Evolving Spiral Galaxies and their Observation with the SKA Magnetic Fields in Evolving Spiral Galaxies and their Observation with the SKA Rainer Beck MPIfR Bonn & SKA Science Working Group Fundamental magnetic questions When and how were the first fields generated?

More information

Turbulence & particle acceleration in galaxy clusters. Gianfranco Brunetti

Turbulence & particle acceleration in galaxy clusters. Gianfranco Brunetti Turbulence & particle acceleration in galaxy clusters Gianfranco Brunetti Mergers & CR-acceleration Cluster-cluster mergers are the most energetic events in the present Universe (10 64 erg/gyr). They can

More information

Nonthermal Emission in Starburst Galaxies

Nonthermal Emission in Starburst Galaxies Nonthermal Emission in Starburst Galaxies! Yoel Rephaeli!!! Tel Aviv University & UC San Diego Cosmic Ray Origin! San Vito, March 20, 2014 General Background * Stellar-related nonthermal phenomena * Particle

More information

Structure of Dark Matter Halos

Structure of Dark Matter Halos Structure of Dark Matter Halos Dark matter halos profiles: DM only: NFW vs. Einasto Halo concentration: evolution with time Dark matter halos profiles: Effects of baryons Adiabatic contraction Cusps and

More information

Formation and properties of shock waves in galaxy clusters

Formation and properties of shock waves in galaxy clusters Formation and properties of shock waves in galaxy clusters Hyesung Kang (Pusan National University) Dongsu Ryu (UNIST, Korea) T. W. Jones (Univ. of Minnesota) Sungwook E. Hong (KAIST, Korea) Ref: Kang,

More information

Constraints on physics of gas and dark matter from cluster mergers. Maxim Markevitch (SAO)

Constraints on physics of gas and dark matter from cluster mergers. Maxim Markevitch (SAO) Constraints on physics of gas and dark matter from cluster mergers Maxim Markevitch (SAO) November 2005 1E 0657 56 Chandra 0.5 Msec image 0.5 Mpc z=0.3 An overheated cluster From M T relation: T= 14 kev:

More information

contents 1) Superbubbles a particular environment for acceleration 2) Multiple acceleration by shocks regular acceleration (Fermi 1)

contents 1) Superbubbles a particular environment for acceleration 2) Multiple acceleration by shocks regular acceleration (Fermi 1) contents 1) Superbubbles a particular environment for acceleration 2) Multiple acceleration by shocks regular acceleration (Fermi 1) 3) Transport in the bubble stochastic acceleration (Fermi 2) and escape

More information

The Plasma Physics and Cosmological Impact of TeV Blazars

The Plasma Physics and Cosmological Impact of TeV Blazars The Plasma Physics and Cosmological Impact of TeV Blazars Philip Chang (UW-Milwaukee) Avery Broderick (Waterloo/Perimeter) Astrid Lamberts (UW-Milwaukee) Christoph Pfrommer (HITS-Heidelberg) Ewald Puchwein

More information

Simulating magnetic fields in structure formation

Simulating magnetic fields in structure formation Simulating magnetic fields in structure formation USM / MPE / MPA Harald Lesch & Klaus Dolag Annette Geng, Federico Stasyszyn & Marcus Beck July, 2012 (Mainz) Alexander Beck Magnetic fields in galaxies

More information

Enrico Fermi School Varenna Cool Cores and Mergers in Clusters Lecture 3

Enrico Fermi School Varenna Cool Cores and Mergers in Clusters Lecture 3 Enrico Fermi School Varenna Cool Cores and Mergers in Clusters Lecture 3 Craig Sarazin Dept. of Astronomy University of Virginia A85 Chandra (X-ray) Cluster Merger Simulation Cool Cores in Clusters Central

More information

Moving mesh cosmology: The hydrodynamics of galaxy formation

Moving mesh cosmology: The hydrodynamics of galaxy formation Moving mesh cosmology: The hydrodynamics of galaxy formation arxiv:1109.3468 Debora Sijacki, Hubble Fellow, ITC together with: Mark Vogelsberger, Dusan Keres, Paul Torrey Shy Genel, Dylan Nelson Volker

More information

AGN Feedback In an Isolated Elliptical Galaxy

AGN Feedback In an Isolated Elliptical Galaxy AGN Feedback In an Isolated Elliptical Galaxy Feng Yuan Shanghai Astronomical Observatory, CAS Collaborators: Zhaoming Gan (SHAO) Jerry Ostriker (Princeton) Luca Ciotti (Bologna) Greg Novak (Paris) 2014.9.10;

More information

CHAPTER 4. Basics of Fluid Dynamics

CHAPTER 4. Basics of Fluid Dynamics CHAPTER 4 Basics of Fluid Dynamics What is a fluid? A fluid is a substance that can flow, has no fixed shape, and offers little resistance to an external stress In a fluid the constituent particles (atoms,

More information

Magnetic Fields (and Turbulence) in Galaxy Clusters

Magnetic Fields (and Turbulence) in Galaxy Clusters Magnetic Fields (and Turbulence) in Galaxy Clusters Dongsu Ryu (UNIST, Ulsan National Institute of Science and Technology, Korea) with Hyesung Kang (Pusan Nat. U, Korea), Jungyeon Cho (Chungnam Nat. U.),

More information

Radio emission from galaxies in the Bootes Voids

Radio emission from galaxies in the Bootes Voids Radio emission from galaxies in the Bootes Voids Mousumi Das, Indian Institute of Astrophysics, Bangalore Large Scale Structure and galaxy flows, Quy Nhon, July 3-9, 2016 Collaborators K.S. Dwarkanath

More information

The Formation and Evolution of Galaxy Clusters

The Formation and Evolution of Galaxy Clusters IAU Joint Discussion # 10 Sydney, July, 2003 The Formation and Evolution of Galaxy Clusters Simon D.M. White Max Planck Institute for Astrophysics The WMAP of the whole CMB sky Bennett et al 2003 > 105

More information

Energy Balance in Clusters of Galaxies. Patrick M. Motl & Jack O. Burns Center for Astrophysics and Space Astronomy University of Colorado at Boulder

Energy Balance in Clusters of Galaxies. Patrick M. Motl & Jack O. Burns Center for Astrophysics and Space Astronomy University of Colorado at Boulder Energy Balance in Clusters of Galaxies Patrick M. Motl & Jack O. Burns Center for Astrophysics and Space Astronomy University of Colorado at Boulder X-ray and Radio Connections, February 6th, 2004 With

More information

Suppressing the Cooling Flows in Massive Galaxies with Turbulent Stirring

Suppressing the Cooling Flows in Massive Galaxies with Turbulent Stirring Snow Cluster 2018 Suppressing the Cooling Flows in Massive Galaxies with Turbulent Stirring Kung-Yi Su TAPIR, California Institute of Technology Collaborators Prof. Philip F. Hopkins Chris Hayward Prof.

More information

Radio Halos From Simulations And Hadronic Models I: The Coma cluster

Radio Halos From Simulations And Hadronic Models I: The Coma cluster Mon. Not. R. Astron. Soc. 000, 1 6 (2008) Printed 15 May 2009 (MN LATEX style file v2.2) Radio Halos From Simulations And Hadronic Models I: The Coma cluster We use results from one of the constrained,

More information

Killing Dwarfs with Hot Pancakes. Frank C. van den Bosch (MPIA) with Houjun Mo, Xiaohu Yang & Neal Katz

Killing Dwarfs with Hot Pancakes. Frank C. van den Bosch (MPIA) with Houjun Mo, Xiaohu Yang & Neal Katz Killing Dwarfs with Hot Pancakes Frank C. van den Bosch (MPIA) with Houjun Mo, Xiaohu Yang & Neal Katz The Paradigm... SN feedback AGN feedback The halo mass function is much steeper than luminosity function

More information

Feedback from growth of supermassive black holes

Feedback from growth of supermassive black holes Research Collection Other Conference Item Feedback from growth of supermassive black holes Author(s): Begelman, Mitchell C.; Ruszkowksi, Mateusz Publication Date: 2003 Permanent Link: https://doi.org/10.3929/ethz-a-004585094

More information

Particle Acceleration in the Universe

Particle Acceleration in the Universe Particle Acceleration in the Universe Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology on behalf of SLAC GLAST team June 7, 2006 SLAC DOE HEP Program

More information

Radio relics and magnetic field amplification in the Intra-cluster Medium

Radio relics and magnetic field amplification in the Intra-cluster Medium Radio relics and magnetic field amplification in the Intra-cluster Medium Annalisa Annalisa Bonafede Bonafede Hamburger Hamburg Sternwarte University Hamburg University Jacobs University Bremen Collaborators:

More information

Galaxy Formation: Overview

Galaxy Formation: Overview Galaxy Formation: Overview Houjun Mo March 30, 2004 The basic picture Formation of dark matter halos. Gas cooling in dark matter halos Star formation in cold gas Evolution of the stellar populaion Metal

More information

Cosmic Structure Formation on Supercomputers (and laptops)

Cosmic Structure Formation on Supercomputers (and laptops) Cosmic Structure Formation on Supercomputers (and laptops) Lecture 4: Smoothed particle hydrodynamics and baryonic sub-grid models Benjamin Moster! Ewald Puchwein 1 Outline of the lecture course Lecture

More information

Mergers and Radio Sources in Abell 3667 and Abell 2061

Mergers and Radio Sources in Abell 3667 and Abell 2061 Mergers and Radio Sources in Abell 3667 and Abell 2061 Craig Sarazin University of Virginia A3667 XMM X-ray image and radio contours SLAM Simulation of A2061 Collaborators Alexis Finoguenov (MPE, UMBC)

More information

Diffusive shock acceleration: a first order Fermi process. jan.-fév NPAC, rayons cosmiques E. Parizot (APC)

Diffusive shock acceleration: a first order Fermi process. jan.-fév NPAC, rayons cosmiques E. Parizot (APC) 1 Diffusive shock acceleration: a first order Fermi process 2 Shock waves Discontinuity in physical parameters shock front n 2, p 2, T 2 n 1, p 1, T 1 v 2 v 1 downstream medium (immaterial surface) upstream

More information

Superbubble Feedback in Galaxy Formation

Superbubble Feedback in Galaxy Formation Superbubble Feedback in Galaxy Formation Ben Keller (McMaster University) James Wadsley, Samantha Benincasa, Hugh Couchman Paper: astro-ph/1405.2625 (Accepted MNRAS) Keller, Wadsley, Benincasa & Couchman

More information

The role of Planck in understanding galaxy cluster radio halos

The role of Planck in understanding galaxy cluster radio halos The role of Planck in understanding galaxy cluster radio halos Radio data Radio data Planck measurements Planck measurements 1 The role of Planck in understanding galaxy cluster radio halos Kaustuv Basu

More information

THE GALACTIC CORONA. In honor of. Jerry Ostriker. on his 80 th birthday. Chris McKee Princeton 5/13/2017. with Yakov Faerman Amiel Sternberg

THE GALACTIC CORONA. In honor of. Jerry Ostriker. on his 80 th birthday. Chris McKee Princeton 5/13/2017. with Yakov Faerman Amiel Sternberg THE GALACTIC CORONA In honor of Jerry Ostriker on his 80 th birthday Chris McKee Princeton 5/13/2017 with Yakov Faerman Amiel Sternberg A collaboration that began over 40 years ago and resulted in a lifelong

More information

Outline. Walls, Filaments, Voids. Cosmic epochs. Jeans length I. Jeans length II. Cosmology AS7009, 2008 Lecture 10. λ =

Outline. Walls, Filaments, Voids. Cosmic epochs. Jeans length I. Jeans length II. Cosmology AS7009, 2008 Lecture 10. λ = Cosmology AS7009, 2008 Lecture 10 Outline Structure formation Jeans length, Jeans mass Structure formation with and without dark matter Cold versus hot dark matter Dissipation The matter power spectrum

More information

Radiation processes and mechanisms in astrophysics I. R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 2009

Radiation processes and mechanisms in astrophysics I. R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 2009 Radiation processes and mechanisms in astrophysics I R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 009 Light of the night sky We learn of the universe around us from EM radiation, neutrinos,

More information

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies?

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Temperature Determines the λ range over which the radiation is emitted Chemical Composition metallicities

More information

PoS(ICRC2017)283. Acceleration of Cosmic Ray Electrons at Weak Shocks in Galaxy Clusters. Hyesung Kang. Dongsu Ryu

PoS(ICRC2017)283. Acceleration of Cosmic Ray Electrons at Weak Shocks in Galaxy Clusters. Hyesung Kang. Dongsu Ryu Acceleration of Cosmic Ray Electrons at Weak Shocks in Galaxy Clusters Pusan National University E-mail: hskang@pusan.ac.kr Dongsu Ryu UNIST E-mail: ryu@sirius.unist.ac.kr T. W. Jones University of Minnesota

More information

Galaxy formation and evolution II. The physics of galaxy formation

Galaxy formation and evolution II. The physics of galaxy formation Galaxy formation and evolution II. The physics of galaxy formation Gabriella De Lucia Astronomical Observatory of Trieste Outline: ü Observational properties of galaxies ü Galaxies and Cosmology ü Gas

More information

AGN-driven turbulence revealed by extreme [CII]158µm line cooling in radio-galaxies

AGN-driven turbulence revealed by extreme [CII]158µm line cooling in radio-galaxies AGN-driven turbulence revealed by extreme [CII]158µm line cooling in radio-galaxies Pierre Guillard CNES Fellow Intitut d Astrophysique Spatiale, Orsay, France The Universe Explored by Herschel, ESTEC,

More information

The Iguaçu Lectures. Nonlinear Structure Formation: The growth of galaxies and larger scale structures

The Iguaçu Lectures. Nonlinear Structure Formation: The growth of galaxies and larger scale structures April 2006 The Iguaçu Lectures Nonlinear Structure Formation: The growth of galaxies and larger scale structures Simon White Max Planck Institute for Astrophysics z = 0 Dark Matter ROT EVOL Cluster structure

More information

Giant cosmic tsunamis: the impact of shocks and turbulence on galaxy evolution

Giant cosmic tsunamis: the impact of shocks and turbulence on galaxy evolution Giant cosmic tsunamis: the impact of shocks and turbulence on galaxy evolution Andra Stroe ESO Fellow astroe@eso.org Twitter: @Andra_Stroe www.eso.org/~astroe D. Sobral, M. J. Jee, W. Dawson, H. Hoekstra,

More information

The Physics and Cosmology of TeV Blazars

The Physics and Cosmology of TeV Blazars 1 in collaboration with Avery E. Broderick 2, Phil Chang 3, Ewald Puchwein 1, Volker Springel 1 1 Heidelberg Institute for Theoretical Studies, Germany 2 Perimeter Institute/University of Waterloo, Canada

More information

Cosmic Rays & Magnetic Fields

Cosmic Rays & Magnetic Fields Cosmic Rays & Magnetic Fields Ellen Zweibel zweibel@astro.wisc.edu Departments of Astronomy & Physics University of Wisconsin, Madison and Center for Magnetic Self-Organization in Laboratory and Astrophysical

More information

Hard X-ray emission from Novae

Hard X-ray emission from Novae Hard X-ray emission from Novae Indrek Vurm (Columbia University) in collaboration with: Brian D. Metzger, Andrei M. Beloborodov (Columbia) Koji Mukai (NASA) Shocks and Particle Acceleration in Novae and

More information

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab Dark Matter ASTR 2120 Sarazin Bullet Cluster of Galaxies - Dark Matter Lab Mergers: Test of Dark Matter vs. Modified Gravity Gas behind DM Galaxies DM = location of gravity Gas = location of most baryons

More information

Feedback and Galaxy Formation

Feedback and Galaxy Formation Heating and Cooling in Galaxies and Clusters Garching August 2006 Feedback and Galaxy Formation Simon White Max Planck Institute for Astrophysics Cluster assembly in ΛCDM Gao et al 2004 'Concordance'

More information

Detecting shock waves in cosmological smoothed particle hydrodynamics simulations

Detecting shock waves in cosmological smoothed particle hydrodynamics simulations Mon. Not. R. Astron. Soc., 1 2 (25) Printed 27 March 26 (MN LATEX style file v2.2) Detecting shock waves in cosmological smoothed particle hydrodynamics simulations Christoph Pfrommer, 1, 2 Volker Springel,

More information

Simulating magnetic fields within large scale structure an the propagation of UHECRs

Simulating magnetic fields within large scale structure an the propagation of UHECRs Simulating magnetic fields within large scale structure an the propagation of UHECRs Klaus Dolag ( ) Max-Planck-Institut für Astrophysik ( ) Introduction Evolution of the structures in the Universe t =

More information

AGN Outflows in Dynamic ICMs: Winds and Twists

AGN Outflows in Dynamic ICMs: Winds and Twists AGN Outflows in Dynamic ICMs: Winds and Twists Tom Jones University of Minnesota Pete Mendygral (UMN, Cray Computer) David Porter (UMN) Klaus Dolag (MPA, U Munich) 11/29/2012 Binary Black Holes & Dual

More information

New Forms of Convection in Galaxy Cluster Plasmas (i.e., how do galaxy clusters boil?)

New Forms of Convection in Galaxy Cluster Plasmas (i.e., how do galaxy clusters boil?) New Forms of Convection in Galaxy Cluster Plasmas (i.e., how do galaxy clusters boil?) Eliot Quataert (UC Berkeley) Hydra A w/ Chandra in collaboration with Ian Parrish Prateek Sharma Overview Hot Plasma

More information

Fermi: Highlights of GeV Gamma-ray Astronomy

Fermi: Highlights of GeV Gamma-ray Astronomy Fermi: Highlights of GeV Gamma-ray Astronomy Dave Thompson NASA GSFC On behalf of the Fermi Gamma-ray Space Telescope Large Area Telescope Collaboration Neutrino Oscillation Workshop Otranto, Lecce, Italy

More information

Theoretical ideas About Galaxy Wide Star Formation! Star Formation Efficiency!

Theoretical ideas About Galaxy Wide Star Formation! Star Formation Efficiency! Theoretical ideas About Galaxy Wide Star Formation Theoretical predictions are that galaxy formation is most efficient near a mass of 10 12 M based on analyses of supernova feedback and gas cooling times

More information

Solving small scale structure puzzles with. dissipative dark matter

Solving small scale structure puzzles with. dissipative dark matter Solving small scale structure puzzles with. dissipative dark matter Robert Foot, COEPP, University of Melbourne Okinawa, March 2016 Dark matter: why we think it exists Dark matter issues on small scales

More information

arxiv:astro-ph/ v1 20 Sep 2006

arxiv:astro-ph/ v1 20 Sep 2006 Formation of Neutrino Stars from Cosmological Background Neutrinos M. H. Chan, M.-C. Chu Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China arxiv:astro-ph/0609564v1

More information

Recent Progress in Modeling of Galaxy Formation. Oleg Gnedin (University of Michigan)

Recent Progress in Modeling of Galaxy Formation. Oleg Gnedin (University of Michigan) Recent Progress in Modeling of Galaxy Formation Oleg Gnedin (University of Michigan) In current simulations, galaxies look like this: 10 kpc Disk galaxy at z=3: stars, molecular gas, atomic gas (Zemp,

More information

Magnetisation of Interstellar and Intergalactic Media: The Prospects of Low-Frequency Radio Astronomy DFG Research Unit

Magnetisation of Interstellar and Intergalactic Media: The Prospects of Low-Frequency Radio Astronomy DFG Research Unit Mainz, 9 July, 2012 Galactic and Intergalactic Magnetic Fields 1 Magnetisation of Interstellar and Intergalactic Media: The Prospects of Low-Frequency Radio Astronomy DFG Research Unit Mainz, 9 July, 2012

More information

Cosmological shock waves

Cosmological shock waves Highlights of Spanish Astrophysics VII, Proceedings of the X Scientific Meeting of the Spanish Astronomical Society held on July 9-13, 2012, in Valencia, Spain. J. C. Guirado, L. M. Lara, V. Quilis, and

More information

Mergers and Non-Thermal Processes in Clusters of Galaxies

Mergers and Non-Thermal Processes in Clusters of Galaxies Mergers and Non-Thermal Processes in Clusters of Galaxies Craig Sarazin University of Virginia A85 Chandra A133 Chandra and VLA Collaborators Liz Blanton, Tracy Clarke, Scott Randall, Thomas Reiprich (UVa)

More information

Hydra A (x-ray) Perseus ` (optical)

Hydra A (x-ray) Perseus ` (optical) The Biermann Lectures: Adventures in Theoretical Astrophysics I: The Physics of Galaxy Cluster Plasmas Eliot Quataert (UC Berkeley) w/ Mike McCourt, Ian Parrish, Prateek Sharma Perseus ` (optical) Hydra

More information

High-Energy Plasma Astrophysics and Next Generation Gamma-Ray Observatory Cherenkov Telescope Array

High-Energy Plasma Astrophysics and Next Generation Gamma-Ray Observatory Cherenkov Telescope Array High-Energy Plasma Astrophysics and Next Generation Gamma-Ray Observatory Cherenkov Telescope Array FAPESP CUNY Week, New York, November 2018 M82 Star Formation- Clouds-SNRturbulence connection Sun & Stars

More information

Disk Formation and the Angular Momentum Problem. Presented by: Michael Solway

Disk Formation and the Angular Momentum Problem. Presented by: Michael Solway Disk Formation and the Angular Momentum Problem Presented by: Michael Solway Papers 1. Vitvitska, M. et al. 2002, The origin of angular momentum in dark matter halos, ApJ 581: 799-809 2. D Onghia, E. 2008,

More information

A few issues in CSM interaction signals (and on mass loss estimates) Keiichi Maeda

A few issues in CSM interaction signals (and on mass loss estimates) Keiichi Maeda A few issues in CSM interaction signals (and on mass loss estimates) Keiichi Maeda Radio/X constraints on CSM around SNe Ia Useful limit for SN 2011fe: Mdot/v w < ~10-8 M yr -1 /100km s -1 Radio Chomiuk+

More information

COSMIC-RAY DRIVEN MAGNETIC FIELD DYNAMO IN GALAXIES

COSMIC-RAY DRIVEN MAGNETIC FIELD DYNAMO IN GALAXIES COSMIC-RAY DRIVEN MAGNETIC FIELD DYNAMO IN GALAXIES Michał Hanasz, Centre for Astronomy Nicolaus Copernicus University, Toruń MAGNETIC FIELDS IN SPIRAL GALAXIES - RADIO OBSERVATIONS M51 NGC891 A. Fletcher

More information

The AGN Jet Model of the Fermi Bubbles

The AGN Jet Model of the Fermi Bubbles The AGN Jet Model of the Fermi Bubbles Fulai Guo Shanghai Astronomical Observatory IAU 322 Symposium, Palm Cove, July 18-22, 2016 1 The All-sky Fermi View at E >10 GeV The Fermi bubbles! (NASA image based

More information

LOFAR Observations of Galaxy Clusters

LOFAR Observations of Galaxy Clusters LOFAR Observations of Galaxy Clusters The Toothbrush Radio Relic Reinout van Weeren Harvard-Smithsonian Center for Astrophysics M. Brüggen, G. Brunetti, H. Röttgering F. de Gasperin, A. Bonafede, W. Forman,

More information

Moment of beginning of space-time about 13.7 billion years ago. The time at which all the material and energy in the expanding Universe was coincident

Moment of beginning of space-time about 13.7 billion years ago. The time at which all the material and energy in the expanding Universe was coincident Big Bang Moment of beginning of space-time about 13.7 billion years ago The time at which all the material and energy in the expanding Universe was coincident Only moment in the history of the Universe

More information

Exploring the Ends of the Rainbow: Cosmic Rays in Star-Forming Galaxies

Exploring the Ends of the Rainbow: Cosmic Rays in Star-Forming Galaxies Exploring the Ends of the Rainbow: Cosmic Rays in Star-Forming Galaxies Brian Lacki With Todd Thompson, Eliot Quataert, Eli Waxman, Abraham Loeb 21 September 2010 The Cosmic SED Nonthermal Thermal Nonthermal

More information

Observational Evidence of AGN Feedback

Observational Evidence of AGN Feedback 10 de maio de 2012 Sumário Introduction AGN winds Galaxy outflows From the peak to the late evolution of AGN and quasars Mergers or secular evolution? The AGN feedback The interaction process between the

More information

MULTIWAVELENGTH OBSERVATIONS OF CLUSTERS OF GALAXIES AND THE ROLE OF CLUSTER MERGERS PASQUALE BLASI

MULTIWAVELENGTH OBSERVATIONS OF CLUSTERS OF GALAXIES AND THE ROLE OF CLUSTER MERGERS PASQUALE BLASI MULTIWAVELENGTH OBSERVATIONS OF CLUSTERS OF GALAXIES AND THE ROLE OF CLUSTER MERGERS PASQUALE BLASI NASA/Fermilab Astrophysics Center Fermi National Accelerator Laboratory, Box 500, Batavia, IL 60510-0500,

More information

Towards Understanding Simulations of Galaxy Formation. Nigel Mitchell. On the Origin of Cores in Simulated Galaxy Clusters

Towards Understanding Simulations of Galaxy Formation. Nigel Mitchell. On the Origin of Cores in Simulated Galaxy Clusters Towards Understanding Simulations of Galaxy Formation Nigel Mitchell On the Origin of Cores in Simulated Galaxy Clusters Work published in the Monthly Notices of the Royal Astronomy Society Journal, 2009,

More information

Feedback in Galaxy Clusters

Feedback in Galaxy Clusters Feedback in Galaxy Clusters Brian Morsony University of Maryland 1 Not talking about Galaxy-scale feedback Local accretion disk feedback 2 Outline Galaxy cluster properties Cooling flows the need for feedback

More information

80 2 Observational Cosmology L and the mean energy

80 2 Observational Cosmology L and the mean energy 80 2 Observational Cosmology fluctuations, short-wavelength modes have amplitudes that are suppressed because these modes oscillated as acoustic waves during the radiation epoch whereas the amplitude of

More information

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley) The Black Hole in the Galactic Center Eliot Quataert (UC Berkeley) Why focus on the Galactic Center? The Best Evidence for a BH: M 3.6 10 6 M (M = mass of sun) It s s close! only ~ 10 55 Planck Lengths

More information

Simulating HI 21-cm Signal from EoR and Cosmic Dawn. Kanan K. Datta Presidency University, Kolkata

Simulating HI 21-cm Signal from EoR and Cosmic Dawn. Kanan K. Datta Presidency University, Kolkata Simulating HI 21-cm Signal from EoR and Cosmic Dawn Kanan K. Datta Presidency University, Kolkata Plan of the talk Why simulations?! Dynamic ranges of simulations! Basic flowchart for simulation! Various

More information

Low-Energy Cosmic Rays

Low-Energy Cosmic Rays Low-Energy Cosmic Rays Cosmic rays, broadly defined, are charged particles from outside the solar system. These can be electrons, protons, or ions; the latter two dominate the number observed. They are

More information

Radiative Processes in Astrophysics

Radiative Processes in Astrophysics Radiative Processes in Astrophysics 11. Synchrotron Radiation & Compton Scattering Eline Tolstoy http://www.astro.rug.nl/~etolstoy/astroa07/ Synchrotron Self-Absorption synchrotron emission is accompanied

More information

Cosmological Shocks and Their Signatures

Cosmological Shocks and Their Signatures Cosmological Shocks and Their Signatures Dongsu Ryu (Chungnam National U, Korea) Hyesung Kang (PNU, Korea), Renyi Ma (CNU, Korea), Jungyeon Cho (CNU, Korea), David Porter (U of Minnesota), T. W. Jones

More information

On (shock. shock) acceleration. Martin Lemoine. Institut d Astrophysique d. CNRS, Université Pierre & Marie Curie

On (shock. shock) acceleration. Martin Lemoine. Institut d Astrophysique d. CNRS, Université Pierre & Marie Curie On (shock ( shock) acceleration of ultrahigh energy cosmic rays Martin Lemoine Institut d Astrophysique d de Paris CNRS, Université Pierre & Marie Curie 1 Acceleration Hillas criterion log 10 (B/1 G) 15

More information

Accretion onto the Massive Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

Accretion onto the Massive Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley) Accretion onto the Massive Black Hole in the Galactic Center Eliot Quataert (UC Berkeley) Why focus on the Galactic Center? GR! Best evidence for a BH (stellar orbits) M 4x10 6 M Largest BH on the sky

More information

PoS(EXTRA-RADSUR2015)063

PoS(EXTRA-RADSUR2015)063 Constraining magnetic fields and particle acceleration processes in galaxy clusters: a joint VLA/LOFAR view on Coma and SKA perspectives Hamburger Sternwarte,Universität Hamburg, Gojenbergsweg 112,21029

More information

Observations of diffuse radio emission in cool-core clusters

Observations of diffuse radio emission in cool-core clusters Observations of diffuse radio emission in cool-core clusters Simona Giacintucci U.S. Naval Research Laboratory Maxim Markevitch (GSFC), Tracy Clarke (NRL), Tiziana Venturi (INAF-IRA), Rossella Cassano

More information

Course of Galaxies course organizer: Goeran Ostlin ESSAY. X-ray physics of Galaxy Clusters

Course of Galaxies course organizer: Goeran Ostlin ESSAY. X-ray physics of Galaxy Clusters Course of Galaxies course organizer: Goeran Ostlin ESSAY X-ray physics of Galaxy Clusters Student: Angela Adamo angela@astro.su.se fall 2006 Front:-The double cluster A1750. The contours of the XMM-Newton

More information

Large-Scale Structure

Large-Scale Structure Large-Scale Structure Evidence for Dark Matter Dark Halos in Ellipticals Hot Gas in Ellipticals Clusters Hot Gas in Clusters Cluster Galaxy Velocities and Masses Large-Scale Distribution of Galaxies 1

More information

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris Gamma rays from supernova remnants in clumpy environments!! Stefano Gabici APC, Paris Overview of the talk Galactic cosmic rays Gamma rays from supernova remnants Hadronic or leptonic? The role of gas

More information

Shocks in the ICM and the IPM

Shocks in the ICM and the IPM Shocks in the ICM and the IPM Tom Jones (University of Minnesota) 1 Outline Setting the stage for following talks The Interplanetary and Intracluster Media as Collisionless Plasmas Basic Introduction to

More information

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with Notes for Cosmology course, fall 2005 Dark Matter Prelude Cosmologists dedicate a great deal of effort to determine the density of matter in the universe Type Ia supernovae observations are consistent

More information

Michael Shull (University of Colorado)

Michael Shull (University of Colorado) Early Galaxies, Stars, Metals, and the Epoch of Reionization Michael Shull (University of Colorado) Far-IR Workshop (Pasadena, CA) May 29, 2008 Submillimeter Galaxies: only the brightest? How long? [dust

More information

Advanced Topics on Astrophysics: Lectures on dark matter

Advanced Topics on Astrophysics: Lectures on dark matter Advanced Topics on Astrophysics: Lectures on dark matter Jesús Zavala Franco e-mail: jzavalaf@uwaterloo.ca UW, Department of Physics and Astronomy, office: PHY 208C, ext. 38400 Perimeter Institute for

More information