Intergalactic Medium and Lyman-Alpha / Metal Absorbers

Size: px
Start display at page:

Download "Intergalactic Medium and Lyman-Alpha / Metal Absorbers"

Transcription

1 Intergalactic Medium and Lyman-Alpha / Metal Absorbers Image credit: Tom Abel & Ralf Kaehler (Stanford) Ji-hoon Kim (TAPIR)! Slides provided by: Phil Hopkins and Ji-hoon Kim

2 Today s Agenda What are there between the galaxies? How can we know this? How can we utilize QSO spectra to probe IGM? What absorbers? What do they say about Universe s history? Image credit: Abel & Kaehler

3 Quasi-Stellar Object (QSO) 3C 273: QSOs with strange emission lines later identified as extragalactic source (1963), with hydrogen lines receding at 0.158c Image credit: CSIRO

4 Quasi-Stellar Object (QSO) 3C 273: QSOs with strange emission lines later identified as extragalactic source (1963), with hydrogen lines receding at 0.158c Most likely an active galactic nucleus (AGN) at high-z outshining its host galaxy (LQSO > Lsun) class next week Spectra of QSOs look similar at all z (power from radio to γ-rays)

5 Quasi-Stellar Object Spectrum What is going on?

6 Intergalactic Medium Ji-hoon Kim /

7 Intergalactic Medium (IGM)! Essentially, baryons between galaxies! Its density evolution follows the LSS formation, and the potential wells defined by the DM, forming a web of filaments, the cocalled Cosmic Web! An important distinction is that this gas unaffiliated with galaxies samples the low-density regions, which are still in a linear regime! Gas falls into galaxies, where it serves as a replenishment fuel for star formation! Likewise, enriched gas is driven from galaxies through the radiatively and SN powered galactic winds, which chemically enriches the IGM! Chemical evolution of galaxies and IGM thus track each other! Star formation and AGN provide ionizing flux for the IGM! Image credit: Abel & Kaehler

8 Intergalactic Medium (IGM)! Essentially, baryons between galaxies! Its density evolution follows the LSS formation, and the potential wells defined by the DM, forming a web of filaments, the cocalled Cosmic Web! An important distinction is that this gas unaffiliated with galaxies samples the low-density regions, which are still in a linear regime! Gas falls into galaxies, where it serves as a replenishment fuel for star formation! Likewise, enriched gas is driven from galaxies through the radiatively and SN powered galactic winds, which chemically enriches the IGM! Chemical evolution of galaxies and IGM thus track each other! Star formation and AGN provide ionizing flux for the IGM!

9 IGM in Cosmic Energy Budget Fukugita & Peebles (2004)

10 Intergalactic Medium (IGM)! Essentially, baryons between galaxies! Its density evolution follows the LSS formation, and the potential wells defined by the DM, forming a web of filaments, the cocalled Cosmic Web! How can we probe these diffuse regions? An important distinction is that this gas unaffiliated with galaxies samples the low-density regions, which are still in a linear regime! Gas falls into galaxies, where it serves as a replenishment fuel for star formation! Likewise, enriched gas is driven from galaxies through the radiatively and SN powered galactic winds, which chemically enriches the IGM! Chemical evolution of galaxies and IGM thus track each other! Star formation and AGN provide ionizing flux for the IGM!

11 Cosmic Web: Numerical Simulations! Our lines of sight towards some luminous background sources intersect a range of gas densities, condensed clouds, galaxies! Cen & Simcoe (1997) (from R. Cen)!

12 QSO Absorption Line Systems! An alternative to searching for galaxies by their emission properties is to search for them by their absorption! Quasars are very luminous objects and have very blue colours which make them relatively easy to detect at high redshifts! Nowadays, GRB afterglows provide a useful alternative! Note that this has different selection effects than the traditional imaging surveys: not by luminosity or surface brightness, but by the cross section (size) and column density!

13 QSO Absorption Line Systems! An alternative to searching for galaxies by their emission properties is to search for them by their absorption! Quasars are very luminous objects and have very blue colours which make them relatively easy to detect at high redshifts! Nowadays, GRB afterglows provide a useful alternative! Note that this has different selection effects than the traditional imaging surveys: not by luminosity or surface brightness, but by the cross section (size) and column density! (1+zabs)λ0 (1+zQSO)λ0 Schematic of Ly-α absorbers

14 Lyman Series Emission & Absorption Transition between different ionization states of Hydrogen Ly-α Emission Ly-L Absorption

15 Animation: Lyman-Alpha Absorbers Ji-hoon Kim /

16 QSO Spectrum QSO at z=3.12 DLA LAF LLS QSO at z=3.17 Absorption lines (doublet) by C IV, rest wavelength = Å and Å

17 Types of QSO Absorption Lines! Lyman alpha forest:! Numerous, weak lines from low-density hydrogen clouds! Lyman alpha clouds are proto-galactic clouds, with low density, they are not galaxies (but some may be proto-dwarfs)! Lyman Limit Systems (LLS) and Damped Lyman alpha (DLA) absorption lines:! Rare, strong hydrogen absorption, high column densities! Coming from intervening galaxies! An intervening galaxies often produce both metal and damped Lyman alpha absorptions! Helium equivalents are seen in the far UV part of the spectrum! Metal absorption lines! Absorption lines from heavy elements, e.g., C, Si, Mg, Al, Fe! Most are from intervening galaxies! elements heavier than He produced by nuclear burning in stellar cores

18 How to Understand Absorption Profiles Ji-hoon Kim /

19 Fitting the Forest:! Absorption lines contain information about the intervening gas clumps They are not δ-functions! Kirkman & Tytler (1997)

20 Absorption Profile Broadening Broadening function of an absorption line contains two processes Natural Broadening (Lorentzian) by Uncertainty Principle and Collisions Doppler Broadening (Gaussian) by Maxwellian motions in absorbers asymptotes to δ(λ - λ0) when δk 0 and v = 0 Doppler Core Damping Wings Voigt Profile (dashed line)

21 Fitting the Forest:! Voigt profile best fit parameters = (lognhi, b) 1σ error Kirkman & Tytler (1997)

22 Equivalent Width When spectral resolution is too coarse, resort to equivalent width Unresolved Profile Equivalent Width Again, essentially a function of N and b (degenerate) where

23 Curve of Growth Different regimes - linear: - logarithmic: - square-root: logarithmic (flat) regime square-root (damping) regime Curve of growth between W and N (for a fixed b) linear regime Image credit: Churchill

24 Animation: Absorption Profile Ji-hoon Kim /

25 Measuring the Absorbers! We measure equivalent widths of the lines, and in some cases shapes of the line profiles! They are connected to the column densities via curves of growth! The shape of the line profile is also a function of the pressure, which causes a Doppler broadening, and also the global kinematics of the absorbing cloud!

26 Measuring the Absorbers! We measure equivalent widths of the lines, and in some cases shapes of the line profiles! irrespective of b They are connected to the column densities e.g. for Ly-α via curves line (f = 0.416) of growth! Square-root regime - linear regime: The shape of the line profile is also a function of the - square-root pressure, which regime: causes a Doppler broadening, and also the global kinematics of the absorbing cloud! Linear regime LAF DLA

27 Metallic Absorption Lines Metal doublets can be used to locate an absorber on COG e.g. see Galaxies at High Redshift, 2003, ISBN: Transition lines (doublet) by C IV,! λ0 = rest wavelength f = oscillator strength

28 Lyman-Alpha Absorbers: Types Ji-hoon Kim /

29 3 Types of Lyman-Alpha Absorbers QSO at z=3.12 DLA LAF LLS

30 Ly α Absorbers! Ly α Forest: N HI cm -2! Lines are unsaturated! Primordial metalicity < solar! Sizes are > galaxies! Ly Limit Systems (LLS): N HI cm -2! Ly α Lines are saturated! Z ~ 0.01 Zsun LAF DLA N HI is ufficient to absorb all ionising photons shortward of the Ly limit at 912Å in the restframe (i.e., like the UV-drop out or Lyman-break galaxies)! Damped Ly α (DLA) Systems: N HI cm -2! Line heavily saturated! Profile dominated by damped Lorentzian wings! Almost surely proto-disks or their building blocks!

31 Ly α Absorbers! Ly α Forest: N HI cm -2! Lines are unsaturated! Primordial metalicity < solar! Sizes are > galaxies! Ly Limit Systems (LLS): N HI cm -2! Ly α Lines are saturated! N HI is ufficient to absorb all ionising photons shortward of the Ly limit at 912Å in the restframe (i.e., like the UV-drop out or Lyman-break galaxies)! Damped Ly α (DLA) Systems: N HI cm -2! Line heavily saturated! LLS Optically thick to photons having energy above 13.6eV Profile dominated by damped Lorentzian wings! Almost surely proto-disks or their building blocks! U-drop out: visible in B-band but not in U-band LBGs: break at 912 Å, typical of gas-rich galaxies

32 Ly α Absorbers! Ly α Forest: N HI cm -2! Lines are unsaturated! Primordial metalicity < solar! Sizes are > galaxies! DLA Ly Limit Systems (LLS): N HI cm -2! Ly α Lines are saturated! N HI is ufficient to absorb all ionising photons shortward of the Ly limit at 912Å in the restframe (i.e., like the UV-drop out or Lyman-break galaxies)! Damped Ly α (DLA) Systems: N HI cm -2! Line heavily saturated! Comparable to present-day galactic ISM; Z ~ 0.1 Zsun Profile dominated by damped Lorentzian wings! Almost surely proto-disks or their building blocks!

33 Absorber Cross Sections! Steidel (1993) LLS: Likely an extended gas halo of a bright galaxy DLA: Likely a thick (proto-)disk Column density of neutral H is higher at smaller radii, so LLS and DLA absorbers are rare!! Metals are ejected out to galactic coronae, and their column densities and ionization states depend on the radius! LAF: Not necessarily associated with a galaxy

34 Distribution of Column Densities! f (N HI ) ~ N HI -1.7! Ly α Forest! LLS! DLA! Hu et al. (1995), Storrie-Lombardi & Wolfe (2000)

35 Lyman-Alpha Absorbers: Number Evolution in Time Ji-hoon Kim /

36 Evolution of Ly α Absorbers! (from Rauch 1998, ARAA, 36, 267)! Essentially a function of z and σ(z) deceleration parameter q0 = (1/2)Ω0 (NB: this is for Λ = 0 cosmology!)! Typical γ ~ 1.8 (at high z s)!

37 Evolution of Ly α Absorbers! The numbers are higher at higher z s, but it is not yet clear how much of the effect is due to the number density evolution, and how much to a possible cross section evoluton - nor why is there a break at z ~ 1.5! z = 1.5 γ = 1.85 γ = 0.5 Lu et al. (1991), Bechtold (1994), Weymann et al. (1998)

38 More Recent Plot γ = 1.85 Janknecht (2006) γ = 0.5 z = 1.5 Lu et al. (1991), Bechtold (1994), Weymann et al. (1998) γ = 2.47 γ = 0.13

39 Gunn-Peterson Test Ji-hoon Kim /

40 The Gunn-Peterson Effect! Even a slight amount of neutral hydrogen in the early IGM can completely absorb the flux blueward of Lyα! Fan et al. (2006) Thus, if there is a significant amount of hydrogen in IGM, it must be very highly ionized! (from Fan et al. 2006, ARAA, 44, 415)!

41 Clumpy Absorbers at low-z QSO at z=3.12 DLA LAF LLS QSO at z=3.17 Other than the clumps, the rest of the IGM is pre-ionized before the light arrives But is this true at all redshift?

42 QSO Spectra at z > 6 Spectra of the first z > 6 quasars discovered in 2001 (Becker et al.) GP trough Strong Ly-α absorption right blueward of Ly-α emission peak for a z = 6.28 quasar (Gunn-Peterson trough)! suggests that the IGM was not ionized until z ~ 6 Becker et al. (2001)

43 Gunn-Peterson Troughs at z > 6 Universe approaches the end of reionization epoch at z ~ 6 Fan et al. (2003) Fan et al. (2006) GP trough

44 Reionization Completed By z ~ 6 Universe initially ionized after Big Bang became neutral after recombination at z ~ 1100, and the cosmic dark age followed First stars and first galaxies illuminate and reionize" the IGM began at z ~ 15 and completed at z ~ 6 (epoch of reionization) H II regions (bubbles/islands) growing in size Image credit: NASA/ESA

45 Reionization Completed By z ~ 6 Alvarez et al. (2009)

46 Transmitted Lyα Flux vs. Redshift! (from Fan et al. 2006, ARAA, 44, 415)!

47 Metallic Line Absorbers Ji-hoon Kim /

48 The Absorber - Galaxy Connection! Metallic line absorbers are generally believed to be associated with galaxies (after all, stars must have made the metals)! Origin of metals in galaxies (and IGM) ejecta from supernovae explosion An example with multiple metallic line systems:! Steidel et al. (1997) Steidel et al. (1997)

49 Galaxy Counterpart of Metal Absorbers A plausible galaxy counterpart near the QSO s line of sight is identified for nearly every metallic absorption lines Shen et al. (2013), simulation of the growth of metal-enriched bubbles

50 Clustering of Metallic Absorbers! Metallic absorbers! Metallic absorbers are found to cluster in redshift space, even at high z s, while Ly α clouds do not. This further strengthens their association with galaxies! Another evidence that metallic line absorbers are linked to galaxies Ly α clouds! Fernandez-Soto et al. (1996), two-point correlation function of C IV and Ly- α absorbers

51 Metal Abundances of DLAs DLAs always cause metallic absorption, but the reverse is not true DLAs are galactic (proto-)disks surrounded by media of metal absorbers (metal-enriched halo)! DLAs are less metal-rich than MW disk stars, but more so than halo stars Pettini et al. (1997), DLAs + Milky Way stars

52 Metallic Line Absorbers: Number Evolution in Time Ji-hoon Kim /

53 Number Density Evolution of Absorbers! While the H I seems to decline in time (being burned out in stars?), the density of metals seems to be increasing, as one may expect! Storrie-Lombardi & Wolfe (2001), Stengler-Larrea et al. (1995), York et al. (1991)

54 Solar!! Chemical Enrichment Evolution of DLA Systems! (Wolfe et al.)!

55 Numerical Simulations of IGM! DLA systems as the densest knots in the cosmic web!! However, the simulations cannot resolve whether these are rotating (proto)disks!! still largely true after ~20 years (from Katz et al. 1996)!

56 Metal Enrichment of IGM Starbursts can drive metal-enriched galactic winds out to IGM ejected gas may again accrete onto the galaxy Movie credit: Abel, Wise & Kaehler M82 Image credit: Smith, Gallagher & Westmoquette, BVI continuum (HST) + Hα (magenta, WYIN)

57 Metal Enrichment of IGM Starbursts can drive metal-enriched galactic winds out to IGM ejected gas may again accrete onto the galaxy Shen et al. (2013), simulation of the growth of metal-enriched bubbles M82 Image credit: Smith, Gallagher & Westmoquette, BVI continuum (HST) + Hα (magenta, WYIN)

58 IGM Summary! Intergalactic medium (IGM) is the gas associated with the large scale structure, rather than galaxies themselves; e.g., along the still collapsing filaments, thus the cosmic web! However, large column density hydrogen systems, and strong metallic absorbers are always associated with galaxies! It is condensed into clouds, the smallest of which form the Ly α forest! It is ionized by the UV radiation from star forming galaxies and quasars! It is metal-enriched by the galactic winds, which expel the gas already processed through stars; thus, it tracks the chemical evolution of galaxies! Studied through absorption spectra against background continuum sources, e.g., quasars or GRB afterglows! Thank You!

59 [Supplemental Slides] Ji-hoon Kim /

60 The Forest Thickens!

61 Estimating the Evolution of Gas Density! (from Wolfe et al. 2005, ARAA, 43, 861)!

62 Evolution of Neutral Gas!

63 Galaxy Counterparts of DLA Systems! Several examples are known with Lyα line emission! Properties (size, luminosity, SFR) are typical of field galaxies at such redshifts, and consistent with being progenitors of z ~ 0 disks!

64 But different types of systems may be evolving in different ways! Pettini (1999) (from M. Pettini)!

Galaxies 626. Lecture 5

Galaxies 626. Lecture 5 Galaxies 626 Lecture 5 Galaxies 626 The epoch of reionization After Reionization After reionization, star formation was never the same: the first massive stars produce dust, which catalyzes H2 formation

More information

Lecture 27 The Intergalactic Medium

Lecture 27 The Intergalactic Medium Lecture 27 The Intergalactic Medium 1. Cosmological Scenario 2. The Ly Forest 3. Ionization of the Forest 4. The Gunn-Peterson Effect 5. Comment on HeII Reionization References J Miralda-Escude, Science

More information

Galaxies 626. Lecture 8 The universal metals

Galaxies 626. Lecture 8 The universal metals Galaxies 626 Lecture 8 The universal metals The Spectra of Distant Galaxies Distant Galaxy Stellar Continuum Emission Observer Scattering by clouds of HI in the IGM at λline* (1+zcloud) Forest of absorption

More information

Probing the End of Dark Ages with High-redshift Quasars. Xiaohui Fan University of Arizona Dec 14, 2004

Probing the End of Dark Ages with High-redshift Quasars. Xiaohui Fan University of Arizona Dec 14, 2004 Probing the End of Dark Ages with High-redshift Quasars Xiaohui Fan University of Arizona Dec 14, 2004 High-redshift Quasars and the End of Cosmic Dark Ages Existence of SBHs at the end of Dark Ages BH

More information

Age-redshift relation. The time since the big bang depends on the cosmological parameters.

Age-redshift relation. The time since the big bang depends on the cosmological parameters. Age-redshift relation The time since the big bang depends on the cosmological parameters. Lyman Break Galaxies High redshift galaxies are red or absent in blue filters because of attenuation from the neutral

More information

2 Quasar Absorption Spectrum Basics

2 Quasar Absorption Spectrum Basics Quasar Absorbers and the InterGalactic Medium Simon C. Reynolds 8 March 2007 Introduction When we measure the spectra of quasars, we see many absorption lines superimposed on the quasars own emission spectra.

More information

High Redshift Universe

High Redshift Universe High Redshift Universe Finding high z galaxies Lyman break galaxies (LBGs) Photometric redshifts Deep fields Starburst galaxies Extremely red objects (EROs) Sub-mm galaxies Lyman α systems Finding high

More information

Atomic Physics and the Kramers-Heisenberg Formula for Ly Alpha. Hee-Won Lee Department of Physics and Astrnomy Sejong University January 24, 2019

Atomic Physics and the Kramers-Heisenberg Formula for Ly Alpha. Hee-Won Lee Department of Physics and Astrnomy Sejong University January 24, 2019 Atomic Physics and the Kramers-Heisenberg Formula for Ly Alpha Hee-Won Lee Department of Physics and Astrnomy Sejong University January 24, 2019 Contents 1. Introduction Quasar Absorption Systems and Cosmic

More information

Asymmetric Deviation of the Cross Section from the Lorentzian Around Ly Alpha

Asymmetric Deviation of the Cross Section from the Lorentzian Around Ly Alpha Asymmetric Deviation of the Cross Section from the Lorentzian Around Ly Alpha Hee-Won Lee in collaboration with Seok-Jun Chang Department of Physics and Astronomy, Sejong University, Seoul, Korea March

More information

Illuminating the Dark Ages: Luminous Quasars in the Epoch of Reionisation. Bram Venemans MPIA Heidelberg

Illuminating the Dark Ages: Luminous Quasars in the Epoch of Reionisation. Bram Venemans MPIA Heidelberg Illuminating the Dark Ages: Luminous Quasars in the Epoch of Reionisation Bram Venemans MPIA Heidelberg Workshop The Reionization History of the Universe Bielefeld University, March 8-9 2018 History of

More information

Astro 501: Radiative Processes Lecture 34 April 19, 2013

Astro 501: Radiative Processes Lecture 34 April 19, 2013 Astro 501: Radiative Processes Lecture 34 April 19, 2013 Announcements: Problem Set 10 due 5pm today Problem Set 11 last one! due Monday April 29 Last time: absorption line formation Q: at high resolution,

More information

Lecture 9. Quasars, Active Galaxies and AGN

Lecture 9. Quasars, Active Galaxies and AGN Lecture 9 Quasars, Active Galaxies and AGN Quasars look like stars but have huge redshifts. object with a spectrum much like a dim star highly red-shifted enormous recessional velocity huge distance (Hubble

More information

Quasar Absorption Lines

Quasar Absorption Lines Tracing the Cosmic Web with Diffuse Gas DARK MATTER GAS STARS NEUTRAL HYDROGEN Quasar Absorption Lines use quasars as bright beacons for probing intervening gaseous material can study both galaxies and

More information

Really, what universe do we live in? White dwarfs Supernova type Ia Accelerating universe Cosmic shear Lyman α forest

Really, what universe do we live in? White dwarfs Supernova type Ia Accelerating universe Cosmic shear Lyman α forest Really, what universe do we live in? White dwarfs Supernova type Ia Accelerating universe Cosmic shear Lyman α forest White dwarf Core of solar mass star No energy from fusion or gravitational contraction

More information

Lecture 2 Interstellar Absorption Lines: Line Radiative Transfer

Lecture 2 Interstellar Absorption Lines: Line Radiative Transfer Lecture 2 Interstellar Absorption Lines: Line Radiative Transfer 1. Atomic absorption lines 2. Application of radiative transfer to absorption & emission 3. Line broadening & curve of growth 4. Optical/UV

More information

The Intergalactic Medium: Overview and Selected Aspects

The Intergalactic Medium: Overview and Selected Aspects The Intergalactic Medium: Overview and Selected Aspects Draft Version Tristan Dederichs June 18, 2018 Contents 1 Introduction 2 2 The IGM at high redshifts (z > 5) 2 2.1 Early Universe and Reionization......................................

More information

DLAs Probing Quasar Host Galaxies. Hayley Finley P. Petitjean, P. Noterdaeme, I. Pâris + SDSS III BOSS Collaboration 2013 A&A

DLAs Probing Quasar Host Galaxies. Hayley Finley P. Petitjean, P. Noterdaeme, I. Pâris + SDSS III BOSS Collaboration 2013 A&A DLAs Probing Quasar Host Galaxies Hayley Finley P. Petitjean, P. Noterdaeme, I. Pâris + SDSS III BOSS Collaboration 2013 A&A 558 111 Outline Feedback mechanisms in QSO host galaxies Strong DLAs at zqso

More information

BUILDING GALAXIES. Question 1: When and where did the stars form?

BUILDING GALAXIES. Question 1: When and where did the stars form? BUILDING GALAXIES The unprecedented accuracy of recent observations of the power spectrum of the cosmic microwave background leaves little doubt that the universe formed in a hot big bang, later cooling

More information

The Probes and Sources of Cosmic Reionization Francesco Haardt University of Como INFN, Milano-Bicocca

The Probes and Sources of Cosmic Reionization Francesco Haardt University of Como INFN, Milano-Bicocca 1 The Probes and Sources of Cosmic Reionization Francesco Haardt University of Insubria@Lake Como INFN, Milano-Bicocca 2 TALK OUTLINE 1. Dark Ages and Reionization 2. Observations: QSO Absorption Lines

More information

Galaxies 626. Lecture 9 Metals (2) and the history of star formation from optical/uv observations

Galaxies 626. Lecture 9 Metals (2) and the history of star formation from optical/uv observations Galaxies 626 Lecture 9 Metals (2) and the history of star formation from optical/uv observations Measuring metals at high redshift Metals at 6 How can we measure the ultra high z star formation? One robust

More information

2. Active Galaxies. 2.1 Taxonomy 2.2 The mass of the central engine 2.3 Models of AGNs 2.4 Quasars as cosmological probes.

2. Active Galaxies. 2.1 Taxonomy 2.2 The mass of the central engine 2.3 Models of AGNs 2.4 Quasars as cosmological probes. 2. Active Galaxies 2.1 Taxonomy 2.2 The mass of the central engine 2.3 Models of AGNs 2.4 Quasars as cosmological probes Read JL chapter 3 Active galaxies: interface with JL All of JL chapter 3 is examinable,

More information

GRB Host Galaxies and the Uses of GRBs in Cosmology

GRB Host Galaxies and the Uses of GRBs in Cosmology GRB Host Galaxies and the Uses of GRBs in Cosmology S. G. Djorgovski for the Caltech-NRAO-CARA GRB Collaboration: S.R. Kulkarni, D.A. Frail, F.A. Harrison, R. Sari, J.S. Bloom, E. Berger, P. Price, D.

More information

Overview. Metals in the Intergalactic Medium at z 6: Pop III Stars or Normal Star-Forming Galaxies? p.2/26

Overview. Metals in the Intergalactic Medium at z 6: Pop III Stars or Normal Star-Forming Galaxies? p.2/26 p.1/26 Overview Metals in the Intergalactic Medium at z 6: Pop III Stars or Normal Star-Forming Galaxies? p.2/26 Overview Metals in the Intergalactic Medium at z 6: Pop III Stars or Normal Star-Forming

More information

Diffuse Interstellar Medium

Diffuse Interstellar Medium Diffuse Interstellar Medium Basics, velocity widths H I 21-cm radiation (emission) Interstellar absorption lines Radiative transfer Resolved Lines, column densities Unresolved lines, curve of growth Abundances,

More information

Formation of z~6 Quasars from Hierarchical Galaxy Mergers

Formation of z~6 Quasars from Hierarchical Galaxy Mergers Formation of z~6 Quasars from Hierarchical Galaxy Mergers Yuexing Li et al Presentation by: William Gray Definitions and Jargon QUASAR stands for QUASI-stellAR radio source Extremely bright and active

More information

Outline. Walls, Filaments, Voids. Cosmic epochs. Jeans length I. Jeans length II. Cosmology AS7009, 2008 Lecture 10. λ =

Outline. Walls, Filaments, Voids. Cosmic epochs. Jeans length I. Jeans length II. Cosmology AS7009, 2008 Lecture 10. λ = Cosmology AS7009, 2008 Lecture 10 Outline Structure formation Jeans length, Jeans mass Structure formation with and without dark matter Cold versus hot dark matter Dissipation The matter power spectrum

More information

Isotropy and Homogeneity

Isotropy and Homogeneity Cosmic inventory Isotropy and Homogeneity On large scales the Universe is isotropic (looks the same in all directions) and homogeneity (the same average density at all locations. This is determined from

More information

Astr 2320 Thurs. April 27, 2017 Today s Topics. Chapter 21: Active Galaxies and Quasars

Astr 2320 Thurs. April 27, 2017 Today s Topics. Chapter 21: Active Galaxies and Quasars Astr 2320 Thurs. April 27, 2017 Today s Topics Chapter 21: Active Galaxies and Quasars Emission Mechanisms Synchrotron Radiation Starburst Galaxies Active Galactic Nuclei Seyfert Galaxies BL Lac Galaxies

More information

Gas 1: Molecular clouds

Gas 1: Molecular clouds Gas 1: Molecular clouds > 4000 known with masses ~ 10 3 to 10 5 M T ~ 10 to 25 K (cold!); number density n > 10 9 gas particles m 3 Emission bands in IR, mm, radio regions from molecules comprising H,

More information

Abundance Constraints on Early Chemical Evolution. Jim Truran

Abundance Constraints on Early Chemical Evolution. Jim Truran Abundance Constraints on Early Chemical Evolution Jim Truran Astronomy and Astrophysics Enrico Fermi Institute University of Chicago Argonne National Laboratory MLC Workshop Probing Early Structure with

More information

Intergalactic UV Background Radiation Field. Snigdha Das and Pushpa Khare, Physics Department, Utkal University Bhubaneswar, , India

Intergalactic UV Background Radiation Field. Snigdha Das and Pushpa Khare, Physics Department, Utkal University Bhubaneswar, , India J. Astrophys. Astr. (1997) 18, 133 143 Intergalactic UV Background Radiation Field Snigdha Das and Pushpa Khare, Physics Department, Utkal University Bhubaneswar, 751004, India Received 1997 May 13; accepted

More information

The X-ray absorption in GRB afterglows

The X-ray absorption in GRB afterglows The X-ray absorption in GRB afterglows Darach Watson DARK Cosmology Centre Niels Bohr Institute University of Copenhagen Overview Downturn at low energies deviating from a power-law Very similar to photoelectric

More information

The Evolution of High-redshift Quasars

The Evolution of High-redshift Quasars The Evolution of High-redshift Quasars The Properties of Early Universe as Revealed by 50 Years of Quasar Research Donald Schneider Penn State Department of Astronomy and Astrophysics September 2013 The

More information

arxiv:astro-ph/ v4 8 Jan 2003

arxiv:astro-ph/ v4 8 Jan 2003 1 Spectral signature of cosmological infall of gas around the first quasars Rennan Barkana and Abraham Loeb arxiv:astro-ph/0209515v4 8 Jan 2003 School of Physics and Astronomy, Tel Aviv University, Tel

More information

M.Phys., M.Math.Phys., M.Sc. MTP Radiative Processes in Astrophysics and High-Energy Astrophysics

M.Phys., M.Math.Phys., M.Sc. MTP Radiative Processes in Astrophysics and High-Energy Astrophysics M.Phys., M.Math.Phys., M.Sc. MTP Radiative Processes in Astrophysics and High-Energy Astrophysics Professor Garret Cotter garret.cotter@physics.ox.ac.uk Office 756 in the DWB & Exeter College Radiative

More information

How Galaxies Get Their Gas. Jason Tumlinson STScI Hubble Science Briefing December 9, 2010

How Galaxies Get Their Gas. Jason Tumlinson STScI Hubble Science Briefing December 9, 2010 How Galaxies Get Their Gas Jason Tumlinson STScI Hubble Science Briefing December 9, 2010 Astronomy asks some Big Questions... 2 How Do Galaxies Form? Three Puzzles 1. Why are some galaxies blue and star-forming

More information

Energy Source for Active Galactic Nuclei

Energy Source for Active Galactic Nuclei Quasars Quasars are small, extremely luminous, extremely distant galactic nuclei Bright radio sources Name comes from Quasi-Stellar Radio Source, as they appeared to be stars! Can have clouds of gas near

More information

Where are the missing baryons? Craig Hogan SLAC Summer Institute 2007

Where are the missing baryons? Craig Hogan SLAC Summer Institute 2007 Where are the missing baryons? Craig Hogan SLAC Summer Institute 2007 Reasons to care Concordance of many measures of baryon number (BBN, CMB,.) Evolution of our personal baryons (galaxies, stars, planets,

More information

Astro-2: History of the Universe

Astro-2: History of the Universe Astro-2: History of the Universe Lecture 13; May 30 2013 Previously on astro-2 Energy and mass are equivalent through Einstein s equation and can be converted into each other (pair production and annihilations)

More information

Mass loss from stars

Mass loss from stars Mass loss from stars Can significantly affect a star s evolution, since the mass is such a critical parameter (e.g., L ~ M 4 ) Material ejected into interstellar medium (ISM) may be nuclear-processed:

More information

COBE/DIRBE Satellite. Black Body T=2.725 K. Tuesday, November 27, 12

COBE/DIRBE Satellite. Black Body T=2.725 K. Tuesday, November 27, 12 COBE/DIRBE Satellite Black Body T=2.725 K COBE/DIRBE Satellite Thermal component subtracted, ΔT=3.353 mk COBE/DIRBE Satellite Dipole component subtracted, ΔT = 18 μk Origin of Structure WMAP image Fluctuations

More information

Galaxy Formation, Reionization, the First Stars and Quasars

Galaxy Formation, Reionization, the First Stars and Quasars Ay 127 Galaxy Formation, Reionization, the First Stars and Quasars Coral Wheeler Galaxy Formation The early stages of galaxy evolution no clear-cut boundary has two principal aspects: assembly of the mass,

More information

A100H Exploring the Universe: Quasars, Dark Matter, Dark Energy. Martin D. Weinberg UMass Astronomy

A100H Exploring the Universe: Quasars, Dark Matter, Dark Energy. Martin D. Weinberg UMass Astronomy A100H Exploring the :, Dark Matter, Dark Energy Martin D. Weinberg UMass Astronomy astron100h-mdw@courses.umass.edu April 19, 2016 Read: Chaps 20, 21 04/19/16 slide 1 BH in Final Exam: Friday 29 Apr at

More information

Intergalactic Medium Piero Madau. Encyclopedia of Astronomy & Astrophysics P. Murdin

Intergalactic Medium Piero Madau. Encyclopedia of Astronomy & Astrophysics P. Murdin eaa.iop.org DOI: 10.1888/0333750888/1821 Intergalactic Medium Piero Madau From Encyclopedia of Astronomy & Astrophysics P. Murdin IOP Publishing Ltd 2006 ISBN: 0333750888 Institute of Physics Publishing

More information

Feedback and Galaxy Formation

Feedback and Galaxy Formation Heating and Cooling in Galaxies and Clusters Garching August 2006 Feedback and Galaxy Formation Simon White Max Planck Institute for Astrophysics Cluster assembly in ΛCDM Gao et al 2004 'Concordance'

More information

Galaxy Formation and Evolution

Galaxy Formation and Evolution Galaxy Formation and Evolution Houjun Mo Department of Astronomy, University of Massachusetts 710 North Pleasant Str., Amherst, MA 01003-9305, USA Frank van den Bosch Department of Physics & Astronomy,

More information

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines! Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines Idealized 21cm spectra Example observed 21cm spectra HI densities

More information

Formation and growth of galaxies in the young Universe: progress & challenges

Formation and growth of galaxies in the young Universe: progress & challenges Obergurgl. April 2014 Formation and growth of galaxies in the young Universe: progress & challenges Simon White Max Planck Institute for Astrophysics Ly α forest spectra and small-scale initial structure

More information

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization Supernovae Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization 1 Supernova Basics Supernova (SN) explosions in our Galaxy and others

More information

Dust [12.1] Star clusters. Absorb and scatter light Effect strongest in blue, less in red, zero in radio.

Dust [12.1] Star clusters. Absorb and scatter light Effect strongest in blue, less in red, zero in radio. More abs. Dust [1.1] kev V Wavelength Optical Infra-red More abs. Wilms et al. 000, ApJ, 54, 914 No grains Grains from http://www.astro.princeton.edu/~draine/dust/dustmix.html See DraineH 003a, column

More information

Galaxies with Active Nuclei. Active Galactic Nuclei Seyfert Galaxies Radio Galaxies Quasars Supermassive Black Holes

Galaxies with Active Nuclei. Active Galactic Nuclei Seyfert Galaxies Radio Galaxies Quasars Supermassive Black Holes Galaxies with Active Nuclei Active Galactic Nuclei Seyfert Galaxies Radio Galaxies Quasars Supermassive Black Holes Active Galactic Nuclei About 20 25% of galaxies do not fit well into Hubble categories

More information

Gaia Revue des Exigences préliminaires 1

Gaia Revue des Exigences préliminaires 1 Gaia Revue des Exigences préliminaires 1 Global top questions 1. Which stars form and have been formed where? - Star formation history of the inner disk - Location and number of spiral arms - Extent of

More information

Active Galaxies & Quasars

Active Galaxies & Quasars Active Galaxies & Quasars Normal Galaxy Active Galaxy Galactic Nuclei Bright Active Galaxy NGC 5548 Galaxy Nucleus: Exact center of a galaxy and its immediate surroundings. If a spiral galaxy, it is the

More information

Lecture 2 Line Radiative Transfer for the ISM

Lecture 2 Line Radiative Transfer for the ISM Lecture 2 Line Radiative Transfer for the ISM Absorption lines in the optical & UV Equation of transfer Absorption & emission coefficients Line broadening Equivalent width and curve of growth Observations

More information

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy Chapter 13, Part 1: Lower Main Sequence Stars Define red dwarf, and describe the internal dynamics and later evolution of these low-mass stars. Appreciate the time scale of late-stage stellar evolution

More information

Gas in and around z > 2 galaxies

Gas in and around z > 2 galaxies Gas in and around z > 2 galaxies Michele Fumagalli August 2010 Santa Cruz Xavier Prochaska Daniel Kasen Avishai Dekel In collaboration with: Daniel Ceverino Joel Primack Gas in galaxies from theory Gas

More information

Michael Shull (University of Colorado)

Michael Shull (University of Colorado) Early Galaxies, Stars, Metals, and the Epoch of Reionization Michael Shull (University of Colorado) Far-IR Workshop (Pasadena, CA) May 29, 2008 Submillimeter Galaxies: only the brightest? How long? [dust

More information

Black Holes and Active Galactic Nuclei

Black Holes and Active Galactic Nuclei Black Holes and Active Galactic Nuclei A black hole is a region of spacetime from which gravity prevents anything, including light, from escaping. The theory of general relativity predicts that a sufficiently

More information

Stars and their properties: (Chapters 11 and 12)

Stars and their properties: (Chapters 11 and 12) Stars and their properties: (Chapters 11 and 12) To classify stars we determine the following properties for stars: 1. Distance : Needed to determine how much energy stars produce and radiate away by using

More information

Galaxy formation and evolution II. The physics of galaxy formation

Galaxy formation and evolution II. The physics of galaxy formation Galaxy formation and evolution II. The physics of galaxy formation Gabriella De Lucia Astronomical Observatory of Trieste Outline: ü Observational properties of galaxies ü Galaxies and Cosmology ü Gas

More information

Astrochemistry. Lecture 10, Primordial chemistry. Jorma Harju. Department of Physics. Friday, April 5, 2013, 12:15-13:45, Lecture room D117

Astrochemistry. Lecture 10, Primordial chemistry. Jorma Harju. Department of Physics. Friday, April 5, 2013, 12:15-13:45, Lecture room D117 Astrochemistry Lecture 10, Primordial chemistry Jorma Harju Department of Physics Friday, April 5, 2013, 12:15-13:45, Lecture room D117 The first atoms (1) SBBN (Standard Big Bang Nucleosynthesis): elements

More information

Astronomy 730. Evolution

Astronomy 730. Evolution Astronomy 730 Evolution Outline } Evolution } Formation of structure } Processes on the galaxy scale } Gravitational collapse, merging, and infall } SF, feedback and chemical enrichment } Environment }

More information

Lecture 11: Ages and Metalicities from Observations A Quick Review

Lecture 11: Ages and Metalicities from Observations A Quick Review Lecture 11: Ages and Metalicities from Observations A Quick Review Ages from main-sequence turn-off stars Main sequence lifetime: lifetime = fuel / burning rate $ M " MS = 7 #10 9 % & M $ L " MS = 7 #10

More information

Reionization constraints post Planck-15

Reionization constraints post Planck-15 Reionization constraints post Planck-15 Tirthankar Roy Choudhury National Centre for Radio Astrophysics Tata Institute of Fundamental Research Pune CMB Spectral Distortions from Cosmic Baryon Evolution

More information

The Interstellar Medium

The Interstellar Medium http://www.strw.leidenuniv.nl/~pvdwerf/teaching/ The Interstellar Medium Lecturer: Dr. Paul van der Werf Fall 2014 Oortgebouw 565, ext 5883 pvdwerf@strw.leidenuniv.nl Assistant: Kirstin Doney Huygenslaboratorium

More information

Quasars and AGN. What are quasars and how do they differ from galaxies? What powers AGN s. Jets and outflows from QSOs and AGNs

Quasars and AGN. What are quasars and how do they differ from galaxies? What powers AGN s. Jets and outflows from QSOs and AGNs Goals: Quasars and AGN What are quasars and how do they differ from galaxies? What powers AGN s. Jets and outflows from QSOs and AGNs Discovery of Quasars Radio Observations of the Sky Reber (an amateur

More information

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab Dark Matter ASTR 2120 Sarazin Bullet Cluster of Galaxies - Dark Matter Lab Mergers: Test of Dark Matter vs. Modified Gravity Gas behind DM Galaxies DM = location of gravity Gas = location of most baryons

More information

Star systems like our Milky Way. Galaxies

Star systems like our Milky Way. Galaxies Galaxies Star systems like our Milky Way Galaxies Contain a few thousand to tens of billions of stars,as well as varying amounts of gas and dust Large variety of shapes and sizes Gas and Dust in

More information

The First Galaxies. Erik Zackrisson. Department of Astronomy Stockholm University

The First Galaxies. Erik Zackrisson. Department of Astronomy Stockholm University The First Galaxies Erik Zackrisson Department of Astronomy Stockholm University Outline The first galaxies what, when, why? What s so special about them? Why are they important for cosmology? How can we

More information

MApping the Most Massive Overdensity Through Hydrogen (MAMMOTH) Zheng Cai (UCSC)

MApping the Most Massive Overdensity Through Hydrogen (MAMMOTH) Zheng Cai (UCSC) MApping the Most Massive Overdensity Through Hydrogen (MAMMOTH) Zheng Cai (UCSC) IGM Conference From Wall to Web, Berlin, 2016 IGM tomography (Lee+ 14, 15, 16; Stark+ 15ab): IGM Tomography a reconstruction

More information

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization Supernovae Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization 1 Supernova Basics Supernova (SN) explosions in our Galaxy and others

More information

Orianne ROOS CEA-Saclay Collaborators : F. Bournaud, J. Gabor, S. Juneau

Orianne ROOS CEA-Saclay Collaborators : F. Bournaud, J. Gabor, S. Juneau Orianne ROOS CEA-Saclay Collaborators : F. Bournaud, J. Gabor, S. Juneau Bachelor of Physics, Master of Astrophysics Université de Strasbourg PhD, Université Paris-Diderot Observatoire de Strasbourg Les

More information

Lyman Alpha Forest E NCYCLOPEDIA OF A STRONOMY AND A STROPHYSICS

Lyman Alpha Forest E NCYCLOPEDIA OF A STRONOMY AND A STROPHYSICS Lyman Alpha Forest The Lyman alpha forest is an absorption phenomenon seen in the spectra of high redshift QSOs and galaxies (figure 1). It is the only direct observational evidence we have of the existence

More information

Outline: Part II. The end of the dark ages. Structure formation. Merging cold dark matter halos. First stars z t Univ Myr.

Outline: Part II. The end of the dark ages. Structure formation. Merging cold dark matter halos. First stars z t Univ Myr. Outline: Part I Outline: Part II The end of the dark ages Dark ages First stars z 20 30 t Univ 100 200 Myr First galaxies z 10 15 t Univ 300 500 Myr Current observational limit: HST and 8 10 m telescopes

More information

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of?

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of? Some thoughts The Milky Way Galaxy How big is it? What does it look like? How did it end up this way? What is it made up of? Does it change 2 3 4 5 This is not a constant zoom The Milky Way Almost everything

More information

Lecture Outlines. Chapter 25. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 25. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 25 Astronomy Today 7th Edition Chaisson/McMillan Chapter 25 Galaxies and Dark Matter Units of Chapter 25 25.1 Dark Matter in the Universe 25.2 Galaxy Collisions 25.3 Galaxy Formation

More information

LECTURE 1: Introduction to Galaxies. The Milky Way on a clear night

LECTURE 1: Introduction to Galaxies. The Milky Way on a clear night LECTURE 1: Introduction to Galaxies The Milky Way on a clear night VISIBLE COMPONENTS OF THE MILKY WAY Our Sun is located 28,000 light years (8.58 kiloparsecs from the center of our Galaxy) in the Orion

More information

Active Galactic Nuclei - Zoology

Active Galactic Nuclei - Zoology Active Galactic Nuclei - Zoology Normal galaxy Radio galaxy Seyfert galaxy Quasar Blazar Example Milky Way M87, Cygnus A NGC 4151 3C273 BL Lac, 3C279 Galaxy Type spiral elliptical, lenticular spiral irregular

More information

Introduction to AGN. General Characteristics History Components of AGN The AGN Zoo

Introduction to AGN. General Characteristics History Components of AGN The AGN Zoo Introduction to AGN General Characteristics History Components of AGN The AGN Zoo 1 AGN What are they? Active galactic nucleus compact object in the gravitational center of a galaxy that shows evidence

More information

The X-ray absorption in GRB afterglows

The X-ray absorption in GRB afterglows The X-ray absorption in GRB afterglows Darach Watson DARK Cosmology Centre Niels Bohr Institute University of Copenhagen Overview Downturn at low energies deviating from a power-law Very similar to photoelectric

More information

Chapter 16 Lecture. The Cosmic Perspective Seventh Edition. Star Birth Pearson Education, Inc.

Chapter 16 Lecture. The Cosmic Perspective Seventh Edition. Star Birth Pearson Education, Inc. Chapter 16 Lecture The Cosmic Perspective Seventh Edition Star Birth 2014 Pearson Education, Inc. Star Birth The dust and gas between the star in our galaxy is referred to as the Interstellar medium (ISM).

More information

Seeing Through the Trough: Detecting Lyman Alpha from Early Generations of Galaxies

Seeing Through the Trough: Detecting Lyman Alpha from Early Generations of Galaxies Seeing Through the Trough: Detecting Lyman Alpha from Early Generations of Galaxies Mark Dijkstra (ITC) collaborators: Stuart Wyithe, Avi Loeb, Adam Lidz, Zoltan Haiman Schematic History of the Universe

More information

Rupert Croft. QuickTime and a decompressor are needed to see this picture.

Rupert Croft. QuickTime and a decompressor are needed to see this picture. Rupert Croft QuickTime and a decompressor are needed to see this picture. yesterday: Plan for lecture 1: History : -the first quasar spectra -first theoretical models (all wrong) -CDM cosmology meets the

More information

Lya as a Probe of the (High-z) Universe

Lya as a Probe of the (High-z) Universe Lya as a Probe of the (High-z) Universe Mark Dijkstra (CfA) Main Collaborators: Adam Lidz, Avi Loeb (CfA) Stuart Wyithe (Melbourne), Zoltan Haiman (Columbia) Lya as a Probe of the (High-z) Universe Outline

More information

Lecture 11: Ages and Metalicities from Observations. A Quick Review. Multiple Ages of stars in Omega Cen. Star Formation History.

Lecture 11: Ages and Metalicities from Observations. A Quick Review. Multiple Ages of stars in Omega Cen. Star Formation History. Ages from main-sequence turn-off stars Lecture 11: Main sequence lifetime: Ages and Metalicities from Observations R diagram lifetime = fuel / burning rate MV *1 M ' L ' MS = 7 10 9 ) ) M. ( L. ( A Quick

More information

Quasars ASTR 2120 Sarazin. Quintuple Gravitational Lens Quasar

Quasars ASTR 2120 Sarazin. Quintuple Gravitational Lens Quasar Quasars ASTR 2120 Sarazin Quintuple Gravitational Lens Quasar Quasars Quasar = Quasi-stellar (radio) source Optical: faint, blue, star-like objects Radio: point radio sources, faint blue star-like optical

More information

Active Galaxies. Lecture Topics. Lecture 24. Active Galaxies. Potential exam topics. What powers these things? Lec. 24: Active Galaxies

Active Galaxies. Lecture Topics. Lecture 24. Active Galaxies. Potential exam topics. What powers these things? Lec. 24: Active Galaxies Active Galaxies Lecture 24 APOD: M82 (The Cigar Galaxy) 1 Lecture Topics Active Galaxies What powers these things? Potential exam topics 2 24-1 Active Galaxies Galaxies Luminosity (L MW *) Normal < 10

More information

Large-Scale Structure

Large-Scale Structure Large-Scale Structure Evidence for Dark Matter Dark Halos in Ellipticals Hot Gas in Ellipticals Clusters Hot Gas in Clusters Cluster Galaxy Velocities and Masses Large-Scale Distribution of Galaxies 1

More information

Name Date Period. 10. convection zone 11. radiation zone 12. core

Name Date Period. 10. convection zone 11. radiation zone 12. core 240 points CHAPTER 29 STARS SECTION 29.1 The Sun (40 points this page) In your textbook, read about the properties of the Sun and the Sun s atmosphere. Use each of the terms below just once to complete

More information

Photodissociation Regions Radiative Transfer. Dr. Thomas G. Bisbas

Photodissociation Regions Radiative Transfer. Dr. Thomas G. Bisbas Photodissociation Regions Radiative Transfer Dr. Thomas G. Bisbas tbisbas@ufl.edu Interstellar Radiation Field In the solar neighbourhood, the ISRF is dominated by six components Schematic sketch of the

More information

Stellar Populations: Resolved vs. unresolved

Stellar Populations: Resolved vs. unresolved Outline Stellar Populations: Resolved vs. unresolved Individual stars can be analyzed Applicable for Milky Way star clusters and the most nearby galaxies Integrated spectroscopy / photometry only The most

More information

Active Galactic Nuclei

Active Galactic Nuclei Active Galactic Nuclei Optical spectra, distance, line width Varieties of AGN and unified scheme Variability and lifetime Black hole mass and growth Geometry: disk, BLR, NLR Reverberation mapping Jets

More information

3/1/18 LETTER. Instructors: Jim Cordes & Shami Chatterjee. Reading: as indicated in Syllabus on web

3/1/18 LETTER. Instructors: Jim Cordes & Shami Chatterjee. Reading: as indicated in Syllabus on web Astro 2299 The Search for Life in the Universe Lecture 9 Last time: Star formation Formation of protostars and planetary systems This time A few things about the epoch of reionization and free fall times

More information

Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009

Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009 Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009 Galactic Winds: Mathews, W. et al. 1971 Effects of Supernovae on the Early Evolution of Galaxies: Larson, R. 1974 The origin

More information

Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics

Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics with: Tim Heckman (JHU) GALEX Science Team (PI: Chris Martin), Lee Armus,

More information

Multiwavelength observation campaign of Mrk 509: UV spectra of the X-ray Outflow!!!!Gerard Kriss!! STScI!!! (with N. Arav, J. Kaastra & the Mrk 509

Multiwavelength observation campaign of Mrk 509: UV spectra of the X-ray Outflow!!!!Gerard Kriss!! STScI!!! (with N. Arav, J. Kaastra & the Mrk 509 Multiwavelength observation campaign of Mrk 509: UV spectra of the X-ray Outflow!!!!Gerard Kriss!! STScI!!! (with N. Arav, J. Kaastra & the Mrk 509 Team)!! The Influence of AGN Outflows! «They may affect

More information

Reminders! Observing Projects: Both due Monday. They will NOT be accepted late!!!

Reminders! Observing Projects: Both due Monday. They will NOT be accepted late!!! Reminders! Website: http://starsarestellar.blogspot.com/ Lectures 1-15 are available for download as study aids. Reading: You should have Chapters 1-14 read. Read Chapters 15-17 by the end of the week.

More information

Search for the FIRST GALAXIES

Search for the FIRST GALAXIES Search for the FIRST GALAXIES R. Pelló IRAP - Institut de Recherche en Astrophysique et Planétologie 1 XIème Ecole de Cosmologie : 17-22 Sep 2012 (Cargèse) Outline 1. Looking for the first galaxies a)

More information

Olbers Paradox. Lecture 14: Cosmology. Resolutions of Olbers paradox. Cosmic redshift

Olbers Paradox. Lecture 14: Cosmology. Resolutions of Olbers paradox. Cosmic redshift Lecture 14: Cosmology Olbers paradox Redshift and the expansion of the Universe The Cosmological Principle Ω and the curvature of space The Big Bang model Primordial nucleosynthesis The Cosmic Microwave

More information

Radiative Transfer in a Clumpy Universe: the UVB. Piero Madau UC Santa Cruz

Radiative Transfer in a Clumpy Universe: the UVB. Piero Madau UC Santa Cruz Radiative Transfer in a Clumpy Universe: the UVB Piero Madau UC Santa Cruz The cosmic UVB originates from the integrated emission of starforming galaxies and QSOs. It determines the thermal and ionization

More information