STA January 11, Object Data is Big Data of Complex Type. In this class, the focus is on the complexity of data,

Size: px
Start display at page:

Download "STA January 11, Object Data is Big Data of Complex Type. In this class, the focus is on the complexity of data,"

Transcription

1 STA 6557 January 11, Object Data Analysis - an Introduction Object Data is Big Data of Complex Type. In this class, the focus is on the complexity of data, rather than on the size of such data. There are many disciplines in which data arises on object spaces which are manifolds. Among these are anthropology, astronomy, bioinformatics, computer vision, geology, image analysis, medical imaging, meteorology, and statistics. Over the next several chapters, this monograph will present the general theory and methodology underlying a nonparametric statistical analysis of data arising on manifolds. However, each application and type of data will have its own specific problems that need to be taken into consideration in the analysis, which will be addressed in later portions of this book. First, though, we wish to provide a number of examples of data lying on manifolds. In addition to showing applications in which such data arise, these example can help provide context in subsequent chapters focusing on theory.

2 2 Directional and Axial Data Statistical data analysis on spheres is a relatively old discipline. Watson (1983) [?] points out that one of the first statistical tests ever known is due to D. Bernoulli (1734) [?], who was asking whether the unit normals to orbital planes are uniformly distributed on the celestial sphere. Here, the angle of the orbital plane of a planet is in reference to the ecliptic, which is the apparent path of the Sun around the Earth. Let i be the inclination of the orbital plane of a planet to the ecliptic and Ω be the angle between a fixed line in the ecliptic (the line joining the Sun and the Earth at the time of the vernal equinox) and the line joining the ascending node of the planet (the point where the orbit of the planet rises to the positive side of the ecliptic). Then each orbit determines one directed unit vector n perpendicular to the orbital plane of the planet with the sense of direction given by the right hand rule, n = (sin(ω) sin(i), cos(ω) sin(i), cos(i)) The University of Uppsala data (Mardia and Jupp (2000), Table 10.2) [?] provides a set of measurements (i,ω) for the (at the time) nine planets in the solar system. From this data, Patrangenaru (1998) [?] derived the coordinates n x,n y,n z of the unit normals to orbital planes of the planets as of See Table 1 for these coordinates. Additional data on spheres or projective planes can be found in Fisher et al. (1987) [?]. One such example concerning wind directions at a given location on Earth can be found on p. 308 in that reference and is graphically displayed here in Figure 1. The data, itself, can be found in Table?? at the conclusion of this chapter. 2

3 Table 1: The normals to the orbital planes of the nine planets in the solar system Planet n x n y n z Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto Similarity Shape Data and Size and Shape Data Images arise as data in a number of fields, including anthropology, biology, computer vision, and medicine. In a number of cases, the entire image may not be of interest to researchers. Instead, they may be interested only in describing certain geometric information, commonly called the shape, of key features of the image. Depending on the manner in which the images were obtained, this data may lend itself to similarity shape or size-and-shape analysis. We will now consider a few examples of such data. A useful data library, maintained by James Rohlf at the State University of New York, Stony Brook, can be found on his website [?]. This library includes classical data sets from Bookstein (1991) [?] in electronic format. Such data typically contains observations that consist of lists of coordinates for landmarks, which are points of key interest in an image. Two such data sets 3

4 Figure 1: Four views of a sample of wind directions on consecutive days of March 1981, near Singleton, United Kingdom, at a height of 300 meters. (Source: Bhattacharya et al.(2012), Figure 4. Reproduced by permission of John Wiley & Sons LTD). describe locations in the human skull. For instance, the University School Study data (Bookstein (1991), pp ) contains landmark coordinates from X-rays of children s midface bones. These observations can be found in Tables??,??,??, and?? at the conclusion of this chapter. The Apert data set (Bookstein (1991), pp ), as shown in Table??, consists of a number of landmarks describing children who have Apert syndrome. Apert syndrome is a genetic craniosynostosis, of a markedly deformed tower-shaped head resulting from the premature fusion of all cranial sutures. X-rays of a clinically normal and an Apert syndrome skull are displayed in Figure 2. In each of these examples, the data sets describe 2D, or planar, similarity shapes of the finite number of landmarks. For additional examples of 2D similarity shape data, we recommend the data sets in Dryden and Mardia (1998) [?]. While classical planar similarity shape analysis is concerned with the types of data shown in the preceding examples, in recent years, many researchers have begun to focus instead on analyzing the direct similarity shape of outlines or boundaries of objects, which are often referred to as contours, as infinite-dimensional objects rather than finite. For instance, consider 4

5 Figure 2: Lateral X-ray of a clinically normal skull (top, with landmarks) and an Apert syndrome skull (bottom). (Source: Bandulasiri et al.(2009), Figure 4. Reproduced by permission of Elsevier). 5

6 Figure 3: Sample of 4 contours of a hand gesture. (Source: Bhattacharya et al.(2012), Figure 4. Reproduced by permission of John Wiley & Sons LTD). the following sample of contours of hand gestures from Sharvit et. al. (1998) [?] shown in Figure 3. Here, the contours are represented by evaluating the underlying function at a sufficiently large number of sampling points, as suggested in Ellingson et al. (2013) [?]. A list of the 300 sampling points used for Figure 3 is given in Tables??,??,??,??,??,??,??, and??. Albert Einstein s brain was removed shortly after his death (most likely without prior family consent), weighed, dissected and photographed by a pathologist. Among other pictures, a digital scan of a picture of the General Relativity creator s half brain taken at the autopsy is displayed below; we extracted the contour of the corpus callosum(cc) from this Einstein s brain image, the shape of which would be set as a null hypothesis in our testing problem (see Figure 3). Fletcher (2013) [?] extracted contours of CC midsagittal sections from MRI images to study possible age related changes in this part of the human brain. His study points to certain age related shape changes in the CC. Given that Einstein passed away at 76, we consider a subsample of CC brain contours from Fletcher (2013) [?] in the age group to test how far the average 6

7 Figure 4: Right hemisphere of Einstein s brain including CC midsagittal section (left) and its contour (right). CC contour is from Einstein s. The data is displayed in Figure 3. Figure 5: Corpus callosum midsagittal sections shape data, in subjects ages - 65 to 83 With advancements in imaging technology, 3D-direct similarity shape and 3D size-andshape data are also produced in various fields, including the biological sciences and medicine. Our first example of such data arises from medical imaging. In the Louisiana State University Experimental Glaucoma Study (LEGS), the optic nerve head (ONH) region of both eyes of twelve mature Rhesus monkeys were imaged with a Heidelberg Retina Tomograph (HRT) device, also called Scanning Confocal Laser Tomograph (SCLT). The experimental glaucoma was induced in one eye of each animal and the second eye was kept as control. The images are arrays of elevation values which represent the depth of the ONH and are thus range images. Figure 6 shows contour plots for glaucomatous change (see Derado et al [?]). From clinical experience, it is known that the ONH area contains all the relevant information related to glaucoma onset. Figure 7 shows the relevant area with four landmarks. Namely, S for the superior aspect of the retina towards the top of the head, N for the nasal or nose side of the retina, T for temporal, the side of the retinal closest to the temple or temporal bone of the skull, 7

8 and V for the ONH deepest point. The first three are anatomical landmarks and the fourth one is a mathematical landmark. A fifth landmark, called I for inferior, was also recorded. The data set was obtained from a library of Heidelberg Retina Tomograph (HRT) images of the complicated ONH topography. Those images are so-called range images. A range image is, loosely speaking, like a digital camera image, except that each pixel stores a depth rather than a color level. It can also be seen as a set of points in 3D. The range data acquired by 3D digitizers, such as optical scanners, commonly consist of depths sampled on a regular grid. In the mathematical sense, a range image is a 2D array of real numbers which represent those depths. A combination of modules in C++ and SAS took the raw image output and processed it into arrays of height values Another byproduct was a file that we will refer to as the abxy file. This file contains the following information: subjects names (denoted by: 1c, 1d, 1e, 1f, 1g, 1i, 1j, 1k, 1l, 1n, 1o, 1p), observation points that distinguish the normal and treated eyes and the 10 or 15 degree fields of view for the imaging. Observation point 03 denotes a 10 degree view of the experimental glaucoma eye, 04 denotes 15 degree view of the experimental glaucoma eye, degree fellow normal eye, degree fellow normal eye. Recall that of the two eyes of one animal one was given experimental glaucoma, and the other was left untreated (normal) and imaged over time as a control. The coordinates of the ellipse that determines the border of the optic nerve head were determined by the software of the HRT as it interacts with the operator of the device. Two-dimensional coordinates of the center of these ellipses, as well as the sizes of the small and the large axes of the ellipses, are also stored in the abxy file. To find out more about the LSU study and the image acquisition, see Burgoyne et al. (2000) [?]. Files names (each 8

9 Figure 6: Range images as contour plots for HRT images of a Rhesus monkey ONH area before and after the induced glaucomatous shape change. (Source: Derado et al.(2004), Figure 3. Reproduced by permission of Taylor & Francis). file is one observation) were constructed from the information in these so-called abxy file. The list of all the observations was then used as an input for the program (created by G. Derado in C++), which determined the three dimensional coordinates of the landmarks for each observation considered in our analysis. The XY coordinates of the cardinal papilla landmarks, were recovered from abxy data file in the LEGS library, which further allowed a reading from each of the the Z coordinate from the corresponding array files. The original data was collected in experimental observations on Rhesus monkeys. Given that, after treatment, a healthy eye slowly returns to its original shape, for the purpose of IOP increment detection, only the first set of after-treatment observations of the treated eye were considered. Table?? contains the original sample coordinates, The filenames and their correspondingx r i coordinates, in microns, are given for 12 animals. A large source of 3D size-and-shape data is the RCSB Protein Data Bank (PDB) website at which provides a wealth of information about, including about their physical structures. As of March 1, 2015, there were 106, 858 structures 9

10 Figure 7: Magnified HRT image of the central region of the retina including ONH, and the four landmarks N, S, T, V. (Source: Derado et al.(2001), Figure 1. Reproduced by permission of Taylor & Francis). posted on the there. One of the many problems of interest in bioinformatics is the relationship of the physical structure and chemical sequence of a protein to its biological function and size-and-shape analysis provides one avenue for exploring this relationship. Here, we will consider the 3D atomic structures of two groups of binding sites, which are locations on the surface of a protein where binding activity occurs. In Figure 8, we show binding sites from three examples of hydrolase (serine proteinase) which were obtained by X- ray diffraction, as displayed using the software Rasmol. Their structure i.d.s on PDB are 1ela, 1eld and 1ele and their primary citation is Mattos et al. (1997) [?]. In Figure 8, the atoms are gray level coded where hydrogen is dark gray, oxygen is medium gray, and carbon is light gray. Similarly, Figure 9 displays binding sites for three examples of acid proteinase. The coordinates and chemical types of atoms from these acid proteinase binding sites are shown in Tables?? and??, where the units are measured inå. 10

11 Figure 8: Serine proteinase protein binding site structures.(source: Bhattacharya et al.(2012), Figure 4. Reproduced by permission of John Wiley & Sons LTD) Figure 9: Acid proteinase protein binding site structures. (Source: Bhattacharya et al.(2012), Figure 4. Reproduced by permission of John Wiley & Sons LTD). 11

STA6557 Object Data Analysis SPRING 2017

STA6557 Object Data Analysis SPRING 2017 STA6557 Object Data Analysis SPRING 2017 Days/Time/Room: TT 9:30 AM -10:45 AM OSB 205 Instructor: Vic Patrangenaru Office: 208 OSB E-mail: vic@stat.fsu.edu Office hours: TT 11:00 AM - 11:50 AM Textbook:

More information

Astr 1050 Mon. Jan. 31, 2017

Astr 1050 Mon. Jan. 31, 2017 Astr 1050 Mon. Jan. 31, 2017 Finish Ch. 2: Eclipses & Planetary Motion Seasons Angular Size formula Eclipses Planetary Motion Reading: For Today: Finish Chapter 2 For Monday: Start Chapter 3 Homework on

More information

Fundamentals of Satellite technology

Fundamentals of Satellite technology Fundamentals of Satellite technology Prepared by A.Kaviyarasu Assistant Professor Department of Aerospace Engineering Madras Institute Of Technology Chromepet, Chennai Orbital Plane All of the planets,

More information

THE SOLAR SYSTEM. Ringers. The Multi Taskin Mom

THE SOLAR SYSTEM. Ringers. The Multi Taskin Mom THE SOLAR SYSTEM Ringers All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form by any means electronic, mechanical, photocopy, recording

More information

Interface: Planetary Nodes

Interface: Planetary Nodes 1 Interface Planetary Nodes By Michael Erlewine 2 An ebook from Startypes.com 315 Marion Avenue Big Rapids, Michigan 49307 First published 1976 2007 Michael Erlewine ISBN 978-0-9798328-5-7 All rights reserved.

More information

Astronomy Test Review. 3 rd Grade

Astronomy Test Review. 3 rd Grade Astronomy Test Review 3 rd Grade Match the vocabulary word to its definition. Outer Planets The path a planet takes around the sun. Inner Planets Orbit Sun The center of our solar system. Small, rocky

More information

STANDARD. S6E1 d. Explain the motion of objects in the day/night sky in terms of relative position.

STANDARD. S6E1 d. Explain the motion of objects in the day/night sky in terms of relative position. STANDARD S6E1 d. Explain the motion of objects in the day/night sky in terms of relative position. S6E2 b. Explain the alignment of the earth, moon, and sun during solar and lunar eclipses. c. Relate the

More information

Putting Earth In Its Place

Putting Earth In Its Place Teacher Instructions Overview: During this activity, students build a model of our Solar System to gain insight into the relative sizes and distances involved. ives: The student will: create a scale model

More information

A medium-sized star. The hottest object found in our solar system.

A medium-sized star. The hottest object found in our solar system. A medium-sized star. The hottest object found in our solar system. It gives off heat, light, and energy. It affects the seasons, climate, and weather on Earth. The second smallest planet in our solar system.

More information

UNIT 6 CELESTIAL SPHERE AND EQUINOCTIAL SYSTEM OF COORDINATES

UNIT 6 CELESTIAL SPHERE AND EQUINOCTIAL SYSTEM OF COORDINATES UNIT 6 CELESTIAL SPHERE AND EQUINOCTIAL SYSTEM OF COORDINATES Structure 6.1 Introduction Objectives 6.2 References 6.3 Apparent Annual Motion of the Sun and the Concept of the Ecliptic and the Obliquity

More information

Lecture 5. Motions of the Planets

Lecture 5. Motions of the Planets Lecture 5 Motions of the Planets; Geometric models of the Solar System Motion of Planets Opposition, Conjunction Retrograde Motion Scientific Method and "Models" Size of the Earth Geocentric vs Heliocentric

More information

Developed and Published by. AIMS Education Foundation

Developed and Published by. AIMS Education Foundation Probing Space Developed and Published by AIMS Education Foundation This book contains materials developed by the AIMS Education Foundation. AIMS (Activities Integrating Mathematics and Science) began in

More information

The Sky Perceptions of the Sky

The Sky Perceptions of the Sky The Sky Perceptions of the Sky An Observer-Centered Hemisphere Night & Day - Black & Blue - Stars & Sun Atmospheric & Astronomical Phenomena Weather, Clouds, Rainbows,... versus Sun, Moon, Stars, Planets,...

More information

The Sun s center is much hotter than the surface. The Sun looks large and bright in the sky. Other stars look much smaller.

The Sun s center is much hotter than the surface. The Sun looks large and bright in the sky. Other stars look much smaller. The Sun A star is a huge ball of hot, glowing gases. The Sun is a star. The width of the Sun is equal to the width of 100 Earths placed side by side. The Sun is extremely hot. The surface of the Sun has

More information

Chapter 26 Section 1 pages Directed Reading Section: Viewing the Universe

Chapter 26 Section 1 pages Directed Reading Section: Viewing the Universe Name: Period: Chapter 26 Section 1 pages 659-666 Directed Reading Section: Viewing the Universe 1. How did observations of the sky help sailors in the past? 2. What is the main reason people study the

More information

4 A(n) is a small, rocky object that orbits the sun; many of these objects are located in a band between the orbits of Mars and Jupiter.

4 A(n) is a small, rocky object that orbits the sun; many of these objects are located in a band between the orbits of Mars and Jupiter. Name Vocabulary Fill in the blank with the term that best completes the sentence., 6.11B 1 is the process in which energy is released as the nuclei of small atoms combine to form a larger nucleus., 6.11B

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *6357012477* CAMBRIDGE INTERNATIONAL MATHEMATICS 0607/06 Paper 6 (Extended) October/November

More information

Exercise 4.0 PLANETARY ORBITS AND CONFIGURATIONS

Exercise 4.0 PLANETARY ORBITS AND CONFIGURATIONS Exercise 4.0 PLANETARY ORBITS AND CONFIGURATIONS I. Introduction The planets revolve around the Sun in orbits that lie nearly in the same plane. Therefore, the planets, with the exception of Pluto, are

More information

Earth Science Unit 6: Astronomy Period: Date: Elliptical Orbits

Earth Science Unit 6: Astronomy Period: Date: Elliptical Orbits Earth Science Name: Unit 6: Astronomy Period: Date: Lab # 5 Elliptical Orbits Objective: To compare the shape of the earth s orbit (eccentricity) with the orbits of and with a circle. other planets Focus

More information

SPACE REVIEW. 1. The time it takes for the Earth to around the sun is one year. a. rotate b. revolve

SPACE REVIEW. 1. The time it takes for the Earth to around the sun is one year. a. rotate b. revolve SPACE REVIEW 1. The time it takes for the Earth to around the sun is one year. a. rotate b. revolve 2. Which planet is known as the "Red Planet"? a. Earth b. Mars c. Uranus d. Venus 3. One complete revolution

More information

PHYS 160 Astronomy Test #1 Fall 2017 Version B

PHYS 160 Astronomy Test #1 Fall 2017 Version B PHYS 160 Astronomy Test #1 Fall 2017 Version B 1 I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. An object has the same weight,

More information

1. The Moon appears larger when it rises than when it is high in the sky because

1. The Moon appears larger when it rises than when it is high in the sky because 2-1 Copyright 2016 All rights reserved. No reproduction or distribution without the prior written consent of 1. The Moon appears larger when it rises than when it is high in the sky because A. you are

More information

Your task for each planet...

Your task for each planet... Solar System Your task for each planet... Slide 1: What type of planet is it? (either rocky terrestrial world, gas giant or ice giant) What is it made of? Does it have any moons? What is its mass relative

More information

1. The two triangles shown below are similar. This means that all the angles are equal and the sides are proportional.

1. The two triangles shown below are similar. This means that all the angles are equal and the sides are proportional. 1. The two triangles shown below are similar. This means that all the angles are equal and the sides are proportional. a. How many times bigger is the big triangle in comparison to the little triangle?

More information

Earth s Motions. Rotation -!! Period of Rotation - amount of time to make one complete rotation Example: Earth rotates in hours.

Earth s Motions. Rotation -!! Period of Rotation - amount of time to make one complete rotation Example: Earth rotates in hours. Name: Date: Period: Earth In the Solar System The Physical Setting: Earth Science CLASS NOTES! Rotation -! Period of Rotation - amount of time to make one complete rotation Example: Earth rotates in hours

More information

Tycho Brahe

Tycho Brahe Tycho Brahe 1546-1601 At the time of Shakespeare and Elizabeth I and Champlain Lost part of his nose in a duel over who was the best mathematician At 27 he measured the distance of a supernova and a comet

More information

Sensational Solar System

Sensational Solar System Feature Articles Always reports facts, realistic ideas, or real events. May have headings that divide the article into sections. May repeat or quote what an expert says. May have photographs, graphs, or

More information

The Outer Planets (pages )

The Outer Planets (pages ) The Outer Planets (pages 720 727) Gas Giants and Pluto (page 721) Key Concept: The first four outer planets Jupiter, Saturn, Uranus, and Neptune are much larger and more massive than Earth, and they do

More information

Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006

Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006 Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006 Instructor: L. M. Khandro 10/19/06 Please Note: the following test derives from a course and text that covers the entire topic of

More information

Data for Best Viewing of the Planets July 15, 2018

Data for Best Viewing of the Planets July 15, 2018 Data for Best Viewing of the Planets 2018-2050 July 15, 2018 Traditionally, the best time to view a planet was reckoned to be when it was at opposition the time when the line from the Sun to the Earth

More information

The precession of the perihelion of Mercury explained by Celestial Mechanics of Laplace Valdir Monteiro dos Santos Godoi

The precession of the perihelion of Mercury explained by Celestial Mechanics of Laplace Valdir Monteiro dos Santos Godoi The precession of the perihelion of Mercury explained by Celestial Mechanics of Laplace Valdir Monteiro dos Santos Godoi valdir.msgodoi@gmail.com ABSTRACT We calculate in this article an exact theoretical

More information

Topic 1: Celestial Objects, phenomena, and interactions are important to people in many different ways.

Topic 1: Celestial Objects, phenomena, and interactions are important to people in many different ways. Topic 1: Celestial Objects, phenomena, and interactions are important to people in many different ways. To complete this booklet you must do the following: Define each term within this booklet Answer Each

More information

Across the Universe. By Gabrielle Sierra

Across the Universe. By Gabrielle Sierra Across the Universe By Gabrielle Sierra Our universe is an amazing place. Since prehistoric days, inquisitive minds have been wondering about the celestial objects that surround our planet, and today scientists

More information

t S 18. Determining Planetary Co-ordinates

t S 18. Determining Planetary Co-ordinates 8. Determining Planetary Co-ordinates θ θ 0 ω R In the heliocentric reference frame which rotates with the Earth s orbital motion, suppose that initially a planet s unplanet line makes an angle θ 0 with

More information

Homework Assignment #9: Apparent Motions of the Heavens Due to Actual Motions of Earth

Homework Assignment #9: Apparent Motions of the Heavens Due to Actual Motions of Earth Name Homework Assignment #9: Apparent Motions of the Heavens Due to Actual Motions of Earth 2002 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico

More information

A study upon Eris. I. Describing and characterizing the orbit of Eris around the Sun. I. Breda 1

A study upon Eris. I. Describing and characterizing the orbit of Eris around the Sun. I. Breda 1 Astronomy & Astrophysics manuscript no. Eris c ESO 2013 March 27, 2013 A study upon Eris I. Describing and characterizing the orbit of Eris around the Sun I. Breda 1 Faculty of Sciences (FCUP), University

More information

Planets in the Sky ASTR 101 2/16/2018

Planets in the Sky ASTR 101 2/16/2018 Planets in the Sky ASTR 101 2/16/2018 1 Planets in the Sky 2018 paths of Jupiter among stars (2017/2018) Unlike stars which have fixed positions in the sky (celestial sphere), planets seem to move with

More information

TABLE OF CONTENTS. click one to go to that page, or just go on. What is the Solar System? Neptune (Pluto) The Sun. Asteroids. Mercury.

TABLE OF CONTENTS. click one to go to that page, or just go on. What is the Solar System? Neptune (Pluto) The Sun. Asteroids. Mercury. The Solar System TABLE OF CONTENTS click one to go to that page, or just go on. What is the Solar System? The Sun Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune (Pluto) Asteroids Meteors and Meteorites

More information

BOOK 3 OUR PLANET SECTION 1 OUR PLANET IN THE UNIVERSE

BOOK 3 OUR PLANET SECTION 1 OUR PLANET IN THE UNIVERSE BOOK 3 OUR PLANET SECTION 1 OUR PLANET IN THE UNIVERSE THE ELECTROMAGNETIC SPECTRUM (EMS) The Electromagnetic spectrum (EMS) is a range of wavelengths and frequencies which extend from gamma rays to radio

More information

Investigating the Solar System

Investigating the Solar System Investigating the Solar System This Workbook belongs to: Our Local Star: The Sun Location in The Solar System Interesting Facts 1. 2. 3. 4. Name of Star: THE SUN 5. Draw and Color your own Sun in the blank

More information

Introduction The Role of Astronomy p. 3 Astronomical Objects of Research p. 4 The Scale of the Universe p. 7 Spherical Astronomy Spherical

Introduction The Role of Astronomy p. 3 Astronomical Objects of Research p. 4 The Scale of the Universe p. 7 Spherical Astronomy Spherical Introduction The Role of Astronomy p. 3 Astronomical Objects of Research p. 4 The Scale of the Universe p. 7 Spherical Astronomy Spherical Trigonometry p. 9 The Earth p. 12 The Celestial Sphere p. 14 The

More information

4. What is the main advantage of the celestial coordinate system over altitude-azimuth coordinates?

4. What is the main advantage of the celestial coordinate system over altitude-azimuth coordinates? SUMMARY Looking at the night sky is not only fun, it will help you understand some of the phenomena described in chapters 1 and 2. Star maps will help you identify constellations and bright stars, and

More information

Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws

Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws Craig Lage New York University - Department of Physics craig.lage@nyu.edu February 24, 2014 1 / 21 Tycho Brahe s Equatorial

More information

RETROGRADE MOTION AND PLANETARY ORBITS Computer Simulations

RETROGRADE MOTION AND PLANETARY ORBITS Computer Simulations RETROGRADE MOTION AND PLANETARY ORBITS Computer Simulations OBJECTIVE: To see planetary orbits simulated on a computer and to see how this suncentered model explains retrograde motion. Initial Procedure:

More information

Physical Science 1 Chapter 16 INTRODUCTION. Astronomy is the study of the universe, which includes all matter, energy, space and time.

Physical Science 1 Chapter 16 INTRODUCTION. Astronomy is the study of the universe, which includes all matter, energy, space and time. INTRODUCTION Astronomy is the study of the universe, which includes all matter, energy, space and time. Although the universe is vast and almost beyond imagination, much is known about its make-up and

More information

is a revolution relative to a fixed celestial position. is the instant of transit of mean equinox relative to a fixed meridian position.

is a revolution relative to a fixed celestial position. is the instant of transit of mean equinox relative to a fixed meridian position. PERIODICITY FORMULAS: Sidereal Orbit Tropical Year Eclipse Year Anomalistic Year Sidereal Lunar Orbit Lunar Mean Daily Sidereal Motion Lunar Synodical Period Centenial General Precession Longitude (365.25636042

More information

Yes, inner planets tend to be and outer planets tend to be.

Yes, inner planets tend to be and outer planets tend to be. 1. Planet Density Make some general comments about inner and outer planets density Inner Planets Density Outer Planets Density Is there a pattern or a trend in planet density? Yes, inner planets tend to

More information

Locating the Planets (Chapter 20) and the Moon and Sun (Chapter 22)

Locating the Planets (Chapter 20) and the Moon and Sun (Chapter 22) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Locating the Planets (Chapter 20) and the Moon and Sun (Chapter 22) For this assignment, you will require: a calculator, colored pencils, a metric

More information

Locating the Planets (Chapter 19) and the Moon and Sun (Chapter 21)

Locating the Planets (Chapter 19) and the Moon and Sun (Chapter 21) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Locating the Planets (Chapter 19) and the Moon and Sun (Chapter 21) For this assignment, you will require: a calculator, colored pencils, a metric

More information

PHYS101 Sec 001 Hour Exam No. 2 Page: 1

PHYS101 Sec 001 Hour Exam No. 2 Page: 1 PHYS101 Sec 001 Hour Exam No. 2 Page: 1 1 The angle between the rotation axis of a planet and the perpendicular to the plane of its orbit is called its axial tilt. Which of these planets has an axial tilt

More information

Understanding Main Idea and Details

Understanding Main Idea and Details C Understanding Main Idea and Details To the Student In this book, you will learn how to use the reading strategy called Understanding Main Idea and Details. With your teacher s help, you will practice

More information

Space Test Review. Unit Test on Thursday April 17

Space Test Review. Unit Test on Thursday April 17 Space Test Review Unit Test on Thursday April 17 True/False 1. A(n) asteroid is a massive collection of gases in space that emits large amounts of energy. 2. A(n) moon is a large, round celestial object

More information

orbits Moon, Planets Spacecrafts Calculating the and by Dr. Shiu-Sing TONG

orbits Moon, Planets Spacecrafts Calculating the and by Dr. Shiu-Sing TONG A Science Enrichment Programme for Secondary 3-4 Students : Teaching and Learning Resources the and Spacecrafts orbits Moon, Planets Calculating the 171 of by Dr. Shiu-Sing TONG 172 Calculating the orbits

More information

What s in Our Solar System?

What s in Our Solar System? The Planets What s in Our Solar System? Our Solar System consists of a central star (the Sun), the main eight planets orbiting the sun, the dwarf planets, moons, asteroids, comets, meteors, interplanetary

More information

Courtesy of NASA nasaimages.org. Copyright 2011, 2013 Gravitas Publications, Inc.

Courtesy of NASA nasaimages.org. Copyright 2011, 2013 Gravitas Publications, Inc. Illustrations: Photographs: Rebecca W. Keller, PhD Courtesy of NASA nasaimages.org Copyright 2011, 2013 Gravitas Publications, Inc. All rights reserved. No part of this publication may be reproduced, stored

More information

LESSON topic: formation of the solar system Solar system formation Star formation Models of the solar system Planets in our solar system

LESSON topic: formation of the solar system Solar system formation Star formation Models of the solar system Planets in our solar system Unit 2 Lesson 1 LESSON topic: formation of the solar system - Solar system formation - Star formation - Models of the solar system - Planets in our solar system Big bang theory Origin of the universe According

More information

Reading. 1 Read the extract from a book about the Solar System. Then complete the sentences with the words from the box. Earth.

Reading. 1 Read the extract from a book about the Solar System. Then complete the sentences with the words from the box. Earth. Reading 1 Read the extract from a book about the Solar System. Then complete the sentences with the words from the box. Earth The third planet from the Sun is Earth, our home. Earth does not get as hot

More information

Sunlight and its Properties Part I. EE 446/646 Y. Baghzouz

Sunlight and its Properties Part I. EE 446/646 Y. Baghzouz Sunlight and its Properties Part I EE 446/646 Y. Baghzouz The Sun a Thermonuclear Furnace The sun is a hot sphere of gas whose internal temperatures reach over 20 million deg. K. Nuclear fusion reaction

More information

SOLAR SYSTEM SCALE LAB

SOLAR SYSTEM SCALE LAB SOLAR SYSTEM SCALE LAB By Sarah Deane, with input from other Fellows in the University of Tennessee GK-12 Earth Project This lab is designed to demonstrate to students the vastness of the universe. A model

More information

Joy of Science Experience the evolution of the Universe, Earth and Life

Joy of Science Experience the evolution of the Universe, Earth and Life Joy of Science Experience the evolution of the Universe, Earth and Life Review of last class Introduction to Astronomy Contents of today s lecture Quiz time Review Review 1 n Science is a way of producing

More information

The Celestial Sphere. Chapter 1. Constellations. Models and Science. Constellations. Diurnal vs. Annular Motion 9/16/2010

The Celestial Sphere. Chapter 1. Constellations. Models and Science. Constellations. Diurnal vs. Annular Motion 9/16/2010 The Celestial Sphere Chapter 1 Cycles of the Sky Vast distances to stars prevent us from sensing their true 3-D arrangement Naked eye observations treat all stars at the same distance, on a giant celestial

More information

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1 What is it like? When did it form? How did it form The Solar System Fall, 2005 Astronomy 110 1 Fall, 2005 Astronomy 110 2 The planets all orbit the sun in the same direction. The Sun spins in the same

More information

PHSC 1053: Astronomy Time and Coordinates

PHSC 1053: Astronomy Time and Coordinates PHSC 1053: Astronomy Time and Coordinates Astronomical Clocks Earth s Rotation on its Axis Time between two successive meridian transits of the sun 1 solar day (our adopted clock time) 24 hours (86,400

More information

Useful Formulas and Values

Useful Formulas and Values Name Test 1 Planetary and Stellar Astronomy 2017 (Last, First) The exam has 20 multiple choice questions (3 points each) and 8 short answer questions (5 points each). This is a closed-book, closed-notes

More information

WHAT WE KNOW. Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So..

WHAT WE KNOW. Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So.. ASTRONOMY THE BIG BANG THEORY WHAT WE KNOW Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So.. WHAT DOES THIS MEAN? If

More information

Dark Sky Observing Preview. BSA Troop 4 Pasadena, CA

Dark Sky Observing Preview. BSA Troop 4 Pasadena, CA Dark Sky Observing Preview BSA Troop 4 Pasadena, CA Topics Finding Dark sky Observing etiquette Observing basics Things to see Resources Finding Dark Sky To see faint objects, you want the darkest sky

More information

Astro 210 Lecture 14 Sept 27, 2010

Astro 210 Lecture 14 Sept 27, 2010 Astro 210 Lecture 14 Sept 27, 2010 Announcements HW4 available, due Friday HW2 Q4 (10 bonus points) available till Friday Planetarium shows continue this week download & bring question sheet; due Friday

More information

Our Fun Sun. Source: Measuring the Diameter of the Sun, The Educator s Reference Desk Enchanted Learning

Our Fun Sun. Source: Measuring the Diameter of the Sun, The Educator s Reference Desk Enchanted Learning Our Fun Sun Subject: Science, Math Grades: 7 th 8 th Rational or Purpose: Students will develop an easy tool in which they are able to look at the sun and find out what its diameter is by a simple arithmetic

More information

Sample file. Solar System. Author: Tina Griep. Understanding Science Series

Sample file. Solar System. Author: Tina Griep. Understanding Science Series Author: Tina Griep Understanding Science Series Our Copyright 2007 New Learning Publishing All rights reserved. Except as permitted under the United States Copyright Act, no portion of this publication

More information

ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS

ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS A1.1. Kepler s laws Johannes Kepler (1571-1630) discovered the laws of orbital motion, now called Kepler's laws.

More information

astronomy A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

astronomy A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were

More information

Merrillville Community Planetarium Kindergarten to Fifth Grade Programs By Gregg L. Williams February 1, 1983 Revised April 10, 2014

Merrillville Community Planetarium Kindergarten to Fifth Grade Programs By Gregg L. Williams February 1, 1983 Revised April 10, 2014 Kindergarten to Fifth Grade Programs By Gregg L. Williams February 1, 1983 Revised April 10, 2014 Listed below is the curriculum for the planetarium at each elementary grade level. The elementary program

More information

The Solar System LEARNING TARGETS. Scientific Language. Name Test Date Hour

The Solar System LEARNING TARGETS. Scientific Language. Name Test Date Hour Name Test Date Hour Astronomy#3 - Notebook The Solar System LEARNING TARGETS I can describe the objects that make up our solar system. I can identify the inner and outer planets. I can explain the difference

More information

Space. Universe - everything that exists, including all matter and energy everywhere

Space. Universe - everything that exists, including all matter and energy everywhere Space Universe - everything that exists, including all matter and energy everywhere Astronomy - study of what is beyond the Earth Constellations - groups of stars that form shapes or patterns in the sky.

More information

Introduction To Modern Astronomy II

Introduction To Modern Astronomy II ASTR 111 003 Fall 2006 Lecture 03 Sep. 18, 2006 Introduction To Modern Astronomy II Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17) Ch1: Astronomy and the Universe Ch2: Knowing the Heavens

More information

Chapter 06 Let s Make a Solar System

Chapter 06 Let s Make a Solar System like? Big picture. Chapter 06 Let s Make a Solar System How did it come to be this way? Where did it come from? Will I stop sounding like the Talking Heads? The solar system exhibits clear patterns of

More information

Our Solar System. Lesson 5. Distances Between the Sun and the Planets

Our Solar System. Lesson 5. Distances Between the Sun and the Planets Our Solar System Lesson 5 T he Solar System consists of the Sun, the Moon, planets, dwarf planets, asteroids, comets, meteors and other celestial bodies. All these celestial bodies are bound to the Sun

More information

The Outer Planets. Video Script: The Outer Planets. Visual Learning Company

The Outer Planets. Video Script: The Outer Planets. Visual Learning Company 11 Video Script: 1. For thousands of years people have looked up at the night sky pondering the limits of our solar system. 2. Perhaps you too, have looked up at the evening stars and planets, and wondered

More information

ES - Astronomy Part 2 Post-Test

ES - Astronomy Part 2 Post-Test ES - Astronomy Part 2 Post-Test True/False Indicate whether the statement is true or false. 1. Compared to the human eye, telescopes can collect light over longer periods of time. 2. The inner planets

More information

Practice Test DeAnza College Astronomy 04 Test 1 Spring Quarter 2009

Practice Test DeAnza College Astronomy 04 Test 1 Spring Quarter 2009 Practice Test DeAnza College Astronomy 04 Test 1 Spring Quarter 2009 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Mark answer on Scantron.

More information

Galaxies: enormous collections of gases, dust and stars held together by gravity Our galaxy is called the milky way

Galaxies: enormous collections of gases, dust and stars held together by gravity Our galaxy is called the milky way Celestial bodies are all of the natural objects in space ex. stars moons, planets, comets etc. Star: celestial body of hot gas that gives off light and heat the closest star to earth is the sun Planet:

More information

Chapter 3: Cycles of the Sky

Chapter 3: Cycles of the Sky Chapter 3: Cycles of the Sky Motions of the Planets Mercury Venus Earth All planets in almost circular (elliptical) orbits around the sun, in approx. the same plane, the ecliptic plane. The Moon is orbiting

More information

Thank you for your purchase!

Thank you for your purchase! TM Thank you for your purchase! Please be sure to save a copy of this document to your local computer. This activity is copyrighted by the AIMS Education Foundation. All rights reserved. No part of this

More information

PLANETARY TEMPERATURES

PLANETARY TEMPERATURES APS 1010 Astronomy Lab 97 Planetary Temperatures PLANETARY TEMPERATURES Mars is essentially in the same orbit. Mars is somewhat the same distance from the Sun, which is very important. We have seen pictures

More information

3) During retrograde motion a planet appears to be A) dimmer than usual. B) the same brightness as usual C) brighter than usual.

3) During retrograde motion a planet appears to be A) dimmer than usual. B) the same brightness as usual C) brighter than usual. Descriptive Astronomy (ASTR 108) Exam 1 B February 17, 2010 Name: In each of the following multiple choice questions, select the best possible answer. In the line on the scan sheet corresponding to the

More information

1) Kepler's third law allows us to find the average distance to a planet from observing its period of rotation on its axis.

1) Kepler's third law allows us to find the average distance to a planet from observing its period of rotation on its axis. Descriptive Astronomy (ASTR 108) Exam 1 A February 17, 2010 Name: In each of the following multiple choice questions, select the best possible answer. In the line on the scan sheet corresponding to the

More information

Astronomy Unit Notes Name:

Astronomy Unit Notes Name: Astronomy Unit Notes Name: (DO NOT LOSE!) To help with the planets order 1 My = M 2 V = Venus 3 Eager = E 4 M = Mars 5 Just = J 6 Served = Saturn 7 Us = Uranus 8 N = N 1 Orbit: The path (usually elliptical)

More information

How did it come to be this way? Will I stop sounding like the

How did it come to be this way? Will I stop sounding like the Chapter 06 Let s Make a Solar System How did it come to be this way? Where did it come from? Will I stop sounding like the Talking Heads? What does the solar system look like? Big picture. The solar system

More information

IN THE ALMIGHTY GOD NAME Through the Mother of God mediation I do this research

IN THE ALMIGHTY GOD NAME Through the Mother of God mediation I do this research Life Is Found On Earth Only (Claim) - Solar Planet Orbital Period Definition- By Gerges Francis Twadrous 2 nd course student Physics Department - Physics & Math Faculty Peoples' Friendship University Moscow

More information

Astronomy: Exploring the Universe

Astronomy: Exploring the Universe Course Syllabus Astronomy: Exploring the Universe Course Description Why do stars twinkle? Is it possible to fall into a black hole? Will the sun ever stop shining? Since the first glimpse of the night

More information

An astronomical potpourri. Szydagis / 11

An astronomical potpourri. Szydagis / 11 An astronomical potpourri Szydagis 02.07.2018 1 / 11 Nearly all gravitational orbits are one of a few possible cross-sections of two of what shape? A. Cylinder B. Football C. Egg On the second question

More information

Name: (This only happens every four years or does it?)

Name: (This only happens every four years or does it?) Name: (This only happens every four years or does it?) Calendars: Then and Now Name: 1. What is a leap year? What do you already know about leap years? 2. List at least three questions about leap years

More information

Vocabulary. The Geometric Mean. Lesson 8-4 Radical Notation for nth Roots. Definition of n x when x 0. Mental Math

Vocabulary. The Geometric Mean. Lesson 8-4 Radical Notation for nth Roots. Definition of n x when x 0. Mental Math Lesson 8-4 Lesson 8-4 Radical Notation for nth Roots Vocabulary radical sign, O n x when x 0 geometric mean BIG IDEA For any integer n, the largest real nth root of x can be represented either by x 1 n

More information

6 The Orbit of Mercury

6 The Orbit of Mercury 6 The Orbit of Mercury Name: Date: Of the five planets known since ancient times (Mercury, Venus, Mars, Jupiter, and Saturn), Mercury is the most difficult to see. In fact, of the 6 billion people on the

More information

ASTROMATH 101: BEGINNING MATHEMATICS IN ASTRONOMY

ASTROMATH 101: BEGINNING MATHEMATICS IN ASTRONOMY Name Partner(s) Section Date ASTROMATH 101: BEGINNING MATHEMATICS IN ASTRONOMY Astronomers deal with very, very large distances, some incredible temperatures, and even really, really small wavelengths.

More information

Number Search 1-1 K L M N O P Q R S T A B C D. columns. rows I

Number Search 1-1 K L M N O P Q R S T A B C D. columns. rows I Number Search Use the number chart below to answer each question. Use only adjacent digits, that is, digits next to each other, in a row or column to make a number. Rows are read left to right. Columns

More information

Class Notes: Astronomy

Class Notes: Astronomy Name: Date: Period: Astronomy The Physical Setting: Earth Science Class Notes: Astronomy I. Apparent Motion Geocentric Universe -! Starts all rotate around the Earth on a single sphere at º/hour Planets

More information

UNIT 12 ~ More About Regression

UNIT 12 ~ More About Regression ***SECTION 15.1*** The Regression Model When a scatterplot shows a relationship between a variable x and a y, we can use the fitted to the data to predict y for a given value of x. Now we want to do tests

More information

Astro 1: Introductory Astronomy

Astro 1: Introductory Astronomy Astro 1: Introductory Astronomy David Cohen Class 16: Thursday, March 20 Spring 2014 large cloud of interstellar gas and dust - giving birth to millions of stars Hubble Space Telescope: Carina Nebula

More information

Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2

Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2 Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2 Instructor: L. M. Khandro 1. Relatively speaking, objects with high temperatures emit their peak radiation in short wavelengths

More information