Instructor Gaëtan Kerschen

Size: px
Start display at page:

Download "Instructor Gaëtan Kerschen"

Transcription

1 Welcome! 1

2 Instructor Gaëtan Kerschen Contact details Space Structures and Systems Lab (S3L) Structural Dynamics Research Group Aerospace and Mechanical Engineering Department Room: +2/420 (B52 building)

3 AERO0025 Satellite Engineering Gaëtan Kerschen Space Structures & Systems Lab (S3L) 3

4 The University System Natural tendency to create specialists rather than generalists Highly specialized courses in aerospace engineering at ULg and main focus on mechanical/structural aspects A spacecraft designed by structural engineers 4

5 The University System 5

6 My Objectives A well-designed satellite is a sound compromise among the requirements of the different engineering disciplines 1. Introduce you to systems engineering 2. Expose you to the inherently multidisciplinary aspect of satellite engineering 3. Give you an overview of different subsystems and, as much as possible, of their interactions (more details on specific subsystems next year) 6

7 Another Objective of this Course YOU Your Master is unique! 7

8 Course Details 8

9 Textbook 9

10 Course Project 10

11 Course Project For two weeks from Monday, please form groups of 4 persons and mention your top 3. Mention also your favorite mission among the three chosen missions. ESA missions CubeSats Far Infrared Interferometer Solar Orbiter Space Weather Wide Field Imager X-ray Evolving Universe Spectroscopy COMPASS-1 (Aachen, Germany) SwissCube (Lausanne, Switzerland) ( 11

12 AERO0025 Satellite Engineering Introductory Lecture From Dreams to Technical Challenges 12

13 From Dreams to Technical Challenges Space makes us dream What? Why? Where? When? Who? How? Technical challenges! 13

14 Space Makes Us Dream 14

15 Space Makes Us Dream 15

16 Space Makes Us Dream 16

17 Space Makes Us Dream 17

18 Space Makes Us Dream???????????? 18

19 Space Makes Us Dream????????????? 19

20 WHAT DO YOU SEE? 20

21 Space Makes Us Dream 21

22 Space Makes Us Dream 22

23 Space Makes Us Dream Ariane V 23

24 Space Makes Us Dream 24

25 Space Makes Us Dream 25

26 Space Makes Us Dream 26

27 Space Makes Us Dream 27

28 Space Makes Us Dream 28

29 Satellite #1 Hint : beeeeep beeeeep beeeeep 29

30 Satellite #2 Satellite #2 30

31 Hint for Satellite #2 Hint for satellite #2: Automated Transfer Vehicle (ATV) Hint: one of the most famous pictures in astronomy 31

32 Satellite #3 Satellite #3 32

33 Hint for Satellite #3 Hint for satellite #3: one of the most famous pictures in astronomy 33

34 Satellite #5 Satellite #4 34

35 Hint for Hint satellite for #4: Satellite visited several #5 planets and their moons 35

36 Hint for Satellite #5 Hint for satellite #4: Star Trek (1979) 36

37 Satellite #6 Satellite #5 37

38 Hint for Satellite #6 Hint for satellite #5: the satellite discovered a small ice lake 38

39 Satellite #9 Satellite #6 39

40 Hints for Satellite #9 Hint for satellite #6: 1. CSL participated to this mission 2. Name of a London district 40

41 Satellite #10 Satellite #7 41

42 Hint for Satellite #10 Hint for satellite #7 42

43 Hint for Satellite #10 Satellite #8 43 Hint for satellite #8: kéne affaire

44 Answers But Also Emphasis of Some Technical challenges Examples of design interaction Failures 44

45 Satellite #1: Sputnik, 1957 Objective: Identification of high atmospheric layers density First artificial satellite, Oct. 4, 1957 Several failures of the launch vehicle (May, June, July 1957) before the successful flight 45

46 Sputnik: Technical Data Weight 84 kgs Dimensions 0.6 m diameter sphere Power 1 W radio transmitting unit Propulsion ADCS Communications Orbit Launch vehicle 2 antennas, 2.4 m and 2.9 m (spherical radiation pattern) LEO, 950 x 220 kms, i= 65, T=96 mins R-7 Semyorka (Soyuz basis) 46

47 Satellite #2: ISS Objective: Perform science experiments 47

48 ISS: Technical Data Weight Dimensions 470 tons (upon completion) 58m x 73m x 28m Power 110 kw, solar panels Propulsion ADCS Communications Orbit Launch vehicle Zvezda (2 x 3070 N thrusters, N2H4 and N2O4) + Progress + STS + ATV Control moment gyroscopes + thrusters (130 N) + star trackers + infra Red horizon sensors + magnetometers + solar sensors + GPS Ku-band (TV, high-speed data) and S-band (audio) antennas LEO, 339 x 342 kms, i= 51, T=91 mins Soyuz and Space Shuttle 48

49 Satellite #3: HST, 1990 Objective: Astronomy Pointing accuracy: Defective mirror and solar panels, recovery thanks to servicing mission 49

50 HST: Technical Data Weight 11 tons Dimensions Power 13.2 m high, 4.2 m diameter 4.5 kw, solar panels Propulsion ADCS Reaction wheels, magnetometers, star trackers, gyroscopes, fine guidance sensor (lock onto guide stars), magnetic torquers Communications Orbit Launch vehicle 2 high-gain antennas (S-band) LEO, 600 kms, i= 28, T=96 mins Space Shuttle 50

51 Satellite #4: Voyager, 1977 Objective: Space exploration (planets and their moons) Unique feature: farthest manmade object from earth (100 UA) Jupiter, Saturn, Uranus, Neptune and their moons 23 W radio could transmit data over a distance of 10 9 km Alignment every 176 years + 12 years to meet Neptune 51

52 Voyager: Technical Data Weight Dimensions Power 720 kgs 0.6 m high, 1.8 m diameter (bus) 470 W, 3 RTGs Propulsion ADCS Communications Orbit Launch vehicle Centaur (LH 2 +LOX) + gravity assist + 16 N 2 H 4 thrusters 16 N 2 H 4 thrusters + sun sensors + star tracker 3.7 m high-gain antenna (S band: uplink, X-band: downlink), low-gain antenna Outer planets exploration Titan III + centaur upper stage 52

53 Satellite #5: Mars Express, 2003 Objective: Mars exploration 40-m radar to map the distribution of water Beagle 2 failed to land (problem with the parachuting device) 53

54 Mars Express: Technical Data Weight Dimensions Power Propulsion ADCS Communications 1100 kgs 1.5 x 1.8 x 1.4 m (bus) Solar panels: 12 m tip-to-tip 600 W, solar panels Fregat N main engine with N 2 H 4 and N 2 O 4 (mainly for slowing down!) 8 attitude thrusters (10 N each) + star trackers + gyros + sun sensors + 4 reaction wheels (12 NMs) 1.6 m high-gain antenna m low-gain antenna (X band 7.1 GHz and S-band 2.1 GHz) + UHF antenna (for Beagle 2) Orbit Martian orbit, 259 x kms i= 86 Launch vehicle Soyuz + Fregat upper stage (4th stage) 54

55 Satellite #6: SOHO, 1995 Objective: Solar exploration and space weather prediction 55

56 SOHO: Technical Data Weight 1850 kgs Dimensions 4.3 x 2.7 x 3.7 m (bus) Solar panels: 9.5 m tip-to-tip Power 1500 W, solar panels Propulsion Centaur + 16 N 2 H 4 thrusters (4.2 N) ADCS Communications Orbit Launch vehicle 3 reaction wheels + 16 N 2 H 4 thrusters + 3 gyroscopes + sun sensors + star tracker 0.8 m high-gain and low-gain antennas (S-band) Halo orbit (L1) Atlas II + centaur upper stage 56

57 SOHO s Failure 1. All contact with SOHO was lost during a month! 2. A telescope was used to transmit an S-band signal (580 kw!!!) towards SOHO. The radar echoes heard from Goldstone (Deep Space Network) confirmed its predicted location, and a spin rate of 1 rpm. 3. Telemetry showed that hydrazine in the tank, thrusters and pipes were frozen. 4. Thawing operation using heaters SOHO was recovered! 57

58 58

59 Satellite #7: NEAR Shoemaker, 1996 Objective: First spacecraft to soft-land on an asteroid Several sets of thrusters 59

60 NEAR Shoemaker: Technical Data Weight 805 kgs (318 kgs propellant!) Dimensions Power ADCS 3 m high x 1.7 m diameter (bus) 1800 W (400 W) at 1 AU (2.2 AU) N 2 H 4 thrusters (4 x 21 N + 7 x 3.5 N) + 4 reaction wheels + gyroscopes + star tracker Propulsion 450 N main thruster (N 2 H 4 / N 2 O 4 ) Communications Orbit Launch vehicle 1.5 m X-band high-gain radio antenna Asteroid pursuit Delta II 60

61 NEAR Shoemaker s Failure On 20 December 1998, the spacecraft began a series of rendez-vous burns required for capture into orbit around the asteroid Eros. Immediately after the main engine ignited, the burn aborted, demoting the spacecraft into safe mode. Less than 1 min. later, the spacecraft began an anomalous series of attitude motions, and communications were lost for the next 27 hours. Onboard autonomy eventually recovered and stabilized the spacecraft in its lowest safe mode. However, in the process NEAR had performed 15 autonomous momentum dumps, fired its thrusters thousands of times, and consumed 29 kg of fuel. The cause was determined within 2 days of the event: the main engine s normal start-up transient exceeded a lateral acceleration safety threshold that was set too low. 61

62 Satellite #8: OUFTI-1, 2009 Objectives: 1. On-orbit validation of D-STAR 2. Innovative electrical power system 3. New solar cells Entirely designed by students Hopefully none! 62

63 OUFTI-1: Technical Data Weight Dimensions Power ADCS 1 kg 10 cm x 10 cm x 10 cm 1 W Passive (permanent magnets and hysteretic materials) Propulsion None Communications 145 MHz MHz (Ham radio bands) Orbit LEO, 1447 x 354 kms, i= 71 Launch vehicle Vega 63

64 ? 64

65 They Are All Different! Weight Dimensions Power ADCS Communications Orbit Launch vehicle A few kgs several tons A few cms several meters A few watts several kw Many options High gain, low gain UHF, X, S, Ku bands A few cms several meters LEO, Halo orbit, asteroid pursuit, Martian, space exploration Soyuz, STS, Delta II, Titan III, Atlas II 65

66 Failures Are Common! Celebrated Example Due to a navigation error, Mars Climate Orbiter was lost. The error arose because Lockheed Martin used imperial units instead of metric units as specified by NASA 66

67 The Launch Vehicle May Also Fail! 67

68 From Dreams to Technical Challenges Space makes us dream What? How? Technical challenges! 68

69 Definition (Wikipedia) In the context of spaceflight, a satellite is an object which has been placed into orbit by human endeavor. Such objects are sometimes called artificial satellites to distinguish them from natural satellites such as the Moon. Lots of acronyms in space jargon (LEO, GEO, TM/TC, SRB, ADCS, EPS, BOL, EOL, etc.). An extensive list is available in Fortescue et al. p xxi 69

70 An Element Within a Larger System Severe constraints (size, weight, launch site, orbit, vibrations) Telemetry for satellite data and status (TM) Telecommands (TC) Determination of satellite s position Launch vehicle Ground station 70

71 Goldstone (70m) Madrid (70m) Canberra (70m) Deep space network: 3 ground stations (120 apart around the world ) ESA Redu ground station (Belgium) 71

72 Ariane V Vega Soyuz Titan III Saturn V? Space Shuttle??? 72

73 73

74 Satellites Inside the Fairing (Dnepr L.V.) Demeter, Saudisat-2, SaudiComsat-1, Latinsat-C, SaudiComsat-2, Unisat-3, Amsat-Echo and Latinsat-D 74

75 Launch Site Influence Ariane V: 9 tons in GTO, launch site: Kourou, i=5.1 Ariane V: 5 tons in GTO, launch site: Kennedy SC, i=28.4 Ariane V: 3.5 tons in GTO, launch site: Baikonour, i=

76 A Satellite Comprises Two Main Elements Payload: motivation for the mission Bus: necessary functions for the payload 76

77 Antennas: planet radio emissions Magnetometer PAYLOAD (LECTURES 3, 4, CSL, AGO) Cosmic ray detector Plasma detector Photopolarimeter UV and IR spectrometers Cameras 77

78 Bus: Complex Assembly of Subsystems STRUCTURE & MECH. Withstand launch and orbit loads + properly deploy and run mechanisms PROPULSION Spacecraft maneuvers and trajectory THERMAL CONTROL TELECOMMUNICATIONS ATTITUDE CONTROL Withstand temperatures imposed by the harsh space environment Communicate and exchange information with ground Ensure correct orientation in space POWER Powering the subsystems and payloads ON-BOARD COMPUTER The brain of the satellite 78

79 POWER (LECTURE 9, THALES ALENIA SPACE) Radioisotope thermoelectric generator (RTG) Sun sensor ATTITUDE CONTROL (LECTURE 10, KERSCHEN) High-gain antenna Low-gain antenna TELECOMMUNICATIONS (LECTURE 13, SPACEBEL) 79

80 Louvers THERMAL CONTROL (LECTURE 11, CSL) N 2 H 4 thrusters PROPULSION (LECTURE 8, LEONARD) Decagon, 0.6 m high 1.8 m diameter STRUCTURE 80 (LECTURE 12, ESA)

81 ATTITUDE CONTROL (LECTURE 10, KERSCHEN) Star tracker MECHANISMS (LECTURE 15, BOZET) Box containing a deployable truss on 81 which the magnetometer is mounted

82 In Summary GROUND SEGMENT SPACE SEGMENT LAUNCH VEHICLE PAYLOAD BUS STRUCTURE & MECH. ATTITUDE CONTROL TELECOMMUNICATIONS PROPULSION POWER THERMAL CONTROL ON-BOARD COMPUTER 82

83 From Dreams to Technical Challenges Space makes us dream When? How? Technical challenges! 83

84 When? HISTORICAL PERSPECTIVE (NEXT LECTURE, SPACE INFORMATION CENTER) 84

85 From Dreams to Technical Challenges Space makes us dream Where? How? Technical challenges! 85

86 VOYAGER ULYSSES NEW HORIZONS MARS EXPRESS GIOTTO SOLAR ORBITER BEPI COLOMBO VENUS EXPRESS EARTH ORBIT SPACECRAFT ENVIRONMENT (LECTURE #4, CSL) Severe constraints (magnetic field, temperatures, atmosphere, launch vehicle, ground station visibility, eclipse duration) 86

87 LAGRAGE POINTS (NONLINEAR DYNAMICS!) BENIGN ENVIRONMENT: PLANCK, JAMES WEBB SPACE TELESCOPE GOOD FOR SUN OBSERVATION: SOHO STABLE: ASTEROIDS 87

88 HEO kms x 7000 kms: XMM GEO MEO kms: METEOSAT, GOES kms: Galileo kms: GPS SATELLITE ORBITS (LECTURE 6, KERSCHEN) GAP LEO 1447 kms x 354 kms: OUFTI kms: SPOT kms: HST 400 kms: ISS 250 kms: GOCE Circular Elliptic

89 Gap? Van Allen Belts SPACECRAFT ENVIRONMENT (LECTURE 5, CSL) 89

90 From Dreams to Technical Challenges Space makes us dream Why? How? Technical challenges! 90

91 Earth Observation: Weather Satellites What s special with Meteosat? Weather satellites see more than clouds: fires, pollution, sand storms Movie: GOES satellite 91

92 Earth Observation: Other Satellites Measurements of the surface height of the oceans to an accuracy of 3.3 cms ENVISAT (SSO) JASON (LEO, i=66 ) In-orbit configuration: 26 m x 10m x 5m (the size of a bus) Information about the earth (land, water, ice and atmosphere) EARTH OBSERVATION (LECTURE 3, CSL) Military satellites (resolution: on the order of 1cm!) -satellite-shootdown.html 92 KH-13

93 Communications and Navigation Eutelsat W3A GPS 2R Eutelsat: 2500 televisions and 1000 radio stations Iridium: a constellation of 66 satellites GPS (USA): 31 satellites in 6 orbital planes spaced equally in their ascending node locations Galileo (Europe), Glonass (Russia) 93

94 GPS Constellation GPS 2R GPS constellation 94

95 Space Observation and Exploration Too many examples! Cassini-Huygens (Saturn), SOHO (Sun), Galileo (Jupiter), Voyager (different planets), HST (universe), Corot (asteroseismology), NEAR shoemaker (asteroid encounter), etc. Observation using different wave lengths (XMM X rays, IRAS infrared) A single mission has not a single instrument (e.g., more than 10 for Galileo) ASTROPHYSICS (LECTURE 4, AGO) 95

96 Space Stations Perform science experiments under microgravity conditions MIR (Russia) ISS 96

97 Service Satellites Tracking and data relay satellite system SMART-OLEV GEO spacecraft constellation: Tracking and data acquisition services between LEO spacecraft and NASA/customer facilities A gas station in space: Up to 12 years life extension for GEO telecommunications satellites 97

98 Space Tourism: Inflatable Hotel! Experimental space habitat GENESIS

99 Entertainment Thanks to Space!

100 From Dreams to Technical Challenges Space makes us dream Who? How? Technical challenges! 100

101 Key Players NASA, JPL, Lockheed-Martin, Northrop-Grumman, Boeing Roscosmos, Energia ESA, CNES, DLR, ASI, EADS-Astrium, Arianespace,Thales Alenia Space Two emerging countries 101

102 Belgium? A Truly Strong Expertise! AMOS, Cegelec, CSL, Euro Heat Pipes, Gillam, Ionic Software, Lambda-X, SABCA, SAMTECH, SONACA, Spacebel, Techspace Aero, ETCA, Verhaert, Vitrociset, Walphot Euro Space Center and ESA Redu ground station ULg: 2 unique Masters + LTAS & AGO UCL: radiation and hyperfrequences ULB: microgravity research center 102

103 An Example of Belgium s Know-How ATV Jules Verne EHP: heat pipes ETCA: power conditioning units Spacebel: software Rhea: software Redu: backup ground station Techspace aero: aestus engine valves 103

104 From Dreams to Technical Challenges Space makes us dream What? How? Technical challenges! 104

105 Satisfy Customer s Basic Goals 1. Payload design LECTURES 3, 4 2. Mission analysis (orbit design and resulting environment) LECTURES 5, 6, 7 3. Bus design (all other lectures) LECTURES

106 But Satellite engineering is extremely challenging For at least 7 reasons can you guess some of them? 106

107 Challenge #1: Multidisciplinary Design 107

108 Challenge #1: Voyager Example POWER USING NUCLEAR MATERIALS Deep space mission POLITICAL PROBLEM ELECTRONICS (RADIATION) BUS (ADEQUATE CONFIGURATION) 108

109 Challenge #2: Each Mission is Unique Where? & Why? 109

110 Challenge #3: Orders of Magnitude What is Planck s coldest T? CSL 110

111 Challenge #3: Orders of Magnitude 0.1 K (CSL) the equivalent of the amount of energy exchanged between 2 people 400 kms from each other 7.5 kms of shielded cable kms W

112 Challenge #3: Orders of Magnitude km/h km/h in 2 minutes 112

113 Challenge #3: Not Only the Satellite Solid rocket boosters (SRBs): 10 tons / s 45 GW (electric power in France) 124s 150 db 113

114 114

115 Challenge #3: Not Only the Launcher Vehicle assembly building (Kennedy Space Center) 3.5 times the volume of the Empire State building 115

116 Challenge #3: Not Only the Building $1 billion just to transport the space shuttle over a few kilometers 116

117 Challenge #3: Last but not Least A 3-meter long gator at KSC 117

118 Challenge #4: Complex Mission Profile Inner planetary missions Satellite & launch vehicle in earth orbit Deep space missions Ascent Reentry & landing Launch Transportation Handling & testing 118

119 Challenge #5: Severe Constraints Planning (Voyager: once every 176 years) /kg Weight Volume Fuel Power (Voyager: 470 W) 119

120 Challenge #6: Harsh Environment Low temperatures + unknown Magnetism Rings Meteorites + cosmic ray + vacuum Hot temperatures Voyager did visit Jupiter, Saturn, Neptune and Uranus! 120

121 Challenge #7: Reliable and Robust In most cases, no maintenance! Autonomy is often required for deep space missions (communications may take several minutes if not hours) 121

122 Challenge #1: Multidisciplinary Design Look for the optimal solution for the entire spacecraft (do not look for the optimal solution for your subsystem) This course is intended to give you an overview of the different subsystems, so that you will understand the challenges faced by your colleagues who are expert in power systems telecommunications, etc Concurrent Design Facility, ESTEC-ESA 122

123 Challenge #2: Each Mission is Unique The engineer must fit the requirements 123

124 Challenge #2: Each Mission is Unique Roll-out Whipple shield Hubble Stardust Body mounted Cruise & observation SSETI Express Solar Orbiter 124

125 Challenge #3: Orders of Magnitude The engineer must be creative kms Communications: W Power: 15W/m 2 (Saturne) Nuclear materials 70-meter antenna 125

126 Challenge #4: Complex Mission Profile Virtual prototyping (i.e., predict as many configurations / options / situations as possible using numerical simulations) Finite element model predictions of an antenna support 126

127 Challenge #5: Severe Constraints The engineer must be creative Volume under the fairing is limited Deployable boom ( Voyager) 127

128 Challenge #5: Severe Constraints Fuel Gravity assist 128

129 Challenge #6: Harsh Environment Develop new technologies Whipple shield against comet projections 129

130 Challenge #7: Reliable and Robust Redundancy and proven technologies For each spacecraft: 3 RTGs 2 x 8 thrusters 2 transceivers 2 computers 2 magnetometers Voyager 1 Voyager 2: backup (ultimate redundancy!) 130

131 In Summary Use proven technologies Be creative Conflict is the order of the day Redundancy The resolution of such conflict in a productive manner is precisely the goal of systems engineering Weight constraints (launch) 131

132 1. Quel est le premier être vivant a avoir été envoyé dans l'espace par les Russes? 2. Quel est le premier être vivant a avoir été envoyé dans l'espace par les Américains? 3. Quel est le premier être vivant a avoir été envoyé dans l'espace par les Belges?

133 AERO0025 Satellite Engineering Introductory Lecture From Dreams to Technical Challenges 133

Instructor Gaëtan Kerschen

Instructor Gaëtan Kerschen Welcome! 1 Instructor Gaëtan Kerschen Contact details Space Structures and Systems Lab (S3L) Structural Dynamics Research Group Aerospace and Mechanical Engineering Department Room: +2/420 (B52 building)

More information

Contact details. Space Structures and Systems Lab (S3L) Structural Dynamics Research Group Aerospace and Mechanical Engineering Department

Contact details. Space Structures and Systems Lab (S3L) Structural Dynamics Research Group Aerospace and Mechanical Engineering Department Welcome! 1 Instructor Gaëtan Kerschen Contact details Space Structures and Systems Lab (S3L) Structural Dynamics Research Group Aerospace and Mechanical Engineering Department Room: +2/420 (B52 building)

More information

Instructor Gaëtan Kerschen

Instructor Gaëtan Kerschen Welcome! 1 Instructor Gaëtan Kerschen Contact details Space Structures and Systems Lab (S3L) Structural Dynamics Research Group Aerospace and Mechanical Engineering Department Room: +2/420 (B52 building)

More information

ESSE Payload Design. 1.2 Introduction to Space Missions

ESSE Payload Design. 1.2 Introduction to Space Missions ESSE4360 - Payload Design 1.2 Introduction to Space Missions Earth, Moon, Mars, and Beyond Department of Earth and Space Science and Engineering Room 255, Petrie Science and Engineering Building Tel: 416-736

More information

Deep Space Communication*

Deep Space Communication* Deep Space Communication* Farzin Manshadi JPL Spectrum Manager September 20-21, 2012 * Based on Material provided by Dr. Les Deutsch Introduction ITU defines deep space as the volume of Space at distances

More information

Learning Lab Seeing the World through Satellites Eyes

Learning Lab Seeing the World through Satellites Eyes Learning Lab Seeing the World through Satellites Eyes ESSENTIAL QUESTION What is a satellite? Lesson Overview: Engage students will share their prior knowledge about satellites and explore what satellites

More information

Spacecraft Bus / Platform

Spacecraft Bus / Platform Spacecraft Bus / Platform Propulsion Thrusters ADCS: Attitude Determination and Control Subsystem Shield CDH: Command and Data Handling Subsystem Payload Communication Thermal Power Structure and Mechanisms

More information

Satellite Components & Systems. Dr. Ugur GUVEN Aerospace Engineer (P.hD) Nuclear Science & Technology Engineer (M.Sc)

Satellite Components & Systems. Dr. Ugur GUVEN Aerospace Engineer (P.hD) Nuclear Science & Technology Engineer (M.Sc) Satellite Components & Systems Dr. Ugur GUVEN Aerospace Engineer (P.hD) Nuclear Science & Technology Engineer (M.Sc) Definitions Attitude: The way the satellite is inclined toward Earth at a certain inclination

More information

LRO Lunar Reconnaissance Orbiter

LRO Lunar Reconnaissance Orbiter LRO Lunar Reconnaissance Orbiter Launch Date: June 18, 2009 Destination: Earth s moon Reached Moon: June 23, 2009 Type of craft: Orbiter Intended purpose: to map the moon like never before, add additional

More information

Technology Reference Studies

Technology Reference Studies In the proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation 'ASTRA 2004' ESTEC, Noordwijk, The Netherlands, November 2-4, 2004 Technology Reference Studies P.

More information

What s Up in Space? Dean W McCall, Ed.D.

What s Up in Space? Dean W McCall, Ed.D. What s Up in Space? Dean W McCall, Ed.D. In no particular order Brief aerospace CV Systems Engineering Space mission types Examples Gotchas Terminology & Slang Please ask questions McCall Background Hughes

More information

Design of Orbits and Spacecraft Systems Engineering. Scott Schoneman 13 November 03

Design of Orbits and Spacecraft Systems Engineering. Scott Schoneman 13 November 03 Design of Orbits and Spacecraft Systems Engineering Scott Schoneman 13 November 03 Introduction Why did satellites or spacecraft in the space run in this orbit, not in that orbit? How do we design the

More information

Space and Robotics. History of Unmanned Spacecraft David Wettergreen The Robotics Institute Carnegie Mellon University

Space and Robotics. History of Unmanned Spacecraft David Wettergreen The Robotics Institute Carnegie Mellon University Space and Robotics History of Unmanned Spacecraft David Wettergreen The Robotics Institute University Era of Space Access Access to space began 46 years ago (tomorrow) with the launch of Sputnik 1 aboard

More information

Space Environment & Technology Space Policy and Law Course 2018

Space Environment & Technology Space Policy and Law Course 2018 Space Environment & Technology Space Policy and Law Course 2018 Professor Alan Smith Mullard Space Science Laboratory University College London 15 October 2018 Orbits and Space The Space Environment The

More information

Introduction to Astronomy

Introduction to Astronomy Introduction to Astronomy Have you ever wondered what is out there in space besides Earth? As you see the stars and moon, many questions come up with the universe, possibility of living on another planet

More information

Chapter 26. Objectives. Describe characteristics of the universe in terms of time, distance, and organization

Chapter 26. Objectives. Describe characteristics of the universe in terms of time, distance, and organization Objectives Describe characteristics of the universe in terms of time, distance, and organization Identify the visible and nonvisible parts of the electromagnetic spectrum Compare refracting telescopes

More information

THE VOYAGER-2 NEPTUNE ENCOUNTER

THE VOYAGER-2 NEPTUNE ENCOUNTER THE VOYAGER-2 NEPTUNE ENCOUNTER William J. Kosmann The Astronautics Company The Jet Propulsion Laboratory, The California Institute of Technology 4800 Oak Grove Drive Pasadena, California 91109 ABSTRACT

More information

Germany s Option for a Moon Satellite

Germany s Option for a Moon Satellite Germany s Option for a Moon Satellite 38th COSPAR B01-0016-10 Quantius, D. (1), Päsler, H. (2), Gülzow, P. (2), Braukhane, A. (1), Vollhardt, A. (2), Bauer, W. (1), Romberg, O. (1), Scheibe, K. (1), Hoffmann,

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 10. Interplanetary Trajectories Gaëtan Kerschen Space Structures & Systems Lab (S3L) Motivation 2 6. Interplanetary Trajectories 6.1 Patched conic method 6.2 Lambert s problem

More information

DARE Mission and Spacecraft Overview

DARE Mission and Spacecraft Overview DARE Mission and Spacecraft Overview October 6, 2010 Lisa Hardaway, PhD Mike Weiss, Scott Mitchell, Susan Borutzki, John Iacometti, Grant Helling The information contained herein is the private property

More information

Dive In What is an advantage of sending unmanned crafts to space?

Dive In What is an advantage of sending unmanned crafts to space? Dive In What is an advantage of sending unmanned crafts to space? Manned and Robotic Spacecraft For Each Space Vehicle, complete the worksheet including: 1. If the spacecraft is manned or unmanned. 2.

More information

The Moon s relationship with Earth The formation of the Moon The surface of the Moon Phases of the Moon Travelling to the Moon

The Moon s relationship with Earth The formation of the Moon The surface of the Moon Phases of the Moon Travelling to the Moon The Moon The Moon s relationship with Earth The Moon orbits the Earth every 27.3 days. The tides on Earth are caused mostly by the gravitational pull of the Moon and the Sun. The Moon's gravitational pull

More information

Space Explorer Glossary

Space Explorer Glossary Space Explorer Glossary A. * Asteroid ~ a rocky object in space that can be a few feet wide to several hundred miles wide. Most asteroids in the Solar System orbit in a belt between Mars and Jupiter. *

More information

orbit 1 of 6 For the complete encyclopedic entry with media resources, visit:

orbit 1 of 6 For the complete encyclopedic entry with media resources, visit: This website would like to remind you: Your browser (Apple Safari 4) is out of date. Update your browser for more security, comfort and the best experience on this site. Encyclopedic Entry orbit For the

More information

Low Cost Helicon Propulsion System for CubeSat future mission scenarios. T4i - University of Padova D.Pavarin

Low Cost Helicon Propulsion System for CubeSat future mission scenarios. T4i - University of Padova D.Pavarin Low Cost Helicon Propulsion System for CubeSat future mission scenarios T4i - University of Padova D.Pavarin Centro di Ateneo Studi e Attività Spaziali University of Padova Padova, Italy Technology for

More information

BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission. with Novel Plasma Propulsion Technology ISSC 2013

BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission. with Novel Plasma Propulsion Technology ISSC 2013 BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission with Novel Plasma Propulsion Technology Sara Spangelo, NASA JPL, Caltech Benjamin Longmier, University of Michigan Interplanetary Small

More information

LAUNCH SYSTEMS. Col. John Keesee. 5 September 2003

LAUNCH SYSTEMS. Col. John Keesee. 5 September 2003 LAUNCH SYSTEMS Col. John Keesee 5 September 2003 Outline Launch systems characteristics Launch systems selection process Spacecraft design envelope & environments. Each student will Lesson Objectives Understand

More information

Educational Product Teachers Grades K-12 EG MSFC

Educational Product Teachers Grades K-12 EG MSFC Educational Product Teachers Grades K-12 NASA Spacelink Optics: An Educators Guide With Activities In Science and Mathematics is available in electronic format through NASA Spacelink one of the Agency

More information

Mission Overview. EAGLE: Study Goals. EAGLE: Science Goals. Mission Architecture Overview

Mission Overview. EAGLE: Study Goals. EAGLE: Science Goals. Mission Architecture Overview Mission Overview OPAG Meeting November 8 th, 2006 Ryan Anderson & Daniel Calvo EAGLE: Study Goals Develop a set of science goals for a flagship mission to Enceladus Investigate mission architectures that

More information

Solar Sailing as an Enabling Technology

Solar Sailing as an Enabling Technology Dr. Eur Ing Malcolm Macdonald 22 April 2009 at the European Week of Astronomy and Space Science Solar Sailing as an Enabling Technology www.strath.ac.uk/space malcolm.macdonald.102@strath.ac.uk Overview

More information

What is Earth Science?

What is Earth Science? What is Earth Science? A.EARTH SCIENCE: the study of Earth and its history B. Earth science is divided into 4 main branches: 1. Geology: study of the lithosphere 2. Oceanography: study of oceans 3. Meteorology:

More information

Facts Largest Moon of Saturn. Has an atmosphere containing mostly Nitrogen and methane. 1 gram on Earth would weigh 0.14g on Titan. Only know moon in

Facts Largest Moon of Saturn. Has an atmosphere containing mostly Nitrogen and methane. 1 gram on Earth would weigh 0.14g on Titan. Only know moon in Titan Martin E Facts Largest Moon of Saturn. Has an atmosphere containing mostly Nitrogen and methane. 1 gram on Earth would weigh 0.14g on Titan. Only know moon in our solar system to have a dense atmosphere.

More information

A BATCH LAUNCH FOR THE O3b CONSTELLATION

A BATCH LAUNCH FOR THE O3b CONSTELLATION A BATCH LAUNCH FOR THE O3b CONSTELLATION For the fifth Soyuz launch from the Guiana Space Center, Arianespace will orbit the first four satellites in the O3b constellation. These satellites are built by

More information

Overview of the Jovian Exploration Technology Reference Studies

Overview of the Jovian Exploration Technology Reference Studies Overview of the Jovian Exploration Technology Reference Studies The Challenge of Jovian System Exploration Peter Falkner & Alessandro Atzei Solar System Exploration Studies Section ESA/ESTEC Peter.Falkner@esa.int,

More information

LAB 2 HOMEWORK: ENTRY, DESCENT AND LANDING

LAB 2 HOMEWORK: ENTRY, DESCENT AND LANDING LAB 2 HOMEWORK: ENTRY, DESCENT AND LANDING YOUR MISSION: I. Learn some of the physics (potential energy, kinetic energy, velocity, and gravity) that will affect the success of your spacecraft. II. Explore

More information

SECOND VEGA LAUNCH FROM THE GUIANA SPACE CENTER

SECOND VEGA LAUNCH FROM THE GUIANA SPACE CENTER SECOND VEGA LAUNCH FROM THE GUIANA SPACE CENTER On the second Vega launch from the Guiana Space Center (CSG) in French Guiana, Arianespace will orbit three satellites: PROBA-V, VNREDSat-1 and ESTCube-1.

More information

Universe. of Space Exploration. Future Space Missions

Universe. of Space Exploration. Future Space Missions Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Chapter Wrap-Up Observing the Universe Early History of Space Exploration Recent and Future Space Missions NASA/Ames Wendy Stenzel How do humans observe

More information

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010 Orbit Design Marcelo Suárez Orbit Design Requirements The following Science Requirements provided drivers for Orbit Design: Global Coverage: the entire extent (100%) of the ice-free ocean surface to at

More information

Kurt Lindstrom: Overview of New Horizons. Hal Weaver: Overview of the Science. Glen Fountain: Overview of the Mission

Kurt Lindstrom: Overview of New Horizons. Hal Weaver: Overview of the Science. Glen Fountain: Overview of the Mission Kurt Lindstrom: Overview of New Horizons Hal Weaver: Overview of the Science Glen Fountain: Overview of the Mission Kurt Lindstrom: Overview of the New Horizons DEIS Kenneth Kumor: Overview of the NEPA

More information

Mobile and Wireless Networks Course Instructor: Dr. Safdar Ali

Mobile and Wireless Networks Course Instructor: Dr. Safdar Ali Mobile and Wireless Networks Course Instructor: Dr. Safdar Ali Satellite Communication INTRODUCTION INTRODUCTION Communication satellite are off-course only one means of telecommunication transmission.

More information

Space mission environments: sources for loading and structural requirements

Space mission environments: sources for loading and structural requirements Space structures Space mission environments: sources for loading and structural requirements Prof. P. Gaudenzi Università di Roma La Sapienza, Rome Italy paolo.gaudenzi@uniroma1.it 1 THE STRUCTURAL SYSTEM

More information

Part 4: Exploration 1

Part 4: Exploration 1 Part 4: Exploration 1 Reaction Engine An engine, such as a jet or rocket engine, that ejects gas at high velocity and develops its thrust from the resulting reaction This movement follows Newton s Third

More information

LEARNING ABOUT THE OUTER PLANETS. NASA's Cassini spacecraft. Io Above Jupiter s Clouds on New Year's Day, Credit: NASA/JPL/University of Arizona

LEARNING ABOUT THE OUTER PLANETS. NASA's Cassini spacecraft. Io Above Jupiter s Clouds on New Year's Day, Credit: NASA/JPL/University of Arizona LEARNING ABOUT THE OUTER PLANETS Can see basic features through Earth-based telescopes. Hubble Space Telescope especially useful because of sharp imaging. Distances from Kepler s 3 rd law, diameters from

More information

Astrodynamics (AERO0024) Gaëtan Kerschen Space Structures & Systems Lab (S3L)

Astrodynamics (AERO0024) Gaëtan Kerschen Space Structures & Systems Lab (S3L) Astrodynamics (AERO0024) Gaëtan Kerschen Space Structures & Systems Lab (S3L) Instructors Gaëtan Kerschen Contact details Space Structures and Systems Lab (S3L) Structural Dynamics Research Group Aerospace

More information

Scope and Sequence: Semester I

Scope and Sequence: Semester I www.homeschoolastronomy.com Scope and Sequence: Semester I A list of ideas, concepts and topics covered in the course in addition to recommendations on the order in which they are taught. Tour of the Solar

More information

End of Life Re-orbiting The Meteosat-5 Experience

End of Life Re-orbiting The Meteosat-5 Experience End of Life Re-orbiting The Meteosat-5 Experience Milan EUMETSAT, Darmstadt, Germany This article illustrates the orbit maneuver sequence performed during Meteosat- 5 End of Life (EOL) re-orbiting operations

More information

2. The distance between the Sun and the next closest star, Proxima Centuari, is MOST accurately measured in

2. The distance between the Sun and the next closest star, Proxima Centuari, is MOST accurately measured in Name: Date: 1. Some scientists study the revolution of the Moon very closely and have recently suggested that the Moon is gradually moving away from Earth. Which statement below would be a prediction of

More information

MISSION ENGINEERING SPACECRAFT DESIGN

MISSION ENGINEERING SPACECRAFT DESIGN MISSION ENGINEERING & SPACECRAFT DESIGN Alpbach 2007 - D.J.P. Moura - CNES MISSION ENGINEERING (1) OVERALL MISSION ENGINEERING IS A COMPLEX TASK SINCE AT THE BEGINNING THE PROBLEM IS GENERALLY BADLY EXPRESSED

More information

Merrillville Community Planetarium Kindergarten to Fifth Grade Programs By Gregg L. Williams February 1, 1983 Revised April 10, 2014

Merrillville Community Planetarium Kindergarten to Fifth Grade Programs By Gregg L. Williams February 1, 1983 Revised April 10, 2014 Kindergarten to Fifth Grade Programs By Gregg L. Williams February 1, 1983 Revised April 10, 2014 Listed below is the curriculum for the planetarium at each elementary grade level. The elementary program

More information

SENTINEL-1A LAUNCH CONTENTS. CONTACT & LINKS Press Contact Mario de Lepine

SENTINEL-1A LAUNCH CONTENTS. CONTACT & LINKS Press Contact Mario de Lepine SENTINEL-1A LAUNCH Arianespace s seventh Soyuz launch from the Guiana Space Center will orbit Sentinel-1A, the first satellite in Europe s Earth observation program, Copernicus. The European Space Agency

More information

TEACHER PAGE CELEBRATING SPACE: A QUICK HISTORY

TEACHER PAGE CELEBRATING SPACE: A QUICK HISTORY Background Putting the Space Age Into Context: The dawn of the space age does not date back that far in human history only 40 years! It is so recent that you can get eye-witness accounts by asking parents,

More information

What is scan? Answer key. Space Communications and Navigation Program. Entering the Decade of Light.

What is scan? Answer key. Space Communications and Navigation Program. Entering the Decade of Light. National Aeronautics and Space Administration SCaN Fun Pad www.nasa.gov NP-2018-02-047-GRC 30 1 What is scan? Answer key Page 22 Find the Mars Rover: Space Communications and Navigation Program The Space

More information

SPACE EXPLORATION REVIEW

SPACE EXPLORATION REVIEW SPACE EXPLORATION REVIEW Write the vocabulary term for the following 10 slides 1.The first human spaceflight program of the United States, its goal was the put man into Earth s orbit and return him safely,

More information

The Jovian Planets. The Jovian planets: Jupiter, Saturn, Uranus and Neptune

The Jovian Planets. The Jovian planets: Jupiter, Saturn, Uranus and Neptune The Jovian planets: Jupiter, Saturn, Uranus and Neptune Their masses are large compared with terrestrial planets, from 15 to 320 times the Earth s mass They are gaseous Low density All of them have rings

More information

MAE 180A: Spacecraft Guidance I, Summer 2009 Homework 4 Due Thursday, July 30.

MAE 180A: Spacecraft Guidance I, Summer 2009 Homework 4 Due Thursday, July 30. MAE 180A: Spacecraft Guidance I, Summer 2009 Homework 4 Due Thursday, July 30. Guidelines: Please turn in a neat and clean homework that gives all the formulae that you have used as well as details that

More information

The E-SAIL programme. 10th IAA Symposium on Small Satellites for Earth Observation April 20-24, 2015 Berlin LuxSpace s.à.r.

The E-SAIL programme. 10th IAA Symposium on Small Satellites for Earth Observation April 20-24, 2015 Berlin LuxSpace s.à.r. The E-SAIL programme 10th IAA Symposium on Small Satellites for Earth Observation April 20-24, 2015 Berlin LuxSpace s.à.r.l An OHB company Contents LuxSpace Background Consortium Spacecraft Specific issues

More information

Space and Space Travel ESS 102

Space and Space Travel ESS 102 Space and Space Travel ESS 102 Instructor for today and about 20% of future lectures Dr. Jeremy Thomas (jnt@u.washington.edu, JHN 270D, 685-1777) Feel free to contact me about any aspects of the course.

More information

Resource Allocation Planning and Scheduling Office. Deep Space Station-15 Out-of-Service Assessment Report. April 11, 2003

Resource Allocation Planning and Scheduling Office. Deep Space Station-15 Out-of-Service Assessment Report. April 11, 2003 Resource Allocation Planning and Scheduling Office Deep Space Station-15 Out-of-Service Assessment Report April 11, 2003 Roger Bartoo Study Description This study describes a Deep Space Network (DSN) loading

More information

Technical Proposal: Self-Assembling Space Structures

Technical Proposal: Self-Assembling Space Structures Excerpt For Public Release: Technical Proposal: 2018 Marcus van Bavel All rights Reserved Part 1: Table of Contents Part 1: Table of Contents... 1 Part 2: Significance of...1 Theory of Operation...3 Example

More information

Technology and Space Exploration

Technology and Space Exploration Technology and Space Exploration When did people first become interested in learning about Space and the Universe? Records from the earliest civilizations show that people studied and asked questions about

More information

CHAPTER 6. The Solar System

CHAPTER 6. The Solar System CHAPTER 6 The Solar System 6.1 An Inventory of the Solar System The Greeks knew about 5 planets other than Earth They also knew about two other objects that were not planets or stars: meteors and comets

More information

NEW HORIZONS 2. New Horizons: A Journey to New Frontiers

NEW HORIZONS 2. New Horizons: A Journey to New Frontiers NEW HORIZONS 2 New Horizons: A Journey to New Frontiers WHY NEW HORIZONS 2? PROVIDE BACKUP FOR THE HIGHEST PRIORITY NF OBJECTIVE OF THE DECADAL SURVEY. ENABLE THE FIRST EXPLORATION OF A LARGE (500 KM CLASS)

More information

Unit 12 Lesson 1 What Objects Are Part of the Solar System?

Unit 12 Lesson 1 What Objects Are Part of the Solar System? Unit 12 Lesson 1 What Objects Are Part of the Solar System? The Solar System Earth, other planets, and the moon are part of a solar system. A solar system is made up of a star and the planets and other

More information

The time period while the spacecraft is in transit to lunar orbit shall be used to verify the functionality of the spacecraft.

The time period while the spacecraft is in transit to lunar orbit shall be used to verify the functionality of the spacecraft. ASE 379L Group #2: Homework #4 James Carlson Due: Feb. 15, 2008 Henri Kjellberg Leah Olson Emily Svrcek Requirements The spacecraft shall be launched to Earth orbit using a launch vehicle selected by the

More information

Satellite communications and the environment of space. V 1.1 Swiss Space Summer Camp 2016 Images: NASA 1

Satellite communications and the environment of space. V 1.1 Swiss Space Summer Camp 2016 Images: NASA 1 Satellite communications and the environment of space Swiss Space Summer Camp 2016 Images: NASA 1 Can you name these satellites? Sputnik The first man made satellite Launched in 1957 by The USSR Mass 84kg,

More information

Robotic Lunar Exploration Scenario JAXA Plan

Robotic Lunar Exploration Scenario JAXA Plan Workshop May, 2006 Robotic Lunar Exploration Scenario JAXA Plan Tatsuaki HASHIMOTO JAXA 1 Question: What is Space Exploration? Answers: There are as many answers as the number of the people who answer

More information

Paper Session III-B - Mars Global Surveyor: Cruising to Mars

Paper Session III-B - Mars Global Surveyor: Cruising to Mars The Space Congress Proceedings 1997 (34th) Our Space Future - Uniting For Success May 1st, 1:00 PM Paper Session III-B - Mars Global Surveyor: Cruising to Mars Glenn E. Cunningham Project Manager Mars

More information

BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings

BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings COSGC Space Research Symposium 2009 BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings BOWSER 1 Mission Premise 4.3 km above sea level 402.3km above sea level BOWSER 2 Information

More information

Phys 214. Planets and Life

Phys 214. Planets and Life Phys 214. Planets and Life Dr. Cristina Buzea Department of Physics Room 259 E-mail: cristi@physics.queensu.ca (Please use PHYS214 in e-mail subject) Lecture 8. The scale of time and nature of worlds (Page

More information

A Concept of Nanosatellite Small Fleet for Earth Observation

A Concept of Nanosatellite Small Fleet for Earth Observation A Concept of Nanosatellite Small Fleet for Earth Observation Prof. Janusz Narkiewicz jnark@meil.pw.edu.pl Sebastian Topczewski stopczewski@meil.pw.edu.pl Mateusz Sochacki msochacki@meil.pw.edu.pl 10-11

More information

Lunette: Satellite to Satellite Gravity Mapping of the Moon

Lunette: Satellite to Satellite Gravity Mapping of the Moon Lunette: Satellite to Satellite Gravity Mapping of the Moon Maria Short 9th ILEWG International Conference on Exploration and Utilisation n of the Moon Authors: M. Short, C. Short, A. Philip, J. Gryzmisch,

More information

ASPECT Spectral Imager CubeSat Mission to Didymos

ASPECT Spectral Imager CubeSat Mission to Didymos ASPECT Spectral Imager CubeSat Mission to Didymos Kestilä A. 1),Näsilä A. 2), Kohout T. 3),Tikka T. 1),Granvik M. 3) 1. Aalto University, Finland. 2. Technical Research Center of Finland, Finland 3. Helsinki

More information

COMMUNICATION TEAM. You will be the only verbal link between Mars Control and the spacecraft for many of the teams!

COMMUNICATION TEAM. You will be the only verbal link between Mars Control and the spacecraft for many of the teams! COMMUNICATION TEAM Congratulations! You have been selected to be a mission specialist on the Communication Team. Your team s mission will be to establish a verbal link between Mars Control and the spacecraft.

More information

ESA UNCLASSIFIED For Official Use. BepiColombo à Exploring Mercury

ESA UNCLASSIFIED For Official Use. BepiColombo à Exploring Mercury BepiColombo à Exploring Mercury ESA / JAXA BepiColombo Mercury Mercury has always been something of a puzzle for planetary scientists. Its close position to the Sun means it is very difficult to observe.

More information

Saturn and Planetary Rings 4/5/07

Saturn and Planetary Rings 4/5/07 Saturn and Planetary Rings Announcements Reading Assignment Chapter 15 5 th homework due next Thursday, April 12 (currently posted on the website). Reminder about term paper due April 17. There will be

More information

Jupiter Icy Moons Orbiter

Jupiter Icy Moons Orbiter Jupiter Icy Moons Orbiter Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter Science Capabilities & Workshop Goals Dr. Colleen Hartman Director of Solar System Exploration June 12, 2003 the

More information

4.8 Space Research and Exploration. Getting Into Space

4.8 Space Research and Exploration. Getting Into Space 4.8 Space Research and Exploration Getting Into Space Astronauts are pioneers venturing into uncharted territory. The vehicles used to get them into space are complex and use powerful rockets. Space vehicles

More information

Unit 2 Lesson 1 What Objects Are Part of the Solar System? Copyright Houghton Mifflin Harcourt Publishing Company

Unit 2 Lesson 1 What Objects Are Part of the Solar System? Copyright Houghton Mifflin Harcourt Publishing Company Unit 2 Lesson 1 What Objects Are Part of the Solar System? Florida Benchmarks SC.5.E.5.2 Recognize the major common characteristics of all planets and compare/contrast the properties of inner and outer

More information

Full Electric Mission to Moon (SMART-1) and Technologies: Electric propulsion, rendez-vous, formation flying

Full Electric Mission to Moon (SMART-1) and Technologies: Electric propulsion, rendez-vous, formation flying The Space Congress Proceedings 2016 (44th) The Journey: Further Exploration for Universal Opportunities May 25th, 10:45 AM Full Electric Mission to Moon (SMART-1) and Technologies: Electric propulsion,

More information

James Webb Space Telescope Cycle 1 Call for Proposals

James Webb Space Telescope Cycle 1 Call for Proposals James Webb Space Telescope Cycle 1 Call for Proposals Stefanie Milam JWST Deputy Project Scientist for Planetary John Stansberry Solar System Lead, STScI Bryan Holler Solar System Scientist, STScI Getting

More information

Comparative Planetology I: Our Solar System. Chapter Seven

Comparative Planetology I: Our Solar System. Chapter Seven Comparative Planetology I: Our Solar System Chapter Seven ASTR 111 003 Fall 2006 Lecture 07 Oct. 16, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17)

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Introduction to Aerospace Engineering Lecture slides Challenge the future 1 Part of the contents of this presentation originates from the lecture Space Engineering and Technology I, Part I (ae1-801/1),

More information

3. The name of a particularly large member of the asteroid belt is A) Halley B) Charon C) Eris D) Ceres E) Triton

3. The name of a particularly large member of the asteroid belt is A) Halley B) Charon C) Eris D) Ceres E) Triton Summer 2013 Astronomy - Test 2 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as

More information

A Survey of the Planets Earth Mercury Moon Venus

A Survey of the Planets Earth Mercury Moon Venus A Survey of the Planets [Slides] Mercury Difficult to observe - never more than 28 degree angle from the Sun. Mariner 10 flyby (1974) Found cratered terrain. Messenger Orbiter (Launch 2004; Orbit 2009)

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) L06: Interplanetary Trajectories Gaëtan Kerschen Space Structures & Systems Lab (S3L) Motivation 2 Problem Statement? Hint #1: design the Earth-Mars transfer using known concepts

More information

The story of NASA. Presented by William Markham

The story of NASA. Presented by William Markham The story of NASA Presented by William Markham German Rocket Developments WW2 Comet ME 262 V1 flying bomb V2 Rocket Wernher Von Braun Early history An Act to provide for research into the problems of flight

More information

Team X Study Summary for ASMCS Theia. Jet Propulsion Laboratory, California Institute of Technology. with contributions from the Theia Team

Team X Study Summary for ASMCS Theia. Jet Propulsion Laboratory, California Institute of Technology. with contributions from the Theia Team Team X Study Summary for ASMCS Theia Jet Propulsion Laboratory, California Institute of Technology with contributions from the Theia Team P. Douglas Lisman, NASA Jet Propulsion Laboratory David Spergel,

More information

Overview of the Current Baseline of the Solar-C Spacecraft System

Overview of the Current Baseline of the Solar-C Spacecraft System Overview of the Current Baseline of the Solar-C Spacecraft System Keisuke YOSHIHARA (JAXA) 11 November, 2013 Solar-C Science Meeting Hida Earth Wisdom Center, Takayama, Japan Solar-C Spacecraft System

More information

PHYS101 Sec 001 Hour Exam No. 2 Page: 1

PHYS101 Sec 001 Hour Exam No. 2 Page: 1 PHYS101 Sec 001 Hour Exam No. 2 Page: 1 1 The angle between the rotation axis of a planet and the perpendicular to the plane of its orbit is called its axial tilt. Which of these planets has an axial tilt

More information

OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology. 3 rd Mission Idea Contest UNISEC Global

OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology. 3 rd Mission Idea Contest UNISEC Global OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology 3 rd Mission Idea Contest UNISEC Global The Idea We want to take image for the moon phases as seen from Earth Why? Introduction 1.6 billion,23.4%

More information

The Space Launch System the most powerful rocket ever built 31 July 2017, by Universe Today

The Space Launch System the most powerful rocket ever built 31 July 2017, by Universe Today The Space Launch System the most powerful rocket ever built 31 July 2017, by Universe Today orbit to the moon. Instead of continuing on with the Saturn program, NASA decided to shift gears and build the

More information

1. A rocket is a machine that uses escaping gas to move. P Konstantin Tsiolkovsky was a Russian high school teacher and the father of

1. A rocket is a machine that uses escaping gas to move. P Konstantin Tsiolkovsky was a Russian high school teacher and the father of 1. A rocket is a machine that uses escaping gas to move. P 598 2. Konstantin Tsiolkovsky was a Russian high school teacher and the father of rocketry. Although he explained how rocketry worked, he never

More information

Introduction of Small Solar Power Sail Demonstrator IKAROS

Introduction of Small Solar Power Sail Demonstrator IKAROS Introduction of Small Solar Power Sail Demonstrator IKAROS IKAROS Demonstration Team JAXA Space Exploration Center (JSPEC) Japan Aerospace Exploration Agency (JAXA) Overview of IKAROS IKAROS is a space

More information

GOES-R Instrument Status and Accommodations. Barbara Pfarr GOES-R Program Systems Engineering January 2010 AMS Conference

GOES-R Instrument Status and Accommodations. Barbara Pfarr GOES-R Program Systems Engineering January 2010 AMS Conference GOES-R Instrument Status and Accommodations Barbara Pfarr GOES-R Program Systems Engineering January 2010 AMS Conference Agenda Instrument Developmental Status Significant Changes in the Last Year Introducing

More information

THE MICRO ADVANCED STELLAR COMPASS FOR ESA S PROBA 2 MISSION

THE MICRO ADVANCED STELLAR COMPASS FOR ESA S PROBA 2 MISSION THE MICRO ADVANCED STELLAR COMPASS FOR ESA S PROBA 2 MISSION P.S. Jørgensen (1), J.L. Jørgensen (1), T. Denver (1), Pieter van den Braembuche (2) (1) Technical University of Denmark, Ørsted*DTU, Measurement

More information

Zoink Questions: Tools of Astronomy

Zoink Questions: Tools of Astronomy 1. Optical telescopes are designed to do what? Gather and focus visible light to see distant objects more clearly 2. Visible light can be separated into various colors to form a(n). Spectrum 3. The full

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) L05: Orbital Maneuvers Gaëtan Kerschen Space Structures & Systems Lab (S3L) North Korea Launch Vehicle WorldView1 satellite (Google Earth). 0.5m resolution. 2 Course Outline THEMATIC

More information

Alejandro Cardesín Moinelo ESA Science Operations. (slides courtesy of Christian Erd & Peter Falkner, ESA-ESTEC)

Alejandro Cardesín Moinelo ESA Science Operations. (slides courtesy of Christian Erd & Peter Falkner, ESA-ESTEC) Alejandro Cardesín Moinelo ESA Science Operations (slides courtesy of Christian Erd & Peter Falkner, ESA-ESTEC) IAC Winter School, Nov 2016 Mission Flow Diagram Slide 2 Space Mission Timeline: Phases Slide

More information

Joy of Science Experience the evolution of the Universe, Earth and Life

Joy of Science Experience the evolution of the Universe, Earth and Life Joy of Science Experience the evolution of the Universe, Earth and Life Review Introduction Main contents Quiz Unless otherwise noted, all pictures are taken from wikipedia.org Review 1 The presence of

More information

STUDENT RESOURCE 1.1 INFORMATION SHEET. Vocabulary

STUDENT RESOURCE 1.1 INFORMATION SHEET. Vocabulary Vocabulary STUDENT RESOURCE 1.1 INFORMATION SHEET asteroids thousands of rocky objects that orbit the Sun Most asteroids orbit in a belt between the orbits of Mars and Jupiter. More than 9, asteroids have

More information