ASPECT Spectral Imager CubeSat Mission to Didymos

Size: px
Start display at page:

Download "ASPECT Spectral Imager CubeSat Mission to Didymos"

Transcription

1 ASPECT Spectral Imager CubeSat Mission to Didymos Kestilä A. 1),Näsilä A. 2), Kohout T. 3),Tikka T. 1),Granvik M. 3) 1. Aalto University, Finland. 2. Technical Research Center of Finland, Finland 3. Helsinki University, Finland Abstract The ASPECT mission is a 3U deep space CubeSat mission, planned to be sent as a part of the larger Asteroid Impact & Deflection Assessment (AIDA) to the Didymos binary asteroid system. It aims to study the composition and inner structure of the smaller Didymos II asteroid, as well as the effects of space weathering and shock metamorphism on it in order to gain understanding of the formation and evolution of the Solar System. ASPECT will also demonstrate the feasibility of a CubeSat mission in deep space environment. The AIDA mission in turn comprises of the AIM (ESA) and DART (NASA) spacecraft. One of its goals is to perform an impact experiment on the smaller of the two Didymos asteroids using DART as the impactor, with AIM remaining as an observer. The impactor is expected to make a crater on the surface of the asteroid, bringing up fresh material and exposing better the inner structure. This will also show how well an impacting spacecraft is capable of changing an asteroid s orbit. ASPECT will be deployed from AIM before the impact, and subsequently will take spectral images for a complete coverage of Didymos II before and after the event. The payload spectral imager will perform measurements in the nm range, and will have a better than 2 m spatial resolution of Didymos II. The satellite s intended orbit is circular with a slight inclination with respect to the Didymos II orbital plane, and outside both Didymos asteroid orbits. Its orbit stability will last only several days, necessitating the use of active orbit maintenance with an onboard propulsion system. The satellite bus will use commercial off the shelf avionics, and the main communication link will be through an inter satellite link with AIM. Introduction Small satellites are rapidly developing towards applications the lead them away from Low Earth Orbit (LEO). Several missions involving satellites less than 50 kg have been and are planned for far away targets such as other planets in the Solar System or asteroids. Even some student built microsatellite missions have been launched, such as the Japanese Procyon to 2000 DPO107 or the Shin en 2 to a heliocentric orbit. ASPECT (Asteroid Spectral Imaging Mission) is a part of AIDA/AIM project and aims to study the composition of the Didymos binary and the effects of space weathering and shock metamorphism in order to gain understanding of the formation and evolution of the Solar System. ASPECT will be piggybacked under the joint ESA/NASA AIDA (Asteroid Impact &

2 Deflection Assessment) mission to the Didymos system onboard AIM (Asteroid Impact Mission by ESA). DART (Double Asteroid Redirection Test by NASA) is targeted to impact the secondary Didymos asteroid and serve as a kinetic impactor to demonstrate deflection of potentially hazardous asteroids. AIM will serve as an observational spacecraft to evaluate the effects of the impact and resulting changes in the Didymos dynamic parameters. The AIM mission will carry CubeSat miniaturized satellites, and release them close to the Didymos system. This arrangement opens up a possibility for secondary scientific experiments. ASPECT is one of the proposed CubeSat payloads. The Didymos system consists of the 775 m diameter primary, and around 1.2 km away orbiting 163 m diameter secondary, that has a bit less than 12 hours period. Figure 1: Radar based model of the two Didymos asteroids. Science Goals and Mission Description The main observational target is Didymos II, with Didymos I a close secondary target. Whereas Didymos is a space weathered binary asteroid, the DART impactor is expected to produce a crater and excavate fresh material from the secondary. Spectral comparison of the mature surface to the freshly exposed material will allow to directly determine space weathering effects. It will be also possible to study spectral shock effects within the impact crater. ASPECT will also demonstrate for the first time the joint spacecraft CubeSat operations in asteroid proximity and miniature spectral imager operation in deep space environment. The primary scientific objectives of ASPECT are: Study of the surface composition of the Didymos system. Photometric observations (and modeling) under varying phase angle and distance. Study of space weathering effects on asteroids (comparison of mature / freshly exposed material).

3 Study of shock effects (spectral properties of crater interior). Observations during the DART impact. These goals, achievable by a spectral imager, were designed to complement AIM s science objectives in order to maximise the overall study output during the both spacecraft operational periods. AIM and its CubeSats have also several technical goals, such as the demonstration of CubeSat semi autonomous operations in deep space environment ; navigation in the vicinity of a binary asteroid, and the demonstration of a satellite survival during impact. The mission will also demonstrate a join operation involving a spacecraft and multiple CubeSats. The minimum amount of images to be taken with the spectral imager are divided into two eight image series,one before and one after the impact of DART. Each image series will completely cover Didymos II, the upper limit of which is defined by AIM s data downlinking restrictions of 1Gb. ASPECT s mission is designed to be performed within a (preliminary) 3 months timeframe starting from AIM deployment. The optimal satellite orbit is based on satisfying the payload requirements as well as on the stability of the chosen orbit. Stability around a system like Didymos is primarily defined by the solar radiation pressure and the non homogenuity of the asteroids gravitational field at closer distances and is generally very chaotic (Scheeres, 2012). The performance parameters of the spectrometer payload work best at 4.1 km semi major axis (SMA), with zero eccentricity to minimize field of view (FoV) and ground pixel resolution variation. At this SMA the ground pixel requirements are met with a feasible Field of view design. In turn, orbits closer to Didymos I are restricted by their field of view as then the primary asteroid covers more of the view available to the satellite. For example, 500 to 700 m SMA circular orbits are stable for up to 28 days (Damme,2016), but have roughly a 9 to 6 times larger portion of the secondary s orbit blocked by the primary than for example at a circular orbit with an SMA of 4.1 km. The lighting angle for Didymos II and the Sun also precluded orbits with significantly high inclinations with respect to the the orbit plane of the binary, such as terminator orbits. A lagrange point position during the mission is not advantageous either, as only one side of Didymos II will be observed. The concern of debris crowding the Didymos II orbital plane after impact by DART as well as providing complete coverage of Didymos II (including its poles ) led to a 15 degrees inclination with respect to Didymos II orbital plane. The chosen orbit was thus a circular orbit of 4.1 km SMA with a 15 degrees inclination with respect to the binary orbit plane. According to preliminary modelling, the orbit will be stable for less than 10 days without active orbit control, necessitating propulsion onboard the satellite. This propulsion also doubles as a help for the satellite s attitude control. The satellite will be regularly healthchecked during the transfer before its mission, and deployed from a deployment pod designed for low, 2 to 5 cm/s deployment velocities. After deployment, the satellite will need to make its own maneuvers to get into its final orbit. The low deployment velocities used are due to the weak gravitational influence in the system, meaning that any much higher deployment velocities will force the satellite to expend even more propellant to achieve its final orbit and thus make the process difficult.

4 The main difficulty currently seen for the mission is the autonomous operations the satellite will have to perform, as there might be even a week long gap in uploading new commands and receiving telemetry data from the satellite. In between these opportunities the satellite will have to perform its mission, navigate and keep its orbit without help from ground. Figure 2: The satellite will be deployed from AIM against its velocity vector, after which it will guide itself (gapped red line) to its target orbit (blue orbit) using its own propulsion. Payload description The main payload onboard the satellite is an instrument combining a VIS NIR spectral imager and a non imaging spectrometer. They re based on tunable fabry perot technology which enables a precise and compact design. The imager has a spatial resolution of 2 meters or less in a spectral bandwidth of nm, while its spectral resolution is nm. In the VIS channel it sports 512 by 512 pixels, and in the NIR 256 by 256 pixels. From 1600 to 2500 nm the non imaging spectrometer is used. Figure 3: The 1U payload, which includes two specific spectral imager channels, one spectrometer, and an envisioned navcam to aid the satellite s navigation (lower left). The payload design is based on the Aalto 1 CubeSat Spectral Imager heritage and is already space qualified. ASPECT will also demonstrate the capabilities of a CubeSat and a miniature spectral imager for the first time in deep space environment.

5 Spacecraft description ASPECT is a 3U CubeSat with outer configurations as seen in Figure 4a. The preliminary design of the satellite conforms to the CubeSat standard. The propulsion system is roughly ⅔ U and thanks to the low gravitational force of the asteroid system is a cold gas thruster, with about 10 m/s deltav in total. Its placed at one end of the satellite, from where it is able to control both its orbit and attitude, at the top of the model in Figure 4b. On the end is the payload, with its lenses pointed along the satellite long axis, as can be seen in Figure 4a. Figure 4 a) The inside model where the propulsion unit is at the top end and the payload at the bottom and the ADCS beneath the propulsion system, and b) the external view of the satellite with the payload lenses visible. The satellite s attitude determination and control system (ADCS) is Aalto 1 heritage without magnetorquers (as no significant magnetic fields are present), but relies on crude pointing and periodic discharging of its reaction wheels by the propulsion system. The electrical power system (EPS) will be main telemetry gathering hub, and will be radiation hardened to withstand energies and doses significantly larger than CubeSat COTS EPS subsystems in LEO as it will be the main subsystem in operation during transfer and mission. The data that the payload needs to be processed and packed, and a separate rad hard PDHU will be onboard for that purpose. The satellite will communicate both its TT&C and downlinked data back to Earth via an inter satellite link (ISL) provided by ESA. The ISL operates in the S band, and will also provide accurate navigation data to ASPECT, such as timing and other Doppler based information (with respect to AIM).

6 Conclusions AIDA presents possibilities for novel CubeSat technology demonstrations, the first ever deployment of a CubeSat around an asteroid environment, as well as very interesting new science with spectral imager based observations. It ll potentially produce unique data on asteroid composition and its changes, and also provide significant improvement of our understanding of space weathering and shock processes. References D.J. Scheeres, Orbital Mechanics about Small Bodies," Acta Astronautica 72: DOI: /j.actaastro F. Damme, H. Hussmann, E. Mai, J. Oberst, K. Wickhusen, 1st of March Orbit stability in the Binary Asteroid System Didymos An opportunity for spacecraft exploration, AIM Science Meeting

Shape model of binary asteroid (90) Antiope reconstructed from lightcurves and stellar occultations

Shape model of binary asteroid (90) Antiope reconstructed from lightcurves and stellar occultations Shape model of binary asteroid (90) Antiope reconstructed from lightcurves and stellar occultations J. urech Charles University contact e-mail: durech@sirrah.troja.m.cuni.cz I will present a shape model

More information

Lunar Flashlight Project

Lunar Flashlight Project ABSTRACT Recent observations of the Moon with the Moon Mineralogy Mapper (M3), Lunar Crater Observation and Sensing Satellite (LCROSS), the Lunar Reconnaissance Orbiter (LRO) and other evidence suggest

More information

HERA MISSION. ESA UNCLASSIFIED - For Official Use

HERA MISSION. ESA UNCLASSIFIED - For Official Use HERA MISSION ESA UNCLASSIFIED - For Official Use HERA/AIM mission scenario! First ever investigation of deflection test! Detailed analysis of impact crater (before/after impact or after only depending

More information

Measurements & Instrumentation Systems National Space Institute Technical University of Denmark

Measurements & Instrumentation Systems National Space Institute Technical University of Denmark Measurements & Instrumentation Systems National Space Institute Technical University of Denmark Assessment Study of Autonomous Optical Navigation for an Asteroid Impact Mission -Executive Summary- Prepared

More information

DARE Mission and Spacecraft Overview

DARE Mission and Spacecraft Overview DARE Mission and Spacecraft Overview October 6, 2010 Lisa Hardaway, PhD Mike Weiss, Scott Mitchell, Susan Borutzki, John Iacometti, Grant Helling The information contained herein is the private property

More information

HERA MISSION & CM16 lessons learned

HERA MISSION & CM16 lessons learned HERA MISSION HERA MISSION & CM16 lessons learned (CM16) Schedule criticality for 2020 launch Prepare Asteroid mission with launch opportunities in 2023 (with back-up in 2024 and 2025) (CM16) Payload selection

More information

AIM RS: Radio Science Investigation with AIM

AIM RS: Radio Science Investigation with AIM Prepared by: University of Bologna Ref. number: ALMARS012016 Version: 1.0 Date: 08/03/2017 PROPOSAL TO ESA FOR AIM RS Radio Science Investigation with AIM ITT Reference: Partners: Radio Science and Planetary

More information

Asteroid Impact Mission (AIM)

Asteroid Impact Mission (AIM) Asteroid Impact Mission (AIM) Andrés Gálvez, ESA HQ, Paris, France Ian Carnelli, ESA HQ, Paris, France Carlos Corral, ESTEC, Noordwijk, The Netherlands & the AIDA team (JHU/APL, NASA, OCA. DLR) NEO mission

More information

AIDA: Asteroid Impact & Deflection Assessment A Joint ESA-NASA Mission

AIDA: Asteroid Impact & Deflection Assessment A Joint ESA-NASA Mission AIDA: Asteroid Impact & Deflection Assessment A Joint ESA-NASA Mission Andy Cheng (The Johns Hopkins Applied Physics Laboratory) Patrick Michel (Univ. Nice, CNRS, Côte d Azur Observatory) On behalf of

More information

BIRDY-T : Focus on propulsive aspects of an icubsat to small bodies of the solar system

BIRDY-T : Focus on propulsive aspects of an icubsat to small bodies of the solar system BIRDY-T : Focus on propulsive aspects of an icubsat to small bodies of the solar system Gary Quinsac, PhD student at PSL Supervisor: Benoît Mosser Co-supervisors: Boris Segret, Christophe Koppel icubesat,

More information

Lunette: Satellite to Satellite Gravity Mapping of the Moon

Lunette: Satellite to Satellite Gravity Mapping of the Moon Lunette: Satellite to Satellite Gravity Mapping of the Moon Maria Short 9th ILEWG International Conference on Exploration and Utilisation n of the Moon Authors: M. Short, C. Short, A. Philip, J. Gryzmisch,

More information

Prospector-1: A Low-Cost Commercial Asteroid Mission Grant Bonin SmallSat 2016

Prospector-1: A Low-Cost Commercial Asteroid Mission Grant Bonin SmallSat 2016 Prospector-1: A Low-Cost Commercial Asteroid Mission Grant Bonin SmallSat 2016 About DSI A space technology and resources company Vision to enable the human space development by harvesting asteroid materials

More information

THE ASTEROID IMPACT MISSION: CONSOLIDATED MISSION ANALYSIS AND SCIENTIFIC PAYLOAD OPERATIONS AT BINARY ASTEROID DIDYMOS

THE ASTEROID IMPACT MISSION: CONSOLIDATED MISSION ANALYSIS AND SCIENTIFIC PAYLOAD OPERATIONS AT BINARY ASTEROID DIDYMOS THE ASTEROID IMPACT MISSION: CONSOLIDATED MISSION ANALYSIS AND SCIENTIFIC PAYLOAD OPERATIONS AT BINARY ASTEROID DIDYMOS Fabio Ferrari (1), Michèle Lavagna (2), Ingo Gerth (3), Bastian Burmann (4), Marc

More information

Goddard Space Flight Center

Goddard Space Flight Center 1 Solar Coronagraphs Observe off-disk coronal emissions from Sun. Dominant noise source: Diffraction of on-disk light around the occulter Vignetting on externally occulted coronagraphs Noise inversely

More information

ASTEROID IMPACT MISSION

ASTEROID IMPACT MISSION ASTEROID IMPACT MISSION CubeSat Opportunity Payload Inter-satellite Network Sensors (COPINS) R. Walker, D. Binns, I. Carnelli, M. Keuppers, A. Galvez AIDA COOPERATION Asteroid Impact & Deflection Assessment

More information

A Systems Engineering Approach to Design, Fabrication, and Characterization of a Modern Spacecraft to Study Impact Patterns of Space Debris

A Systems Engineering Approach to Design, Fabrication, and Characterization of a Modern Spacecraft to Study Impact Patterns of Space Debris A Systems Engineering Approach to Design, Fabrication, and Characterization of a Modern Spacecraft to Study Impact Patterns of Space Debris Ann Dietrich, Sheldon Clark, Mark Werremeyer, and Dr. Norman

More information

Miniaturised Asteroid Remote Geophysical Observer (M-ARGO): A stand-alone deep space CubeSat system for lowcost science and exploration missions

Miniaturised Asteroid Remote Geophysical Observer (M-ARGO): A stand-alone deep space CubeSat system for lowcost science and exploration missions Miniaturised Asteroid Remote Geophysical Observer (M-ARGO): A stand-alone deep space CubeSat system for lowcost science and exploration missions Prepared by R. Walker (1), D. Koschny, C. Bramanti & ESA

More information

Pico-Satellite Orbit Control by Vacuum Arc Thrusters as Enabling Technology for Formations of Small Satellites

Pico-Satellite Orbit Control by Vacuum Arc Thrusters as Enabling Technology for Formations of Small Satellites 1/25 Pico-Satellite Orbit Control by Vacuum Arc Thrusters as Enabling Technology for Formations of Small Satellites Igal Kronhaus, Mathias Pietzka, Klaus Schilling, Jochen Schein Department of Computer

More information

Stanford, Space Gravity Research Group

Stanford, Space Gravity Research Group Stanford, Space Gravity Research Group John W. Conklin, Sasha Buchman, and Robert Byer Gravitational science Earth observation: Geodesy, aeronomy Gravity-waves 1 Space Gravity Technology Development Drag-free

More information

ASTEROID INVESTIGATION MISSION: THE EUROPEAN CONTRIBUTION TO THE AIDA EU-US COOPERATION

ASTEROID INVESTIGATION MISSION: THE EUROPEAN CONTRIBUTION TO THE AIDA EU-US COOPERATION ASTEROID INVESTIGATION MISSION: THE EUROPEAN CONTRIBUTION TO THE AIDA EU-US COOPERATION Andres Galvez (1), Ian Carnelli (1), Michael Khan (2), Waldemar Martens (2), Patrick Michel (3), Stephan Ulamec (4),

More information

Spacecraft Bus / Platform

Spacecraft Bus / Platform Spacecraft Bus / Platform Propulsion Thrusters ADCS: Attitude Determination and Control Subsystem Shield CDH: Command and Data Handling Subsystem Payload Communication Thermal Power Structure and Mechanisms

More information

Attitude Determination and Control System Design for STU-2A Cubesat and In-Orbit Results

Attitude Determination and Control System Design for STU-2A Cubesat and In-Orbit Results 13 th Annual Summer CubeSat Developer s Workshop August 6-7, 2016, Logan, Utah Attitude Determination and Control System Design for STU-2A Cubesat and In-Orbit Results Presented by Shufan Wu Guowen Sun,

More information

ISIS Impactor for Surface and Interior Science

ISIS Impactor for Surface and Interior Science ISIS Impactor for Surface and Interior Science ISIS Mission Concept!! Send an independent, autonomous impactor spacecraft to the target of the OSIRIS-REx mission!! Launch as secondary payload with InSight!!

More information

ATTITUDE CONTROL MECHANIZATION TO DE-ORBIT SATELLITES USING SOLAR SAILS

ATTITUDE CONTROL MECHANIZATION TO DE-ORBIT SATELLITES USING SOLAR SAILS IAA-AAS-DyCoSS2-14-07-02 ATTITUDE CONTROL MECHANIZATION TO DE-ORBIT SATELLITES USING SOLAR SAILS Ozan Tekinalp, * Omer Atas INTRODUCTION Utilization of solar sails for the de-orbiting of satellites is

More information

Seven Steps of Systems Engineering (horizontal axis of Activity Matrix)

Seven Steps of Systems Engineering (horizontal axis of Activity Matrix) Seven Steps of Systems Engineering (horizontal axis of Activity Matrix) Problem Definition What is the problem, really? Value System Design How will we know when we ve found a good solution? System Synthesis

More information

SPACE DEBRIS MITIGATION TECHNOLOGIES

SPACE DEBRIS MITIGATION TECHNOLOGIES SPACE DEBRIS MITIGATION TECHNOLOGIES Rob Hoyt Tethers Unlimited, Inc. The orbital debris population and its potential for continued rapid growth presents a significant threat to DoD, NASA, commercial,

More information

ESSE Payload Design. 1.2 Introduction to Space Missions

ESSE Payload Design. 1.2 Introduction to Space Missions ESSE4360 - Payload Design 1.2 Introduction to Space Missions Earth, Moon, Mars, and Beyond Department of Earth and Space Science and Engineering Room 255, Petrie Science and Engineering Building Tel: 416-736

More information

Operational Aspects of Space Weather-Related Missions

Operational Aspects of Space Weather-Related Missions Operational Aspects of Space Weather-Related Missions Richard G. Marsden, ESA/SCI-SH Outline SOHO: Example of Near-Earth Observatory-class Mission Ulysses: Example of Deep Space Monitor-class Mission Solar

More information

FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING

FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING Elias F. Solorzano University of Toronto (Space Flight Laboratory) Toronto, ON (Canada) August 10 th, 2016 30 th AIAA/USU

More information

Toshinori Kuwahara*, Yoshihiro Tomioka, Yuta Tanabe, Masato Fukuyama, Yuji Sakamoto, Kazuya Yoshida, Tohoku University, Japan

Toshinori Kuwahara*, Yoshihiro Tomioka, Yuta Tanabe, Masato Fukuyama, Yuji Sakamoto, Kazuya Yoshida, Tohoku University, Japan Toshinori Kuwahara*, Yoshihiro Tomioka, Yuta Tanabe, Masato Fukuyama, Yuji Sakamoto, Kazuya Yoshida, Tohoku University, Japan The 3 rd Nano-Satellite Symposium Micro/Nano Satellite & Debris Issues December

More information

Lunar Flashlight & NEA Scout A NanoSat Architecture for Deep Space Exploration

Lunar Flashlight & NEA Scout A NanoSat Architecture for Deep Space Exploration National Aeronautics and Space Administration Lunar Flashlight & NEA Scout A NanoSat Architecture for Deep Space Exploration Payam Banazadeh (JPL/Caltech) Andreas Frick (JPL/Caltech) EM-1 Secondary Payload

More information

The Asteroid Geophysical EXplorer (AGEX) to explore Didymos

The Asteroid Geophysical EXplorer (AGEX) to explore Didymos CubeSat 2016, the 5th Interplanetary CubeSat Workshop The Asteroid Geophysical EXplorer (AGEX) to explore Didymos. Karatekin & AGEX TEAM. Karatekin, B. Ritter N. Gerbal, M. van Ruymebeke. Royal Observatory

More information

Figure 1. View of ALSAT-2A spacecraft

Figure 1. View of ALSAT-2A spacecraft ALSAT-2A TRANSFER AND FIRST YEAR OPERATIONS M. Kameche (1), A.H. Gicquel (2), D. Joalland (3) (1) CTS/ASAL, 1 Avenue de la Palestine, BP 13, Arzew 31200 Oran, Algérie, email:mo_kameche@netcourrier.com

More information

AIDA-DART Asteroid Impact & Deflection Assessment Double Asteroid Redirection Test

AIDA-DART Asteroid Impact & Deflection Assessment Double Asteroid Redirection Test AIDA-DART Asteroid Impact & Deflection Assessment Double Asteroid Redirection Test DART Andy Cheng [JHU/APL] Cheryl Reed [JHU/APL] Ian Carnelli [ESA, HQs.] Patrick Michel [Obs. Cote D Azur, Nice, France]

More information

Impact Mission (AIM) ESA s NEO Exploration Precursor. Ian Carnelli, Andrés Gàlvez Future Preparation and Strategic Studies Office ESA HQ

Impact Mission (AIM) ESA s NEO Exploration Precursor. Ian Carnelli, Andrés Gàlvez Future Preparation and Strategic Studies Office ESA HQ Asteroid Impact Mission (AIM) ESA s NEO Exploration Precursor Ian Carnelli, Andrés Gàlvez Future Preparation and Strategic Studies Office ESA HQ SBAG Jan 2013 HSF Precursor Missions Application driven

More information

Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu. Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA)

Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu. Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA) Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA) Highlights of Hayabusa2 Hayabusa2 is the 2nd Japanese sample return

More information

LOW-COST LUNAR COMMUNICATION AND NAVIGATION

LOW-COST LUNAR COMMUNICATION AND NAVIGATION LOW-COST LUNAR COMMUNICATION AND NAVIGATION Keric Hill, Jeffrey Parker, George H. Born, and Martin W. Lo Introduction Spacecraft in halo orbits near the Moon could relay communications for lunar missions

More information

Team X Study Summary for ASMCS Theia. Jet Propulsion Laboratory, California Institute of Technology. with contributions from the Theia Team

Team X Study Summary for ASMCS Theia. Jet Propulsion Laboratory, California Institute of Technology. with contributions from the Theia Team Team X Study Summary for ASMCS Theia Jet Propulsion Laboratory, California Institute of Technology with contributions from the Theia Team P. Douglas Lisman, NASA Jet Propulsion Laboratory David Spergel,

More information

InSight Spacecraft Launch for Mission to Interior of Mars

InSight Spacecraft Launch for Mission to Interior of Mars InSight Spacecraft Launch for Mission to Interior of Mars InSight is a robotic scientific explorer to investigate the deep interior of Mars set to launch May 5, 2018. It is scheduled to land on Mars November

More information

Deployment of an Interstellar Electromagnetic Acceleration System

Deployment of an Interstellar Electromagnetic Acceleration System Deployment of an Interstellar Electromagnetic Acceleration System Andrew Bingham Department of Mechanical and Aeronautical Engineering Clarkson University Phase I Fellows Meeting March 15-16, 2005 Atlanta,

More information

Satellite Components & Systems. Dr. Ugur GUVEN Aerospace Engineer (P.hD) Nuclear Science & Technology Engineer (M.Sc)

Satellite Components & Systems. Dr. Ugur GUVEN Aerospace Engineer (P.hD) Nuclear Science & Technology Engineer (M.Sc) Satellite Components & Systems Dr. Ugur GUVEN Aerospace Engineer (P.hD) Nuclear Science & Technology Engineer (M.Sc) Definitions Attitude: The way the satellite is inclined toward Earth at a certain inclination

More information

Proba-3 mission and the ASPIICS coronagraph

Proba-3 mission and the ASPIICS coronagraph Proba-3 mission and the ASPIICS coronagraph Marek Stęślicki 1 and the Proba-3 SWT 1 Space Research Centre Polish Academy of Sciences General objectives The Proba-3 project aims: To develop and demonstrate

More information

BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission. with Novel Plasma Propulsion Technology ISSC 2013

BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission. with Novel Plasma Propulsion Technology ISSC 2013 BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission with Novel Plasma Propulsion Technology Sara Spangelo, NASA JPL, Caltech Benjamin Longmier, University of Michigan Interplanetary Small

More information

INCA. Ionospheric Neutron Content Analyzer. New Mexico State University University NanoSat-8. CubeSat Workshop Presentation August 2, 2014; Logan, UT

INCA. Ionospheric Neutron Content Analyzer. New Mexico State University University NanoSat-8. CubeSat Workshop Presentation August 2, 2014; Logan, UT INCA Ionospheric Neutron Content Analyzer New Mexico State University University NanoSat-8 CubeSat Workshop Presentation August 2, 2014; Logan, UT Presentation Outline Mission Overview Mission Relevance

More information

INCA. Ionospheric Neutron Content Analyzer. New Mexico State University University NanoSat-8. CubeSat Workshop Presentation August 2, 2014; Logan, UT

INCA. Ionospheric Neutron Content Analyzer. New Mexico State University University NanoSat-8. CubeSat Workshop Presentation August 2, 2014; Logan, UT INCA Ionospheric Neutron Content Analyzer New Mexico State University University NanoSat-8 CubeSat Workshop Presentation August 2, 2014; Logan, UT Mission Overview Mission Relevance ConOps INCA Payload

More information

Canadian Advanced Nanospace experiment 2 Orbit Operations:

Canadian Advanced Nanospace experiment 2 Orbit Operations: Canadian Advanced Nanospace experiment 2 Orbit Operations: One Year of Pushing the Nanosat Performance Envelope Karan Sarda Cordell Grant, Stuart Eagleson Daniel D. Kekez, Amee Shah Robert E. Zee Space

More information

Europe to the Moon. BHF 10 Feb 2005 SPC

Europe to the Moon. BHF 10 Feb 2005 SPC Europe to the Moon V162 lift-off on 27 September 2003 at 23:14:39 UTC The launch was perfect SMART-1 separated at 23:56:03 into a GTO (656 x 35,881 km): perfect injection 100 s later telemetry was received

More information

Low Thrust Mission Trajectories to Near Earth Asteroids

Low Thrust Mission Trajectories to Near Earth Asteroids Low Thrust Mission Trajectories to Near Earth Asteroids Pratik Saripalli Graduate Research Assistant, College Park, Maryland, 20740, USA Eric Cardiff NASA Goddard Space Flight Center, Greenbelt, Maryland,

More information

Dynamics of the Didymos asteroid binary

Dynamics of the Didymos asteroid binary Dynamics of the Didymos asteroid binary target of the AIDA mission Kleomenis Tsiganis Aristotle University of Thessaloniki (AUTh) with: George Voyatzis (AUTh), Christos Efthymiopoulos (RCAAM Athens), Ioannis

More information

End-Of-Life Disposal Concepts for Lagrange-Point and Highly Elliptical Orbit Missions

End-Of-Life Disposal Concepts for Lagrange-Point and Highly Elliptical Orbit Missions End-Of-Life Disposal Concepts for Lagrange-Point and Highly Elliptical Orbit Missions Executive summary of the main study and the study extension Version 1.0 12 February 2015 ESA/ESOC contract No. 4000107624/13/F/MOS

More information

Introduction of Small Solar Power Sail Demonstrator IKAROS

Introduction of Small Solar Power Sail Demonstrator IKAROS Introduction of Small Solar Power Sail Demonstrator IKAROS IKAROS Demonstration Team JAXA Space Exploration Center (JSPEC) Japan Aerospace Exploration Agency (JAXA) Overview of IKAROS IKAROS is a space

More information

GRASP: An Asteroid Lander/Rover for Asteroid Surface Gravity Surveying

GRASP: An Asteroid Lander/Rover for Asteroid Surface Gravity Surveying GRASP: An Asteroid Lander/Rover for Asteroid Surface Gravity Surveying Kieran A. Carroll, Gedex Systems Inc. Henry Spencer, SP Systems Robert E. Zee, Space Flight Laboratory CASI ASTRO 2016 30 th Annual

More information

Aeolus. A Mission to Map the Winds of Mars. Anthony Colaprete Amanda Cook NASA Ames Research Center

Aeolus. A Mission to Map the Winds of Mars. Anthony Colaprete Amanda Cook NASA Ames Research Center Aeolus A Mission to Map the Winds of Mars Anthony Colaprete Amanda Cook NASA Ames Research Center Low-Cost Planetary Missions Conference 12, 2017 What is Aeolus? Science Aeolus will provide the very first

More information

Launches and On-Orbit Performance

Launches and On-Orbit Performance Launches and On-Orbit Performance An Update on Nanosatellite Missions at the UTIAS Space Flight Laboratory Daniel D. Kekez,, Robert E. Zee, Freddy M. Pranajaya Space Flight Laboratory University of Toronto

More information

A DETAILED IMPACT RISK ASSESSMENT OF POSSIBLE PROTECTION ENHANCEMENTS TO TWO LEO SPACECRAFT

A DETAILED IMPACT RISK ASSESSMENT OF POSSIBLE PROTECTION ENHANCEMENTS TO TWO LEO SPACECRAFT A DETAILED IMPACT RISK ASSESSMENT OF POSSIBLE PROTECTION ENHANCEMENTS TO TWO LEO SPACECRAFT H. Stokes (1), C. Cougnet (2), M. David (3), J. Gelhaus (4), M. Röthlingshöfer (5) (1) PHS Space Ltd, 8 Dixon

More information

A Passive De-orbiting Strategy for High Altitude CubeSat Missions using a Deployable Reflective Balloon

A Passive De-orbiting Strategy for High Altitude CubeSat Missions using a Deployable Reflective Balloon A Passive De-orbiting Strategy for High Altitude CubeSat Missions using a Deployable Reflective Balloon Charlotte Lücking, Camilla Colombo, Colin R. McInnes Advanced Space Concepts Laboratory, University

More information

Update on NASA NEO Program

Update on NASA NEO Program Near Earth Object Observations Program Update on NASA NEO Program Presentation to UN COPUOS Scientific & Technical Subcommittee Lindley Johnson Program Executive NASA HQ 3 February 2015 1 NASA s NEO Search

More information

Technology Reference Studies

Technology Reference Studies In the proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation 'ASTRA 2004' ESTEC, Noordwijk, The Netherlands, November 2-4, 2004 Technology Reference Studies P.

More information

New Worlds Observer Operations Concept NEW WORLDS OBSERVER OPERATIONS CONCEPT (OPSCON)

New Worlds Observer Operations Concept NEW WORLDS OBSERVER OPERATIONS CONCEPT (OPSCON) NEW WORLDS OBSERVER OPERATIONS CONCEPT (OPSCON) 1 Table of Contents 1.0 Mission Overview... 1 1.1 NWO scope... 1 2.0 System Overview... 2 2.1 System constituents... 2 2.2 system functional architecture...

More information

OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology. 3 rd Mission Idea Contest UNISEC Global

OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology. 3 rd Mission Idea Contest UNISEC Global OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology 3 rd Mission Idea Contest UNISEC Global The Idea We want to take image for the moon phases as seen from Earth Why? Introduction 1.6 billion,23.4%

More information

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010 Orbit Design Marcelo Suárez Orbit Design Requirements The following Science Requirements provided drivers for Orbit Design: Global Coverage: the entire extent (100%) of the ice-free ocean surface to at

More information

SELENE TRANSLUNAR TRAJECTORY AND LUNAR ORBIT INJECTION

SELENE TRANSLUNAR TRAJECTORY AND LUNAR ORBIT INJECTION SELENE TRANSLUNAR TRAJECTORY AND LUNAR ORBIT INJECTION Yasuihiro Kawakatsu (*1) Ken Nakajima (*2), Masahiro Ogasawara (*3), Yutaka Kaneko (*1), Yoshisada Takizawa (*1) (*1) National Space Development Agency

More information

PROBA 1. F. Teston ESA/ESTEC D/TEC-EL

PROBA 1. F. Teston ESA/ESTEC D/TEC-EL PROBA 1 F. Teston ESA/ESTEC D/TEC-EL Frederic.Teston@esa.int PROBA 1 launch PROBA 1 has been launched on 21 October 2001 Orbital parameters: Altitude: 681-561 km Near polar (inclination of 97.9 ) Sun-synchronous

More information

Feasible Mission Designs for Solar Probe Plus to Launch in 2015, 2016, 2017, or November 19, 2008

Feasible Mission Designs for Solar Probe Plus to Launch in 2015, 2016, 2017, or November 19, 2008 Feasible Mission Designs for Solar Probe Plus to Launch in 2015, 2016, 2017, or 2018 2007 Solar Probe Study & Mission Requirements Trajectory study and mission design trades were conducted in the fall

More information

FORMATION FLYING WITH SHEPHERD SATELLITES NIAC Fellows Meeting Michael LaPointe Ohio Aerospace Institute

FORMATION FLYING WITH SHEPHERD SATELLITES NIAC Fellows Meeting Michael LaPointe Ohio Aerospace Institute FORMATION FLYING WITH SHEPHERD SATELLITES 2001 NIAC Fellows Meeting Michael LaPointe Ohio Aerospace Institute WHAT IS FORMATION FLYING? Two or more satellites flying in prescribed orbits at a fixed separation

More information

Space Travel on a Shoestring: CubeSat Beyond LEO

Space Travel on a Shoestring: CubeSat Beyond LEO Space Travel on a Shoestring: CubeSat Beyond LEO Massimiliano Vasile, Willem van der Weg, Marilena Di Carlo Department of Mechanical and Aerospace Engineering University of Strathclyde, Glasgow 5th Interplanetary

More information

Feasibility of Using Commercial Star Trackers for On-Orbit Resident Space Object Detection

Feasibility of Using Commercial Star Trackers for On-Orbit Resident Space Object Detection Feasibility of Using Commercial Star Trackers for On-Orbit Resident Space Object Detection Samuel Clemens York University Regina Lee York University Paul Harrison Magellan Aerospace Warren Soh Magellan

More information

A Regional Microsatellite Constellation with Electric Propulsion In Support of Tuscan Agriculture

A Regional Microsatellite Constellation with Electric Propulsion In Support of Tuscan Agriculture Berlin, 20 th - 24 th 2015 University of Pisa 10 th IAA Symposium on Small Satellites for Earth Observation Student Conference A Regional Microsatellite Constellation with Electric Propulsion In Support

More information

Technical Proposal: Self-Assembling Space Structures

Technical Proposal: Self-Assembling Space Structures Excerpt For Public Release: Technical Proposal: 2018 Marcus van Bavel All rights Reserved Part 1: Table of Contents Part 1: Table of Contents... 1 Part 2: Significance of...1 Theory of Operation...3 Example

More information

Juno Status and Earth Flyby Plans. C. J. Hansen

Juno Status and Earth Flyby Plans. C. J. Hansen Juno Status and Earth Flyby Plans C. J. Hansen July 2013 Juno will improve our understanding of the history of the solar system by investigating the origin and evolution of Jupiter. To accomplish this

More information

PICASSO PICo-satellite for Atmospheric and Space Science Observations

PICASSO PICo-satellite for Atmospheric and Space Science Observations PICASSO PICo-satellite for Atmospheric and Space Science Observations A scientific CubeSat mission Fussen D., Anciaux M., Bonnewijn S., Cardoen P., Dekemper E., De Keyser J., Demoulin Ph.,, Pieroux D.,

More information

Electric Propulsion Survey: outlook on present and near future technologies / perspectives. by Ing. Giovanni Matticari

Electric Propulsion Survey: outlook on present and near future technologies / perspectives. by Ing. Giovanni Matticari Electric Propulsion Survey: outlook on present and near future technologies / perspectives by Ing. Giovanni Matticari Electric Propulsion: a concrete reality on many S/C GOCE ARTEMIS ARTEMIS SMART-1 EP

More information

Ball Aerospace & Technologies Corp. & L Garde Inc.

Ball Aerospace & Technologies Corp. & L Garde Inc. Ball Aerospace & Technologies Corp. & L Garde Inc. Rapid De-Orbit of LEO Space Vehicles Using Towed owed Rigidizable Inflatable nflatable Structure tructure (TRIS) Technology: Concept and Feasibility Assessment

More information

SURVEY OF THE ELECTRIC SOLAR WIND SAIL: THE FASTEST MAN-MADE DEVICE EVER BUILT

SURVEY OF THE ELECTRIC SOLAR WIND SAIL: THE FASTEST MAN-MADE DEVICE EVER BUILT SURVEY OF THE ELECTRIC SOLAR WIND SAIL: THE FASTEST MAN-MADE DEVICE EVER BUILT Nick R. Purtle 1 University of Oklahoma, Norman, OK, 73069 In recent years, scientists have discovered that there are planets

More information

Germany s Option for a Moon Satellite

Germany s Option for a Moon Satellite Germany s Option for a Moon Satellite 38th COSPAR B01-0016-10 Quantius, D. (1), Päsler, H. (2), Gülzow, P. (2), Braukhane, A. (1), Vollhardt, A. (2), Bauer, W. (1), Romberg, O. (1), Scheibe, K. (1), Hoffmann,

More information

LAB 2 HOMEWORK: ENTRY, DESCENT AND LANDING

LAB 2 HOMEWORK: ENTRY, DESCENT AND LANDING LAB 2 HOMEWORK: ENTRY, DESCENT AND LANDING YOUR MISSION: I. Learn some of the physics (potential energy, kinetic energy, velocity, and gravity) that will affect the success of your spacecraft. II. Explore

More information

Gravitational & Planetary Research Program

Gravitational & Planetary Research Program 2012 Gravitational & Planetary Research Program Goals Why? Relativity, Gravitational Waves, Geodesy, Aeronomy Space Technology Education and Training: STEM Team Who? NASA Universities Industry Foreign

More information

IAC-13-A A. Galvez, I. Carnelli ESA Headquarters, Paris. P. Michel Lagrange Laboratory, Univ. Nice, CNRS, Côte d Azur Observatory

IAC-13-A A. Galvez, I. Carnelli ESA Headquarters, Paris. P. Michel Lagrange Laboratory, Univ. Nice, CNRS, Côte d Azur Observatory IAC-13-A3.4.8 AIDA: ASTEROID IMPACT & DEFLECTION ASSESSMENT A. F. Cheng, A. S. Rivkin, C. Reed, O. Barnouin, Z. Fletcher, C. Ernst The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland,

More information

Scientific astrophysical payloads for pico and nano-satellites

Scientific astrophysical payloads for pico and nano-satellites Scientific astrophysical payloads for pico and nano-satellites René Hudec 1,2 1 Czech Technical University in Prague, Faculty of Electrical Engineering, Technicka 2, CZ 160 00 Prague, Czech Republic 2

More information

PROGRESS ON THE DEVELOPMENT OF A PULSED PLASMA THRUSTER FOR THE ASTER MISSION

PROGRESS ON THE DEVELOPMENT OF A PULSED PLASMA THRUSTER FOR THE ASTER MISSION PROGRESS ON THE DEVELOPMENT OF A PULSED PLASMA THRUSTER FOR THE ASTER MISSION IEPC-2013-318 Presented at the 33rd International Electric Propulsion Conference, The George Washington University Washington,

More information

Systems Engineering in Venus Satellite

Systems Engineering in Venus Satellite Systems Engineering in Venus Satellite How to benefit from system engineering process in designing a microsatellite Jacob Herscovitz Venus Project Manager RAFAEL - Israel 1 Presentation Contents Introduction

More information

ExoplanetSat: A Nanosatellite Space Telescope for Detecting Transiting Exoplanets

ExoplanetSat: A Nanosatellite Space Telescope for Detecting Transiting Exoplanets 1 2 ExoplanetSat: A Nanosatellite Space Telescope for Detecting Transiting Exoplanets Matthew W. Smith 1 (m_smith@mit.edu), Sara Seager 1, Christopher M. Pong 1, Sungyung Lim 2, Matthew W. Knutson 1, Timothy

More information

Presentation by Indian Delegation. to 49 th STSC UNCOPUOS. February 2012 Vienna

Presentation by Indian Delegation. to 49 th STSC UNCOPUOS. February 2012 Vienna Presentation by Indian Delegation to 49 th STSC UNCOPUOS February 2012 Vienna ASTROSAT Astrosat is India s first dedicated multiwavelength astronomy satellite with a capability to observe target sources

More information

PI: Hal Levison. DPI: Cathy Olkin (SwRI) SwRI Manager: John Andrews. PM: Mike Donnelly (GSFC] DPM: John Loiacono [GSFC] S/C Provider: LM

PI: Hal Levison. DPI: Cathy Olkin (SwRI) SwRI Manager: John Andrews. PM: Mike Donnelly (GSFC] DPM: John Loiacono [GSFC] S/C Provider: LM PI: Hal Levison DPI: Cathy Olkin (SwRI) SwRI Manager: John Andrews PM: Mike Donnelly (GSFC] DPM: John Loiacono [GSFC] S/C Provider: LM Lucy is a Trojan asteroid tour Called for in Decadal Survey It will

More information

Payloads. Andrew J. Ball Short Course on Small Satellites, IPPW-15 Boulder, CO, 9 June 2018

Payloads. Andrew J. Ball Short Course on Small Satellites, IPPW-15 Boulder, CO, 9 June 2018 Payloads Andrew J. Ball Short Course on Small Satellites, IPPW-15 Boulder, CO, 9 June 2018 1 Outline Biography Natural Sciences (mostly Physics ) Bachelor degree (U. of Cambridge) M.Sc. in Spacecraft Technology

More information

LISA Pathfinder: experiment details and results

LISA Pathfinder: experiment details and results LISA Pathfinder: experiment details and results Martin Hewitson on behalf of the LPF Collaboration On December 3rd 2015 at 04:04 UTC, the European Space Agency launched the LISA Pathfinder satellite on

More information

Joint Milli-Arcsecond Pathfinder Survey (JMAPS): Overview and Application to NWO Mission

Joint Milli-Arcsecond Pathfinder Survey (JMAPS): Overview and Application to NWO Mission Joint Milli-Arcsecond Pathfinder Survey (JMAPS): Overview and Application to NWO Mission B. Dorland and R. Dudik US Naval Observatory 11 March 2009 1 Mission Overview The Joint Milli-Arcsecond Pathfinder

More information

The European Student Moon Orbiter (ESMO) A Small Mission for Education, Outreach, and Science

The European Student Moon Orbiter (ESMO) A Small Mission for Education, Outreach, and Science (ESMO) A Small Mission for Education, Outreach, and Science Roger Walker, Matthew Cross Education Projects Unit, ESA Education Office ESTEC, Noordwijk, The Netherlands LEAG-ILEWG-SRR Meeting Cape Canaveral,

More information

BepiColombo MPO Science Operations Planning Drivers IWPSS-2013

BepiColombo MPO Science Operations Planning Drivers IWPSS-2013 BepiColombo MPO Science Operations Planning Drivers IWPSS-2013 Sara de la Fuente sfuente@sciops.esa.int BepiColombo MPO Science Ground Segment ESA, ESAC, Villanueva de la Cañada, Madrid, 28691, Spain Summary

More information

Integrated Vehicle and Trajectory Design of Small Spacecraft with Electric Propulsion for Earth and Interplanetary Missions

Integrated Vehicle and Trajectory Design of Small Spacecraft with Electric Propulsion for Earth and Interplanetary Missions Integrated Vehicle and Trajectory Design of Small Spacecraft with Electric Propulsion for Earth and Interplanetary Missions Small Satellite Conference 2015 Sara Spangelo, NASA Jet Propulsion Laboratory

More information

BINARY ASTEROID ORBIT MODIFICATION

BINARY ASTEROID ORBIT MODIFICATION 2013 IAA PLANETARY DEFENSE CONFERENCE BEAST BINARY ASTEROID ORBIT MODIFICATION Property of GMV All rights reserved TABLE OF CONTENTS 1. Mission Concept 2. Asteroid Selection 3. Physical Principles 4. Space

More information

The importance of solar wind magnetic. the upcoming Sunjammer solar sail. field observations & mission

The importance of solar wind magnetic. the upcoming Sunjammer solar sail. field observations & mission The importance of solar wind magnetic field observations & the upcoming Sunjammer solar sail mission J. P. Eastwood The Blackett Laboratory, Imperial College London, London SW7 2AZ, UK 13 November 2013

More information

System engineering approach toward the problem of required level of in-orbit autonomousoperation of a LEO microsatellite mission

System engineering approach toward the problem of required level of in-orbit autonomousoperation of a LEO microsatellite mission System engineering approach toward the problem of required level of in-orbit autonomousoperation of a LEO microsatellite mission H.Bonyan Amirkabir University of Technology (AUT) H.Bonyan@dena.aut.ac.ir

More information

BIRDY T. Daniel Hestroffer - IMCCE/Paris obs., PSL Research univ., France

BIRDY T. Daniel Hestroffer - IMCCE/Paris obs., PSL Research univ., France BIRDY T Daniel Hestroffer - IMCCE/Paris obs., PSL Research univ., France M. Agnan ESEP - Odysseus Space Ltd., Taiwan J.J. Miau - NCKU, Taiwan G. Quinsac - LESIA/Paris observatory, France P. Rosenblatt

More information

CubeSat on an Earth-Mars Free-Return. future manned mission

CubeSat on an Earth-Mars Free-Return. future manned mission CubeSat on an Earth-Mars Free-Return Trajectory to study radiation hazards in the future manned mission presented by: Jordan VANNITSEN (NCKU, DAA) in collaboration with: Boris SEGRET (ESEP, LESIA - Observatoire

More information

The E-SAIL programme. 10th IAA Symposium on Small Satellites for Earth Observation April 20-24, 2015 Berlin LuxSpace s.à.r.

The E-SAIL programme. 10th IAA Symposium on Small Satellites for Earth Observation April 20-24, 2015 Berlin LuxSpace s.à.r. The E-SAIL programme 10th IAA Symposium on Small Satellites for Earth Observation April 20-24, 2015 Berlin LuxSpace s.à.r.l An OHB company Contents LuxSpace Background Consortium Spacecraft Specific issues

More information

Design of Orbits and Spacecraft Systems Engineering. Scott Schoneman 13 November 03

Design of Orbits and Spacecraft Systems Engineering. Scott Schoneman 13 November 03 Design of Orbits and Spacecraft Systems Engineering Scott Schoneman 13 November 03 Introduction Why did satellites or spacecraft in the space run in this orbit, not in that orbit? How do we design the

More information

Comparative Planetology I: Our Solar System. Chapter Seven

Comparative Planetology I: Our Solar System. Chapter Seven Comparative Planetology I: Our Solar System Chapter Seven ASTR 111 003 Fall 2006 Lecture 07 Oct. 16, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17)

More information

Creating Large Space Platforms From Small Satellites

Creating Large Space Platforms From Small Satellites SSC99-VI-6 Creating Large Space Platforms From Small Satellites Andrew W. Lewin Principal Systems Engineer Orbital Sciences Corporation Dulles, VA 20166 (703) 406-5000 lewin.andy@orbital.com Abstract.

More information

USA Space Debris Environment and Operational Updates

USA Space Debris Environment and Operational Updates USA Space Debris Environment and Operational Updates Presentation to the 46 th Session of the Scientific and Technical Subcommittee Committee on the Peaceful Uses of Outer Space United Nations 9-20 February

More information