THE MICRO ADVANCED STELLAR COMPASS FOR ESA S PROBA 2 MISSION

Size: px
Start display at page:

Download "THE MICRO ADVANCED STELLAR COMPASS FOR ESA S PROBA 2 MISSION"

Transcription

1 THE MICRO ADVANCED STELLAR COMPASS FOR ESA S PROBA 2 MISSION P.S. Jørgensen (1), J.L. Jørgensen (1), T. Denver (1), Pieter van den Braembuche (2) (1) Technical University of Denmark, Ørsted*DTU, Measurement and Instrumentation Systems, 2800 Lyngby, Denmark. Phone: , psj@oersted.dtu.dk. (2) Verhaert Design & Development, Hogenakkerhoekstraat 9, 9150 Kruibeke, Belgium. ABSTRACT In the wake of the successfullproba-1 ESA technology demonstrator its successor, PROBA-2, is under preparation. While maintaining focus on technology demonstration the PROBA-2 satellite will also serve scientific purposes, mainly observing the Sun. Part of the technology demonstration on PROBA-2 is the first flight of the next generation star tracker, the Micro Advanced Stellar Compass (µasc). This miniature fully autonomous star tracker is based on the well-proven design of the Advanced Stellar Compass (ASC), flown on numerous missions. The basic design drivers taken into account in the µasc were: reliability, mass, power, size, and also maintaining full heritage from the flight-proven ASC SW and latch-up protection philosophy. The µasc features pure 3V SMD technology, low power consumption, full EDAC on all data transfer and up to 32 Hz true sampling on a single electronics box (micro Data Processing Unit or µdpu). This new technology allows for a fully hot- or cold redundant star tracker (two separate µdpus) in just (10 by 10 by 4.5cm) operating with four fully cross-strapped camera head units (CHU s, 5 by 5 by 5cm each). 1. INTRODUCTION The first of ESA s PROBA technology demonstration satellites was launched in October 2001 and has since then operated successfully [1]. PROBA-1 demonstrated, along with a number of new enabling technologies, an unprecedented degree of autonomy in observation planning and operations. In continuation of this success the next ESA technology demonstration satellite, PROBA-2, is under preparation with a launch scheduled in The PROBA-2 satellite will carry a number of new technologies and instrumentation. One of these is the micro Advanced Stellar Compass (µasc), which is the subject of this paper. The main purpose of the PROBA-2 satellite is technology demonstration. However, instrumentation for Sun observation is also added, ensuring a scientific return as well. The PROBA-2 Sun observations will require arcsecond level accuracy, reliable and timely knowledge of the SC attitude, which will be provided by the µasc. In addition to being AOCS sensor and attitude reference for the scientific observations on PROBA- 2 the µasc is also the next generation in star tracker technology, thus fulfilling both mission objectives new technology and science. The µasc has been designed using the basic principles of the Advanced Stellar Com-

2 pass, which successfully has flown on over 15 missions with all the major space agencies including ESA (PROBA-1 and SMART-1). The new µasc design effort focused on developing a more compact, higher performance, less power consuming and more flexible instrument with even higher reliability numbers. The design drivers should be realized, while maintaining the important key features from the well-proven ASC design (accuracy, autonomy and flexibility). This paper describes the main design drivers applied for the µasc development and the resulting instrument developed for the PROBA-2 mission. 2. STAR TRACKER DESIGN DRIVERS The need for an increased level in the autonomy of advanced space instruments has been ever growing for the last two decades, i.e. as long as powerful onboard computers have existed. The demand has mainly been focused on the bus instrumentation (AOCS, TM/TC and on-board data handling) and amongst these, a significant interest has been in highly autonomous and accurate star sensors. However, also science measurements can gain significantly from autonomous care-free instruments. The autonomous star sensors (or star trackers) offer considerable advantages in the SC design, especially for the AOCS. Autonomous star sensors measures and reports directly and accurately the orientation of the spacecraft relative to an inertial reference frame. Therefore, attitude measurements are directly available for the AOCS without any post-processing, thus simplifying the AOCS algorithms. At the same time a sufficient number of star trackers with sufficient operational envelope and robustness will reduce the types and number of different attitude sensors on the SC, hence lowering both design and operational complexity. Most of the last generation of star sensors are quite robust against environmental disturbances and are autonomous, e.g. they can solve the lost in space problem and thus do not need to be seeded to begin operations. The autonomy also provides for automatic rejection of inaccurate or invalid attitude updates, online accuracy assessment, anomaly detection and isolation and failure trapping and recovery. However, several nonnominal conditions adversely impact their performance, e.g. high radiation dose rates, non-stellar luminous objects and blinding by Sun etc. Further enhancements in the autonomy are consequently called for. Another system-level driving requirement is to have large payload-to-bus mass, power and operational cost ratios, i.e. to have "more value for money" as, ultimately, this advances the scientific or commercial return of the mission. Typically, this is achieved by using small but still reliable instruments. Especially for star trackers, sharing of attitude data by both bus and payload has been employed to reduce cost, mass and allocation space. Autonomous, small and reliable implies that redundant units can be implemented with minor penalties only. At the same time considerably increasing the instrument's performance especially when they can be operated simultaneously, e.g. in a hot redundant, cross-strapped configuration.

3 2.1 General Requirements for Autonomous Star trackers The typical main requirements for an autonomous star tracker are given in table 1. However, the need to improve the performance and lifetime while decreasing the resources allocated to the star tracker is strongly felt for the deep space missions as well as for the commercial satellites. Class Requirement ASC µasc (*) Dual redundant Initial acquisition (solve lostin < 1 min 80msec 30msec space) Accuracy (EOL) [arcsec] 30(3 σ) 3(3 σ) 2(3 σ) Attitude rate [ /s] Up to 1 Up to 7 Up to 20 Update rate [Hz] Up to 4 Up to 4 Up to 32 Availability [%] Power [W] < n*0.3 Mass [Kg] < * Size [cm] Proc. Unit: ~10x10x10 Camera: ~5x5x5 DPU: 10x10x10 CHU: 5x5x5 DPU: 10x10x4.5* CHU: 5x5x5 Lifetime [years] Reliability [%] Table1: Typical requirements and example specifications for autonomous star trackers. 3. THE NEXT GENERATION STAR TRACKER: THE µasc To further improve and miniaturize the star tracker technology, the micro-advanced Stellar Compass (µasc) development was initiated. Specific goals during the design phase were, in addition to smaller size, mass and power consumption, to improve the update rate, accuracy and robustness as well as to increase the reliability to allow for 30+ years applications. The new µasc expands the multi-chu concept of the ASC by being able to operate up to four CHU s at once, thus providing full immunity to simultaneous blinding. In addition the standard µasc is built with two fully hot/cold redundant micro Data Processing Units (µdpu). The CHU s are fully cross-strapped; enabling in-flight reconfiguration for each of the µdpu s to operate the desired number of CHU s (zero to four). The CHU s can be up to 20m away from the µdpu. The µasc features a lower size, mass and Figure 1: The next generation star tracker the µasc. Here the double DPU is shown with one of the four camera head units. volume and an improved radiation tolerance that results in an increased Residual Design Margin (RDM) for all mission profiles studied so far. Like the ASC, the µasc is entirely tolerant to known increases in the radiation environment, such as those

4 encountered in the South Atlantic Anomaly (SAA) and the Van Allen belts. The instrument is designed to perform nominally even under extreme conditions, e.g. during extreme solar storms. This performance has been achieved through a coupled HW/SW radiation impact rejection strategy. The µasc specifications are given in table 1, where they can be directly compared with the star trackers main requirements. Throughout the design of the HW, the emphasis has been put on accuracy, functionality, low power, low thermal stressing, mass and size and on making system performance independent of the degradation of various parameters with age or radiation doses. By using 3V SMD highly integrated technology, the board population density has been increased and the mechanical stability has been maximized, while simultaneously lowering the power consumption. This has led to a compact design with a low IC-count, full inline EDAC and a very high data handling capacity. Due to the adopted design procedure, originally developed for the ASC, all IEEE parts applied in the design have been thoroughly screened for radiation tolerance with respect to total-dose, dose-rate for Single Event Upset (SEU) and Single Event Latch-up (SEL) [2]. This selection procedure ensures correct operations during exposure to solar wind and trapped protons in the Van Allen belts. To cope with SEL's generated by the (rare) cosmic particles, all circuit blocks are protected by individual latch-up protection circuitry. The projected SEL rate in GEO is less than one per year. Every SEL will result in the loss of attitude updates for 4.5 seconds. However, in case of a critical maneuver, the µasc may be operated in hot redundant configuration efficiently removing the risk of attitude update loss. Thermally, the µasc design is such that no component has a temperature that deviates more than 8K from the box surface reference point, this is verified in vacuum. The low thermal gradient associated with the low power dissipation and strong thermal coupling result in an extraordinary thermal cycling resilience and do provide for a very high reliability figure, as proven by the accelerated lifetime tests performed. The compact design and the miniaturization provide a rugged design with low amplification factors and high resonant frequencies, resulting in high shock and vibration level tolerances. The µasc interface will support the 1553B and the RS422 interface standards over which either PUS or CCSDS packets are transmitted. 4. QUALIFICATION STATUS The µasc has undergone a full set of qualification tests including radiation screening TID, EMC, accelerated lifetime test (200 30C) and shake. Also, the µasc has been tested on the real sky and results demonstrate improved performance as expected. With the PROBA-2 flight the micro Advanced Stellar Compass will earn its flight heritage enabling this new technology to be used on a suite of future satellite missions.

5 5. REFERENCES [1] Jørgensen, J. L et al., The Proba Satillite Star Tracker Performance, Abstract in Small Satellites for Earth Observation, 4th Int. Symp. of the IAA, pp , 2003 [2] Thuesen, G. G et al., Application Specific Radiation Tests for Cots EEE Components, Abstract in Small Satellites for Earth Observation, 4th Int. Symp. of the IAA, pp , 2003

ONBOARD AUTONOMOUS CORRECTIONS FOR ACCURATE IRF POINTING

ONBOARD AUTONOMOUS CORRECTIONS FOR ACCURATE IRF POINTING ONBOARD AUTONOMOUS CORRECTIONS FOR ACCURATE IRF POINTING John L. Jørgensen, Maurizio Betto, Peter S. Jørgensen, Troelz Denver Technical University of Denmark, Ørsted.DTU, Dept. of Measurement and Instrumentation

More information

Autonomous Vision Based Detection of Non-stellar Objects Flying in Formation with Camera Point of View

Autonomous Vision Based Detection of Non-stellar Objects Flying in Formation with Camera Point of View Autonomous Vision Based Detection of Non-stellar Objects Flying in Formation with Camera Point of View As.Prof. M. Benn (1), Prof. J. L. Jørgensen () (1) () DTU Space, Elektrovej 37, 4553438, mb@space.dtu.dk,

More information

ADCSS 2017: Sodern presentation

ADCSS 2017: Sodern presentation ADCSS 2017: Sodern presentation 1 Agenda Star trackers road map: a wide range of products End of CCD star trackers: SED26 replaced by Horus as standalone multi mission star tracker Hydra maintained beyond

More information

Measurements & Instrumentation Systems National Space Institute Technical University of Denmark

Measurements & Instrumentation Systems National Space Institute Technical University of Denmark Measurements & Instrumentation Systems National Space Institute Technical University of Denmark Assessment Study of Autonomous Optical Navigation for an Asteroid Impact Mission -Executive Summary- Prepared

More information

The Quantum Sensor Challenge Designing a System for a Space Mission. Astrid Heske European Space Agency The Netherlands

The Quantum Sensor Challenge Designing a System for a Space Mission. Astrid Heske European Space Agency The Netherlands The Quantum Sensor Challenge Designing a System for a Space Mission Astrid Heske European Space Agency The Netherlands Rencontres de Moriond - Gravitation, La Thuile, 2017 Quantum Sensors in Lab Experiments

More information

Steeve Kowaltschek (ESA/ESTEC TEC-SAA) 17/10/ ADCSS. ESA UNCLASSIFIED - For Official Use

Steeve Kowaltschek (ESA/ESTEC TEC-SAA) 17/10/ ADCSS. ESA UNCLASSIFIED - For Official Use Steeve Kowaltschek (ESA/ESTEC TEC-SAA) 17/10/2017 - ADCSS ESA UNCLASSIFIED - For Official Use Late 1990, autonomy reaches Star Trackers devices First Star Trackers were single-star, The improvement in

More information

Autonomous Vision Based Detection of Non-stellar Objects Flying in formation with Camera Point of View

Autonomous Vision Based Detection of Non-stellar Objects Flying in formation with Camera Point of View Autonomous Vision Based Detection of Non-stellar Objects Flying in formation with Camera Point of View SFFMT 213 München May 31 st 213 Mathias Benn, As.Prof, PhD John L. Jørgensen, Prof. DTU Space Overview

More information

PROBA 1. F. Teston ESA/ESTEC D/TEC-EL

PROBA 1. F. Teston ESA/ESTEC D/TEC-EL PROBA 1 F. Teston ESA/ESTEC D/TEC-EL Frederic.Teston@esa.int PROBA 1 launch PROBA 1 has been launched on 21 October 2001 Orbital parameters: Altitude: 681-561 km Near polar (inclination of 97.9 ) Sun-synchronous

More information

Your Partner in Environment Monitoring

Your Partner in Environment Monitoring Your Partner in Environment Monitoring Radiation Environment in Space The ionizing radiation in space represents one of the most severe environmental loads to space hardware and can cause a large number

More information

ROBUSTA cubesat. Radiation On Bipolar University Satellite Test Application. Student project. Partnership : Montpellier University + CNES

ROBUSTA cubesat. Radiation On Bipolar University Satellite Test Application. Student project. Partnership : Montpellier University + CNES ROBUSTA cubesat Radiation On Bipolar University Satellite Test Application Student project Partnership : Montpellier University + CNES 1 What is Robusta Robusta s goal Robusta s actors Robusta s location

More information

Space Radiation Mitigation for Fox-1

Space Radiation Mitigation for Fox-1 AMSAT Space Symposium 2012 Space Radiation Mitigation for Fox-1 Alan Biddle WA4SCA Tony Monteiro AA2TX Space Radiation Components Type Source Composition Trapped Particles in Van Allen Belts Galactic Cosmic

More information

BUILDING LOW-COST NANO-SATELLITES: THE IMPORTANCE OF A PROPER ENVIRONMENTAL TESTS CAMPAIGN. Jose Sergio Almeida INPE (Brazil)

BUILDING LOW-COST NANO-SATELLITES: THE IMPORTANCE OF A PROPER ENVIRONMENTAL TESTS CAMPAIGN. Jose Sergio Almeida INPE (Brazil) BUILDING LOW-COST NANO-SATELLITES: THE IMPORTANCE OF A PROPER ENVIRONMENTAL TESTS CAMPAIGN Jose Sergio Almeida INPE (Brazil) 1 st International Academy of Astronautics Latin American Symposium on Small

More information

On-Orbit Performance of KOMPSAT-2 AOCS Korea Aerospace Research Institute Seung-Wu Rhee, Ph. D.

On-Orbit Performance of KOMPSAT-2 AOCS Korea Aerospace Research Institute Seung-Wu Rhee, Ph. D. SSC07-VII-9 On-Orbit Performance of AOCS 2007. 8. Korea Aerospace Research Institute Seung-Wu Rhee, Ph. D. 1 Program - is Low Earth Orbit Satellite - Mission : Cartographic Mission of Korean Peninsula

More information

Flight Demonstration of Electrostatic Thruster Under Micro-Gravity

Flight Demonstration of Electrostatic Thruster Under Micro-Gravity Flight Demonstration of Electrostatic Thruster Under Micro-Gravity Shin SATORI*, Hiroyuki MAE**, Hiroyuki OKAMOTO**, Ted Mitsuteru SUGIKI**, Yoshinori AOKI # and Atsushi NAGATA # * Hokkaido Institute of

More information

BERING A DEEP SPACE MISSION TO STUDY THE ORIGIN AND EVOLUTION OF THE ASTEROID MAIN BELT

BERING A DEEP SPACE MISSION TO STUDY THE ORIGIN AND EVOLUTION OF THE ASTEROID MAIN BELT BERING A DEEP SPACE MISSION TO STUDY THE ORIGIN AND EVOLUTION OF THE ASTEROID MAIN BELT Philip R. Bidstrup (1), Henning Haack (1), Anja C. Andersen (2,3), Rene Michelsen (4), and John Leif Jørgensen (4)

More information

FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING

FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING Elias F. Solorzano University of Toronto (Space Flight Laboratory) Toronto, ON (Canada) August 10 th, 2016 30 th AIAA/USU

More information

Study Participants: T.E. Sarris, E.R. Talaat, A. Papayannis, P. Dietrich, M. Daly, X. Chu, J. Penson, A. Vouldis, V. Antakis, G.

Study Participants: T.E. Sarris, E.R. Talaat, A. Papayannis, P. Dietrich, M. Daly, X. Chu, J. Penson, A. Vouldis, V. Antakis, G. GLEME: GLOBAL LIDAR EXPLORATION OF THE MESOSPHERE Project Technical Officer: E. Armandillo Study Participants: T.E. Sarris, E.R. Talaat, A. Papayannis, P. Dietrich, M. Daly, X. Chu, J. Penson, A. Vouldis,

More information

Update on the In-orbit Performances of GIOVE Clocks

Update on the In-orbit Performances of GIOVE Clocks Update on the In-orbit Performances of GIOVE Clocks Pierre Waller, Francisco Gonzalez, Stefano Binda, ESA/ESTEC Ilaria Sesia, Patrizia Tavella, INRiM Irene Hidalgo, Guillermo Tobias, GMV Abstract The Galileo

More information

Radiation Effects on Electronics. Dr. Brock J. LaMeres Associate Professor Electrical & Computer Engineering Montana State University

Radiation Effects on Electronics. Dr. Brock J. LaMeres Associate Professor Electrical & Computer Engineering Montana State University Dr. Brock J. LaMeres Associate Professor Electrical & Computer Engineering Montana State University Research Statement Support the Computing Needs of Space Exploration & Science Computation Power Efficiency

More information

MISSION ENGINEERING SPACECRAFT DESIGN

MISSION ENGINEERING SPACECRAFT DESIGN MISSION ENGINEERING & SPACECRAFT DESIGN Alpbach 2007 - D.J.P. Moura - CNES MISSION ENGINEERING (1) OVERALL MISSION ENGINEERING IS A COMPLEX TASK SINCE AT THE BEGINNING THE PROBLEM IS GENERALLY BADLY EXPRESSED

More information

DARE Mission and Spacecraft Overview

DARE Mission and Spacecraft Overview DARE Mission and Spacecraft Overview October 6, 2010 Lisa Hardaway, PhD Mike Weiss, Scott Mitchell, Susan Borutzki, John Iacometti, Grant Helling The information contained herein is the private property

More information

No End of Push-broom Operations

No End of Push-broom Operations Page 1 of 5 ESA Science & Technology 06-Mar-2006 17:30:17 No. 46 - End of Push-broom Operations 23 Dec 2005 Report for period 21 November to 18 December 2005 Smart-1 push-broom operations have continued

More information

Using the International Space Station as an Engineering Technology Research Laboratory for Space Based Telescopes

Using the International Space Station as an Engineering Technology Research Laboratory for Space Based Telescopes Using the International Space Station as an Engineering Technology Research Laboratory for Space Based Telescopes David W. Miller Director, Professor, MIT Dept. of Aeronautics and Astronautics Javier de

More information

Propulsion means for CubeSats

Propulsion means for CubeSats Propulsion means for CubeSats C. Scharlemann and D. Krejci 2009 CubeSat Developers Workshop, San Louis Obispo, CA Welcome to the Austrian Research Centers Space Propulsion & Advanced Concepts Staff: 11

More information

Multi-aperture miniaturized star sensors, modular building blocks for small satellite AOCS systems

Multi-aperture miniaturized star sensors, modular building blocks for small satellite AOCS systems Multi-aperture miniaturized star sensors, modular building blocks for small satellite AOCS systems Jeroen Rotteveel ISIS Innovative Solutions In Space BV Rotterdamseweg 380, 2629HG Delft, The Netherlands;

More information

Development of Microwave Engine

Development of Microwave Engine Development of Microwave Engine IEPC-01-224 Shin SATORI*, Hiroyuki OKAMOTO**, Ted Mitsuteru SUGIKI**, Yoshinori AOKI #, Atsushi NAGATA #, Yasumasa ITO** and Takayoshi KIZAKI # * Hokkaido Institute of Technology

More information

Beijing Institute of Spacecraft Environment Engineering, Beijing , China *Corresponding author

Beijing Institute of Spacecraft Environment Engineering, Beijing , China *Corresponding author 2017 2 nd International Conference on Test, Measurement and Computational Method (TMCM 2017) ISBN: 978-1-60595-465-3 General Lightweight Integrated Space Environment and Effect Detection Technology Zi-cai

More information

Modular Thermal Design Concepts: Thermal Design of a Spacecraft on a Module Level for LEO Missions

Modular Thermal Design Concepts: Thermal Design of a Spacecraft on a Module Level for LEO Missions Modular Thermal Design Concepts: Thermal Design of a Spacecraft on a Module Level for LEO Missions Mark Barton AeroAstro mark.barton@aeroastro.com 703.723.9800 x 131 2005 AIAA/USU Conference on Small Satellites

More information

RESERVE THALES ALENIA SPACE CHANGE RECORDS ISSUE DATE DESCRIPTION OF CHANGES AUTHOR

RESERVE THALES ALENIA SPACE CHANGE RECORDS ISSUE DATE DESCRIPTION OF CHANGES AUTHOR ISSUE : 1 Page : 2/35 CHANGE RECORDS ISSUE DATE DESCRIPTION OF CHANGES AUTHOR 1 03/10/07 Initial issue (MTG-TAF-SA-RS-39) J. VIEILLOT 1 20/09/10 Updated version for kick off : L.OUCHET New reference (MTG-TAF-SA-SS-0039)

More information

Hayabusa Status and Proximity Operation. As of September 2nd, 2005

Hayabusa Status and Proximity Operation. As of September 2nd, 2005 Hayabusa Status and Proximity Operation As of September 2nd, 2005 2005/9/2 0 What is Hayabusa? World s First Round-trip Interplanetary Flight HAYABUSA Challenge to Asteroid Sample Return Touch-down + Dimensions

More information

Mechanical and Thermal Design of XMM

Mechanical and Thermal Design of XMM r bulletin 100 december 1999 Mechanical and Thermal Design of XMM K. van Katwijk, T. van der Laan & D. Stramaccioni XMM Project, ESA Directorate for Scientific Programmes, ESTEC, Noordwijk, The Netherlands

More information

NGRM Next Generation Radiation Monitor new standard instrument for ESA

NGRM Next Generation Radiation Monitor new standard instrument for ESA For NGRM Team: Wojtek Hajdas (PSI) NGRM Next Generation Radiation Monitor new standard instrument for ESA 13 th European Space Weather Week, 14-18 Nov 2016, Oostende, Belgium Outline 1. NGRM requirements

More information

Space mission environments: sources for loading and structural requirements

Space mission environments: sources for loading and structural requirements Space structures Space mission environments: sources for loading and structural requirements Prof. P. Gaudenzi Università di Roma La Sapienza, Rome Italy paolo.gaudenzi@uniroma1.it 1 THE STRUCTURAL SYSTEM

More information

The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit

The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit Ryan Tyler, D.J. McComas, Howard Runge, John Scherrer, Mark Tapley 1 IBEX Science Requirements IBEX

More information

9 Aug 04 Getting Technology to Space for the Warfighter

9 Aug 04 Getting Technology to Space for the Warfighter 1 SMC Detachment 12 - The Dirty Dozen Space Test Program-1 (STP-1) First of its Kind! Major Ray Galik STP-1 Program Manager 9 Aug 2004 Overview STP-1 Mission summary STP-1 Firsts Manifest Changes Space

More information

Radiation Environments, Effects and Needs for ESA Missions

Radiation Environments, Effects and Needs for ESA Missions Radiation Environments, Effects and Needs for ESA Missions Eamonn Daly European Space Agency ESTEC, Noordwijk, The Netherlands Space Environment Engineering and Science Applications Workshop 5 September

More information

GP-B Attitude and Translation Control. John Mester Stanford University

GP-B Attitude and Translation Control. John Mester Stanford University GP-B Attitude and Translation Control John Mester Stanford University 1 The GP-B Challenge Gyroscope (G) 10 7 times better than best 'modeled' inertial navigation gyros Telescope (T) 10 3 times better

More information

The Swarm Vector Field Magnetometer (VFM): instrument commissioning & performance assessment José M. G. Merayo

The Swarm Vector Field Magnetometer (VFM): instrument commissioning & performance assessment José M. G. Merayo instrument commissioning & performance assessment José M. G. Merayo DTU Space, Technical University of Denmark Division Measurement & Instrumentation Systems overview Fluxgate principle Amorphous magnetic

More information

IMESA-R Integrated Miniaturized Electrostatic Analyzer Reflight

IMESA-R Integrated Miniaturized Electrostatic Analyzer Reflight IMESA-R IMESA-R Integrated Miniaturized Electrostatic Analyzer Reflight Dr. Parris Neal Cadet First Class Alex Strom Cadet First Class Nikolas Taormina USAF Academy Principal Investigator: Geoff McHarg

More information

Study of the radiation fields in LEO with the Timepix detector

Study of the radiation fields in LEO with the Timepix detector Study of the radiation fields in LEO with the Timepix detector 1 1, Czech Technical University in Prague 16th Baksan Cosmology School 1/24 Timepix in space 2/24 Proba-V Altitude = 820 km Inclination =

More information

Launches and On-Orbit Performance

Launches and On-Orbit Performance Launches and On-Orbit Performance An Update on Nanosatellite Missions at the UTIAS Space Flight Laboratory Daniel D. Kekez,, Robert E. Zee, Freddy M. Pranajaya Space Flight Laboratory University of Toronto

More information

Spacecraft Bus / Platform

Spacecraft Bus / Platform Spacecraft Bus / Platform Propulsion Thrusters ADCS: Attitude Determination and Control Subsystem Shield CDH: Command and Data Handling Subsystem Payload Communication Thermal Power Structure and Mechanisms

More information

End of Life Re-orbiting The Meteosat-5 Experience

End of Life Re-orbiting The Meteosat-5 Experience End of Life Re-orbiting The Meteosat-5 Experience Milan EUMETSAT, Darmstadt, Germany This article illustrates the orbit maneuver sequence performed during Meteosat- 5 End of Life (EOL) re-orbiting operations

More information

Sensors: a) Gyroscope. Micro Electro-Mechanical (MEM) Gyroscopes: (MEM) Gyroscopes. Needs:

Sensors: a) Gyroscope. Micro Electro-Mechanical (MEM) Gyroscopes: (MEM) Gyroscopes. Needs: Sensors: Needs: Data redundancy Data for both situations: eclipse and sun Question of sampling frequency Location and size/weight Ability to resist to environment Low consumption Low price a) Gyroscope

More information

Onboard Maneuver Planning for the Autonomous Vision Approach Navigation and Target Identification (AVANTI) experiment within the DLR FireBird mission

Onboard Maneuver Planning for the Autonomous Vision Approach Navigation and Target Identification (AVANTI) experiment within the DLR FireBird mission Onboard Maneuver Planning for the Autonomous Vision Approach Navigation and Target Identification (AVANTI) experiment within the DLR FireBird mission G. Gaias, DLR/GSOC/Space Flight Technology Department

More information

Electric Propulsion Survey: outlook on present and near future technologies / perspectives. by Ing. Giovanni Matticari

Electric Propulsion Survey: outlook on present and near future technologies / perspectives. by Ing. Giovanni Matticari Electric Propulsion Survey: outlook on present and near future technologies / perspectives by Ing. Giovanni Matticari Electric Propulsion: a concrete reality on many S/C GOCE ARTEMIS ARTEMIS SMART-1 EP

More information

Bering The first deep space mission to map asteroidal diversity, origin and transportation

Bering The first deep space mission to map asteroidal diversity, origin and transportation Bering The first deep space mission to map asteroidal diversity, origin and transportation Anja C. Andersen 1, René Michelsen 2, Henning Haack 3, and John L. Jørgensen 4 1 NORDITA, Blegdamsvej 17, 2100

More information

Recent Advances and Low cost concept for the Gamma-Ray Lens Project MAX

Recent Advances and Low cost concept for the Gamma-Ray Lens Project MAX . Page 1 Recent Advances and Low cost concept for the Gamma-Ray Lens Project MAX ---- F. Arbusti a, P. Attina b X. Leyre a, M. Sghedoni a a Alcatel Alenia Space - Cannes - France. b Alcatel Alenia Space

More information

Rosetta Optical Navigation

Rosetta Optical Navigation Rosetta Optical Navigation Mathias Lauer ESA / ESOC / Flight Dynamics Page 1 Overview Rosetta: Mission and Spacecraft Asteroid Flybys (Steins): - Scenario - Navigation Strategy - Image Processing - Autonomous

More information

High Power Electric Propulsion Pointing Mechanisms (HP EPPM) Technical Development Activities (TDA s) strategy, status and planning

High Power Electric Propulsion Pointing Mechanisms (HP EPPM) Technical Development Activities (TDA s) strategy, status and planning High Power Electric Propulsion Pointing Mechanisms (HP EPPM) Technical Development Activities (TDA s) strategy, status and planning Objectives of this presentation are: To provide primes with: ESA preliminary

More information

The post launch assessment review confirmed the following previous assertions about the mission status:

The post launch assessment review confirmed the following previous assertions about the mission status: 1 GRACE Newsletter No. 2 August 15, 2003 Topics: http://www.csr.utexas/grace/ http://www.gfz-potsdam.de/grace 1. Editorial 2. Major events in Mission Operations since last Newsletter 3. Current status

More information

Solar particle events contribution in the space radiation exposure on electronic equipment

Solar particle events contribution in the space radiation exposure on electronic equipment Journal of Physics: Conference Series PAPER OPEN ACCESS Solar particle events contribution in the space radiation exposure on electronic equipment To cite this article: Vasily S Anashin et al 2015 J. Phys.:

More information

Reliability of Spacecraft. Power Systems

Reliability of Spacecraft. Power Systems Reliability of Spacecraft Template reference : 100181670S-EN Power Systems Fabrice WALLECAN (March 2011) Thales Alenia Space ETCA Agenda Part 1: Introduction 1. The space environment 2. Overview of Spacecraft

More information

Preliminary Development of an Experimental Lightweight Pulsed Plasma Thruster for Solar Sail Attitude Control

Preliminary Development of an Experimental Lightweight Pulsed Plasma Thruster for Solar Sail Attitude Control Preliminary Development of an Experimental Lightweight Pulsed Plasma Thruster for Solar Sail Attitude Control Kevin Pryor, Bong Wie, and Pavlos Mikellides Arizona State University 18 th Annual AIAA/USU

More information

An Agile Multi-Use Nano Star Camera for Constellation Applications

An Agile Multi-Use Nano Star Camera for Constellation Applications An Agile Multi-Use Nano Star Camera for Constellation Applications Scott Palo 1,2, George Stafford 2 and Alan Hoskins 1 1 University of Colorado 2 Blue Canyon Technologies Partnership The BCT technical

More information

The E-SAIL programme. 10th IAA Symposium on Small Satellites for Earth Observation April 20-24, 2015 Berlin LuxSpace s.à.r.

The E-SAIL programme. 10th IAA Symposium on Small Satellites for Earth Observation April 20-24, 2015 Berlin LuxSpace s.à.r. The E-SAIL programme 10th IAA Symposium on Small Satellites for Earth Observation April 20-24, 2015 Berlin LuxSpace s.à.r.l An OHB company Contents LuxSpace Background Consortium Spacecraft Specific issues

More information

MAE 5595: Space Environments and Spacecraft Interactions. Lesson 4: Introduction

MAE 5595: Space Environments and Spacecraft Interactions. Lesson 4: Introduction MAE 5595: Space Environments and Spacecraft Interactions Lesson 4: Introduction Ambient Environment Neutral Environment Low pressure environment (150km ~ 3x10-9 atm) Ambient neutral gas (LEO atomic oxygen)

More information

SDR Forum Technical Conference 2007

SDR Forum Technical Conference 2007 RADIATION EFFECTS ON ADVANCED MICROELECTRONICS FROM THE SPACE AND NUCLEAR WEAPON GENERATED RADIATION ENVIRONMENTS AND THEIR IMPACT ON SOFTWARE DEFINED RADIO (SDR) DESIGN J.J. Sheehy (Amtec Corporation,

More information

BINARY ASTEROID ORBIT MODIFICATION

BINARY ASTEROID ORBIT MODIFICATION 2013 IAA PLANETARY DEFENSE CONFERENCE BEAST BINARY ASTEROID ORBIT MODIFICATION Property of GMV All rights reserved TABLE OF CONTENTS 1. Mission Concept 2. Asteroid Selection 3. Physical Principles 4. Space

More information

Cross-Scale: multi-scale coupling in space plasmas

Cross-Scale: multi-scale coupling in space plasmas Cross-Scale: multi-scale coupling in space plasmas Steve Schwartz on behalf of the international Cross-Scale community (www.cross-scale.org) including 372 scientists from 23 Countries X supported by Masaki

More information

CHAPTER 3 PERFORMANCE

CHAPTER 3 PERFORMANCE PERFORMANCE 3.1 Introduction The LM-3A performance figures given in this chapter are based on the following assumptions: Launching from XSLC (Xichang Satellite Launch Center, Sichuan Province, China),

More information

Attitude Determination and Control System Design for STU-2A Cubesat and In-Orbit Results

Attitude Determination and Control System Design for STU-2A Cubesat and In-Orbit Results 13 th Annual Summer CubeSat Developer s Workshop August 6-7, 2016, Logan, Utah Attitude Determination and Control System Design for STU-2A Cubesat and In-Orbit Results Presented by Shufan Wu Guowen Sun,

More information

The Silicon-Tungsten Tracker of the DAMPE Mission

The Silicon-Tungsten Tracker of the DAMPE Mission The Silicon-Tungsten Tracker of the DAMPE Mission Philipp Azzarello, DPNC, University of Geneva for the DAMPE-STK collaboration 10th International Hiroshima Symposium on the Development and Application

More information

Integrity Applications Inc.

Integrity Applications Inc. Integrity Applications Inc. Presidential Policy Directive National Space Policy, 2010 Improve, develop, and demonstrate, in cooperation with relevant departments and agencies and commercial and foreign

More information

Creating Large Space Platforms From Small Satellites

Creating Large Space Platforms From Small Satellites SSC99-VI-6 Creating Large Space Platforms From Small Satellites Andrew W. Lewin Principal Systems Engineer Orbital Sciences Corporation Dulles, VA 20166 (703) 406-5000 lewin.andy@orbital.com Abstract.

More information

Van Allen Probes Mission and Applications

Van Allen Probes Mission and Applications Van Allen Probes Mission and Applications J. Mazur and P. O Brien The Aerospace Corporation 5 September 2017 2017 The Aerospace Corporation Topics Van Allen Probes Mission Observables from the mission

More information

SIMULATION OF SPACE RADIATION FOR NANOSATELLITES IN EARTH ORBIT *

SIMULATION OF SPACE RADIATION FOR NANOSATELLITES IN EARTH ORBIT * Romanian Reports in Physics, Vol. 64, No. 1, P. 302 307, 2012 SIMULATION OF SPACE RADIATION FOR NANOSATELLITES IN EARTH ORBIT * M.F. TRUȘCULESCU 1,2, O. SIMA 1 1 University of Bucharest, Physics Department,

More information

arxiv:gr-qc/ v1 15 Nov 2004

arxiv:gr-qc/ v1 15 Nov 2004 Mission design for LISA Pathfinder arxiv:gr-qc/0411071v1 15 Nov 2004 M Landgraf, M Hechler, and S Kemble ESA/ESOC, Robert-Bosch-Straße 5, D-64293 Darmstadt, Germany E-mail: Markus.Landgraf@esa.int EADS

More information

Design, Fabrication and Performance of the Silicon Charge Detector for the ISS-CREAM

Design, Fabrication and Performance of the Silicon Charge Detector for the ISS-CREAM Design, Fabrication and Performance of the Silicon Charge Detector for the ISS-CREAM Jik Lee 1 (for the ISS-CREAM Collaboration 2 ) Sungkyunkwan University E-mail: jiklee999@gmail.com The ISS-CREAM experiment

More information

DISTRIBUTION LIST. Others original copies Name amount. Lens Research & Development 1x Uittenhout, J.M.M. 1x DOCUMENT CHANGE RECORD

DISTRIBUTION LIST. Others original copies Name amount. Lens Research & Development 1x Uittenhout, J.M.M. 1x DOCUMENT CHANGE RECORD 2 of 15 DISTRIBUTION LIST Others original copies Name amount Lens Research & Development 1x Uittenhout, J.M.M. 1x DOCUMENT CHANGE RECORD Issue Date Total pages Pages affected Brief description of change

More information

PRELIMINAJ3.:( 6/8/92 SOFTWARE REQUIREMENTS SPECIFICATION FOR THE DSPSE GUIDANCE, NAVIGATION, AND CONTROL CSCI. Prepared by

PRELIMINAJ3.:( 6/8/92 SOFTWARE REQUIREMENTS SPECIFICATION FOR THE DSPSE GUIDANCE, NAVIGATION, AND CONTROL CSCI. Prepared by PRELIMINAJ3.:( SOFTWARE REQUIREMENTS SPECIFICATION FOR THE DSPSE GUIDANCE, NAVIGATION, AND CONTROL CSCI Prepared by Space Applications Corporation 6/8/92.. 1 SCOPE 1.1 IDENTIFICATION 1.2 OVERVIEW This

More information

Space environment (natural and artificial) Realtime solar activity and space environment information for spacecraft operation

Space environment (natural and artificial) Realtime solar activity and space environment information for spacecraft operation ISO 2008 All rights reserved ISO TC 20/SC 14 N873 Date: 2012-07-31 ISO/CDV 16709 ISO TC 20/SC 14/WG 4 Secretariat: Space environment (natural and artificial) Realtime solar activity and space environment

More information

DISC Experiment Overview and On-Orbit Performance Results

DISC Experiment Overview and On-Orbit Performance Results DISC Experiment Overview and On-Orbit Performance Results SSC12-XI-7 Andrew Nicholas, Ted Finne, Ivan Galysh, Ed Kline Naval Research Laboratory 4555 Overlook Ave., Washington, DC 20375; 202-767-2441 andrew.nicholas@nrl.navy.mil

More information

SREM: 8 years experience of radiation monitoring with a standard instrument

SREM: 8 years experience of radiation monitoring with a standard instrument SREM: 8 years experience of radiation monitoring with a standard instrument H.D.R. Evans 1, E.J. Daly 1, P. Nieminen 1, W. Hajdas 2, A. Mohammadzadeh 1, D. Rodgers 1 1 ESA/ESTEC, The Netherlands, 2 PSI,

More information

Reduction of Trapped Energetic Particle Fluxes in Earth and Jupiter Radiation Belts

Reduction of Trapped Energetic Particle Fluxes in Earth and Jupiter Radiation Belts Reduction of Trapped Energetic Particle Fluxes in Earth and Jupiter Radiation Belts Robert Hoyt, Michelle Cash Tethers Unlimited, Inc. 11711 N. Creek Pkwy S., Suite D-113, Bothell, WA 98011 (425) 486-0100

More information

CHAPTER 3 PERFORMANCE

CHAPTER 3 PERFORMANCE PERFORMANCE 3.1 Introduction The LM-3B performance figures given in this chapter are based on the following assumptions: Launching from XSLC (Xichang Satellite Launch Center, Sichuan Province, China),

More information

GOES-R Instrument Status and Accommodations. Barbara Pfarr GOES-R Program Systems Engineering January 2010 AMS Conference

GOES-R Instrument Status and Accommodations. Barbara Pfarr GOES-R Program Systems Engineering January 2010 AMS Conference GOES-R Instrument Status and Accommodations Barbara Pfarr GOES-R Program Systems Engineering January 2010 AMS Conference Agenda Instrument Developmental Status Significant Changes in the Last Year Introducing

More information

JUICE/Laplace Mission Summary & Status

JUICE/Laplace Mission Summary & Status JUICE/Laplace Mission Summary & Status C. Erd JUICE Instrument WS, Darmstadt 9/11/2011 Activities during the Reformulation Phase 1. Feasible JGO s/c as a starting point a. no re-design of s/c necessary

More information

ESA Radiation, Charging, Meteoroid and Debris Monitors

ESA Radiation, Charging, Meteoroid and Debris Monitors ESA Radiation, Charging, Meteoroid and Debris Monitors G. Drolshagen (TOS-EMA) A. Ciccolella (TOS-EEE) A. Mohammadzadeh (TOS-QCA) D. Raboso (TOS-ETL) P. Nieminen (TOS-EMA) 7 December 2001 SW Final Presentation,

More information

FORCE LIMITED VIBRATION TESTING OF CASSINI SPACECRAFT COSMIC DUST ANALYSER

FORCE LIMITED VIBRATION TESTING OF CASSINI SPACECRAFT COSMIC DUST ANALYSER FORCE LIMITED VIBRATION TESTING OF CASSINI SPACECRAFT COSMIC DUST ANALYSER Heiko Jahn*, Swen Ritzmann*, Kurng Chang**, Terry Scharton** * German Aerospace Research Establishment, Institute for Space Sensor

More information

The importance of solar wind magnetic. the upcoming Sunjammer solar sail. field observations & mission

The importance of solar wind magnetic. the upcoming Sunjammer solar sail. field observations & mission The importance of solar wind magnetic field observations & the upcoming Sunjammer solar sail mission J. P. Eastwood The Blackett Laboratory, Imperial College London, London SW7 2AZ, UK 13 November 2013

More information

SAMPLE CANISTER CAPTURE MECHANISM FOR MSR: CONCEPT DESIGN AND TESTING RESULTS INCLUDING 0-G ENVIRONMENT

SAMPLE CANISTER CAPTURE MECHANISM FOR MSR: CONCEPT DESIGN AND TESTING RESULTS INCLUDING 0-G ENVIRONMENT SAMPLE CANISTER CAPTURE MECHANISM FOR MSR: CONCEPT DESIGN AND TESTING RESULTS INCLUDING 0-G ENVIRONMENT Authors: Riccardo Carta, Daniele Filippetto, Politecnico di Milano Co-authors: Prof. Michèle Lavagna,

More information

Improving Space Surveillance with Space-Based Visible Sensor

Improving Space Surveillance with Space-Based Visible Sensor Improving Space Surveillance with Space-Based Visible Sensor Jayant Sharma, Andrew Wiseman, and George Zollinger MIT Lincoln Laboratory Abstract The Midcourse Space Experiment satellite was launched in

More information

The European Student Moon Orbiter (ESMO) A Small Mission for Education, Outreach, and Science

The European Student Moon Orbiter (ESMO) A Small Mission for Education, Outreach, and Science (ESMO) A Small Mission for Education, Outreach, and Science Roger Walker, Matthew Cross Education Projects Unit, ESA Education Office ESTEC, Noordwijk, The Netherlands LEAG-ILEWG-SRR Meeting Cape Canaveral,

More information

ASTOS for Low Thrust Mission Analysis

ASTOS for Low Thrust Mission Analysis ASTOS for Low Thrust Mission Analysis 3rd Astrodynamics Workshop, Oct. 26, ESTEC Overview Low Thrust Trajectory Computation Description of the Optimal Control Problem Trajectory Optimization and Mission

More information

The Engineering of LISA Pathfinder the quietest Laboratory ever flown in Space

The Engineering of LISA Pathfinder the quietest Laboratory ever flown in Space Journal of Physics: Conference Series PAPER OPEN ACCESS The Engineering of LISA Pathfinder the quietest Laboratory ever flown in Space To cite this article: Christian Trenkel et al 2017 J. Phys.: Conf.

More information

Lunar Satellite Attitude Determination System

Lunar Satellite Attitude Determination System Lunar Satellite Attitude Determination System SENIOR DESIGN PROPOSAL PRESENTATION TEAM EPOCH KUPOLUYI, TOLULOPE (LEAD DEVELOPER) SONOIKI, OLUWAYEMISI (LEAD RESEARCHER) WARREN, DANAH (PROJECT MANAGER) NOVEMBER

More information

Concordia University Department of Electrical and Computer Engineering Fundamentals of Control Systems (ELEC372) S. Hashtrudi Zad

Concordia University Department of Electrical and Computer Engineering Fundamentals of Control Systems (ELEC372) S. Hashtrudi Zad Concordia University Department of Electrical and Computer Engineering Fundamentals of Control Systems (ELEC372) S. Hashtrudi Zad Project: Analysis of the Performance of a Satellite Pitch Control System

More information

Estec final presentation days 2018

Estec final presentation days 2018 Estec final presentation days 2018 Background VESPER Facility Conclusion & Outlook Jovian environment Radiation Effects VESPER history VESPER status Overview Experimental Results External Campaign Summary

More information

A Concept of Nanosatellite Small Fleet for Earth Observation

A Concept of Nanosatellite Small Fleet for Earth Observation A Concept of Nanosatellite Small Fleet for Earth Observation Prof. Janusz Narkiewicz jnark@meil.pw.edu.pl Sebastian Topczewski stopczewski@meil.pw.edu.pl Mateusz Sochacki msochacki@meil.pw.edu.pl 10-11

More information

THE AUTONOMOUS ASTEROID MAPPING MISSION BERING.

THE AUTONOMOUS ASTEROID MAPPING MISSION BERING. 1 THE AUTONOMOUS ASTEROID MAPPING MISSION BERING A. C. Andersen 1, R. Michelsen 2, H. Haack 3, J. L. Jørgensen 4, M Betto 4, and P S. Jørgensen 4 1 NORDITA, Blegdamsvej 17, 2100 Copenhagen, Denmark, E-mail:

More information

NASA Future Magnetospheric Missions. J. Slavin & T. Moore Laboratory for Solar & Space Physics NASA GSFC

NASA Future Magnetospheric Missions. J. Slavin & T. Moore Laboratory for Solar & Space Physics NASA GSFC NASA Future Magnetospheric Missions J. Slavin & T. Moore Laboratory for Solar & Space Physics NASA GSFC Future Magnetospheric Missions Strategic Missions Radiation Belt Storm Probes (LWS/2011) Magnetospheric

More information

Multiple Thruster Propulsion Systems Integration Study. Rusakol, A.V..Kocherpin A.V..Semenkm A.V.. Tverdokhlebov S.O. Garkusha V.I.

Multiple Thruster Propulsion Systems Integration Study. Rusakol, A.V..Kocherpin A.V..Semenkm A.V.. Tverdokhlebov S.O. Garkusha V.I. IEPC-97-130 826 Multiple Thruster Propulsion Systems Integration Study Rusakol, A.V..Kocherpin A.V..Semenkm A.V.. Tverdokhlebov S.O. Garkusha V.I. Central Research Institute of Machine Building (TsNIIMASH)

More information

OSTST, October 2014

OSTST, October 2014 OSTST, 19-23 October 2014 Update of the South-Atlantic Anomaly corrective model for JASON-1 DORIS data using the maps of energetic particles from the CARMEN dosimeter onboard JASON-2 H. Capdeville (1),

More information

Gamma-ray Large Area Space Telescope (GLAST) Science Instrument - Spacecraft Interface Requirements Document

Gamma-ray Large Area Space Telescope (GLAST) Science Instrument - Spacecraft Interface Requirements Document Gamma-ray Large Area Space Telescope (GLAST) Science Instrument - Spacecraft Interface Requirements Document August 3, 1999 Revision History Version Description Date 0.1 Initial draft released with draft

More information

Science planning and operations for Mars Express

Science planning and operations for Mars Express Science planning and operations for Mars Express René Pischel and Tanja Zegers ESA/ESTEC, Research and Scientific Support Department, Postbus 299, 2200 AG Noordwijk, The Netherlands I. Introduction The

More information

ICARE instruments and data sets

ICARE instruments and data sets ICARE instruments and data sets Robert ECOFFET, CNES They made it possible Michel LABRUNEE, Sébastien BARDE, Françoise BEZERRA, Guy ROLLAND, Eric LORFEVRE, CNES Daniel BOSCHER, Sébastien BOURDARIE, ONERA

More information

Lunar Flashlight Project

Lunar Flashlight Project ABSTRACT Recent observations of the Moon with the Moon Mineralogy Mapper (M3), Lunar Crater Observation and Sensing Satellite (LCROSS), the Lunar Reconnaissance Orbiter (LRO) and other evidence suggest

More information

Tracker Tower 01 Prototype Test & Analysis Overview

Tracker Tower 01 Prototype Test & Analysis Overview Tracker Tower 01 Prototype Test & Analysis Overview Erik Swensen June 19, 2002 HPS-102070-0002 Test Background Design Philosophy: Tracker Tower 01 Prototype was used as an engineering evaluation model

More information

Small Satellite Laser Comm Pointing

Small Satellite Laser Comm Pointing Small Satellite Laser Comm Pointing Darren Rowen July 11, 2016 2016 The Aerospace Corporation Agenda Optical Ground Station Tracking Demo of Cubesat Laser OCSD-B/C Design & Configuration OCSD-A Star Tracker

More information