Onboard Maneuver Planning for the Autonomous Vision Approach Navigation and Target Identification (AVANTI) experiment within the DLR FireBird mission

Size: px
Start display at page:

Download "Onboard Maneuver Planning for the Autonomous Vision Approach Navigation and Target Identification (AVANTI) experiment within the DLR FireBird mission"

Transcription

1 Onboard Maneuver Planning for the Autonomous Vision Approach Navigation and Target Identification (AVANTI) experiment within the DLR FireBird mission G. Gaias, DLR/GSOC/Space Flight Technology Department Workshop on Advances in Space Rendezvous Guidance Slide1

2 Contents Overview of the AVANTI experiment Overall Concept of the MAneuver Planner (MAP) The Guidance Problem The Computation of the Maneuvers Example of a Rendezvous Conclusions and Current Development Status Slide 2

3 Contents Overview of the AVANTI experiment Overall Concept of the MAneuver Planner (MAP) The Guidance Problem The Computation of the Maneuvers Example of a Rendezvous Conclusions and Current Development Status Slide 3

4 The FireBird Mission DLR Scientific Mission, based on BIRD-TET s/c bus Expected launch: late 2014/early 2015 Orbit: Sun-synchronous, altitude km Primary Objective: Earth observation, fire detection (infrared camera) Secondary Objectives: several scientific experiments Autonomous Vision Approach Navigation and Target Identification (AVANTI) demonstration of autonomous rendezvous to (and departure from) non-cooperative client using vision-based navigation 1 month of experiment campaign after in-orbit injection of a Picosat Slide 4

5 AVANTI motivations AVANTI is motivated by the following needs approach, identify, rendezvous with a non-cooperative, passive client from large distances (e.g., > 10 km) in an autonomous, fuel efficient, safe manner Angles-only navigation is an attractive solution low cost sensors (e.g., optical, infrared) star trackers often onboard (e.g., Biros!) simplicity, robustness, wide range but maneuvers are needed to reconstruct the relative state linearized-unperturbed relative motion unobservable without maneuvers Slide 5

6 AVANTI key functionalities Key functions to be proven handover from ground-operations to autonomous vision-based navigation & control onboard processing of camera images and target identification real-time relative navigation based on Line-Of-Sight (LOS) info autonomous maneuver planning to accomplish a rendezvous (RdV) Key performance to be proven LOS residuals below 40 arcsecs (half camera pixel size) relative orbit determination accuracy at 10% of range to client safe rendezvous operations between ±10 km and ±100 m Slide 6

7 Background August 2011, PRISMA - handover to OHB: Formation Re-Acquisition ground-in-the-loop, TLE + prototype of angles-only relative navigation filter April 2012, PRISMA - extended mission phase: ARGON Advanced Rendezvous Demonstration using GPS and Optical Navigation ground-in-the-loop, image processing, angles-only relative navigation man-in-the-loop, maneuver planning AVANTI new challenges onboard processing of camera images and identification of Picosat real-time relative navigation of Biros w.r.t. Picosat based on LOS info autonomous maneuver planning Slide 7

8 Contents Overview of the AVANTI experiment Overall Concept of the MAneuver Planner (MAP) The Guidance Problem The Computation of the Maneuvers Example of a Rendezvous Conclusions and Current Development Status Slide 8

9 MAP objectives Generation of the open-loop, impulsive maneuvers profile to accomplish a rendezvous (RdV) Operational conditions delta-v budget: fuel efficiency safety: safe approach during RdV system requirements: time constraints to cope with communication/power/thermal pointing requirements thrusters alignment Autonomy simplicity, preference to closed-form solutions Slide 9

10 Overall Concept - 1 Relative Orbital Elements (ROE) as state variables δα = {δa, δλ, δe x, δe y, δi x, δi y} T P = aδα description of each possible configuration δα = δa δλ δe x δe y δi x δi y = δa δλ δe cos ϕ δe sin ϕ δi cos θ δi sin θ = (a a d )/a d u u d + (Ω Ω d ) cos i d e cos ω e d cos ω d e sin ω e d sin ω d i i d (Ω Ω d ) sin i d a, e, i, Ω, and M: Keplerian elements u mean argument of latitude d servicer satellite Slide 10

11 ROE meaning and dynamics Radial a e a a Linearized motion + disturbances ( ) ( ) δȧ δȧ = Φ(t t δα 0) δα t t 0 Cross-Track a 2a e Along-Track a i t ν 2 t2 ν t µ t ϕ t ϕ t λ t 1 Along-Track differential drag mean J 2 Slide 11

12 Overall Concept - 2 ROE as state variables Layered approach RdV defined as P 0 P F through intermediate P i i-th times: solution of the scheduling problem in compliance with time constraints P i at i-th times computed to optimize a criterion MAP operatives modes: set a criterion, evaluation of the relevance of some operational conditions computation of the maneuvers to establish the P i Slide 12

13 Architecture Input: y 0, (P,t) 0, (P,t) F, Mode Time constraints Forbidden time intervals Minimum time to first maneuver Minimum time spacing between maneuvers Guidance (Scheduling, Planning, Safety) P 0 P 1 P 2 P F time Control (Maneuvers placement) t 0,2 t 2 maneuvers time Maneuvers profile Slide 13

14 Contents Overview of the AVANTI experiment Overall Concept of the MAneuver Planner (MAP) The Guidance Problem The Computation of the Maneuvers Example of a Rendezvous Conclusions and Current Development Status Slide 14

15 ROE sets planning: problem statement - 1 Evolution of the motion through Φ( t), effect of the maneuvers at t i: discontinuities in ROE P 1 = Φ 1,0 P 0 + a( δα) 1 P 2 = Φ 2,1 P 1 + a( δα) 2 End-conditions: achievement of P F at t F Φδ F,1 Φ δ F,m 1 Φ δ F,m Φ δ F,1 Φ δ F,m 1 Φ δ F,m }{{}}{{} first column last column b 0 = P F Φ F,0 P 0 x 1,1 x 1,m. x p,1 x p,m = b 0 (x 1,, x p) ( δȧ,a δa,a δλ,a δi x, a δi y) or (a δe x, a δe y) Slide 15

16 ROE sets planning: problem statement - 2 Functional cost, convex form of the ROE jumps over m steps: J plan = m i=1 ( δα)t i ( δα) i ROE variations not due to the natural dynamics describes delta-v cost (Gauss variational equations in ROE) Optimality conditions to minimize J plan reduce to a linear system in ROE due to: structure of Φ( t) property: Φ(t j, t i) Φ(t i, t k ) = Φ(t j, t k ) approximation in the relative eccentricity sub-problem (neglected terms of ϕ 2 t 2 and ϕ 3 t 3 after the 3rd jump) Slide 16

17 ROE sets planning: problem solution Optimal solution: m 1 opt. jumps ( δα) opt = M 1 b M and b function of (t i, ν, µ, λ) and (t i, ϕ) m end-cond. P F = Φ F,0 P 0 + Φ F,1 a( δα) opt Φ F,m a( δα) m Generalization of a geometrical approach stepwise reconfiguration, disturbances compensation Suitable for automatic implementation Slide 17

18 Supported Operative Modes Modes Motivations Applicability minimum delta-v absolute min cost small reconfigurations direct P 0 P F accurate P 0 4 maneuvers maximum observability user defined t i P i (4) i maneuvers intensify maneuvers activity spread burns over horizon maneuver execution errors large reconfigurations uncertainty on P 0 Synergies criterion: minimum delta-v Slide 18

19 Contents Overview of the AVANTI experiment Overall Concept of the MAneuver Planner (MAP) The Guidance Problem The Computation of the Maneuvers Example of a Rendezvous Conclusions and Current Development Status Slide 19

20 Local control: problem statement - 1 Establishment of a (intermediate) reconfiguration P 0,i P i over a finite control window [u 0,i u F,i ] fixed time, fixed end-conditions problem Total ROE jump pre-corrected by disturbances effects over the window locally maneuvers computed with Φ of Kepler motion General framework for the p-pulses formulation: δv 1 ( ) ΦF,1 B 1 ΦF,p B p. δv p = n(p i Φ i F,0 P 0,i) = n δ α i Slide 20

21 Local control: problem solution - 1 Choice of δλ instead of δu and structure of control input matrix B: where δα = B(u M )δv out-of-plane and in-plane motions are decoupled Out-of-plane solution, deterministic: ( ) δĩy u oop = arctan δv n = na δĩ δĩ x two options per orbit In-plane solution, underdetermined: minimum 2 impulses required 6 unknowns in 4 equations Slide 21

22 In-plane reconfiguration: possible maneuvers schemes Reconfiguration: 0 F, u0, uf in-plane Enforcement of all End-conditions out-of-plane 000uoop, voop000 2-RT, 3-T, 3-T 000uip, vip000 generality a a a 2-RT, 3-T, 3-T 2-RT, 3-T, 3-T 2-RT, 3-T, 3-T 2-T 2-R 2-T Planning drivers: Thrusters duty cycle (# pulses) Attitude constraints (type of pulses) a 2-RT, 3-T, 3-T 2-RT, 2-T No-Type analytical No-Type numerical Safety & Visibility (ROE predictability) Determinism (computation of ui) Delta-v cost Slide 22

23 Local control: problem solution - 2 AVANTI design drivers for the choice of the in-plane scheme: autonomy, predictability maneuvers spacing constraints communication pointing constraints minimum delta-v 3-T analytical Maneuvers are located in: ( ( ) ) δẽy ū = mod arctan, π δẽ x u ipj = ū + k jπ, j = k 1 < k 2 < k 3 Multiple (finite number) feasible solutions: one selected according to 1. preference to minor delta-v cost 2. preference to wider spacing between burns Slide 23

24 Contents Overview of the AVANTI experiment Overall Concept of the MAneuver Planner (MAP) The Guidance Problem The Computation of the Maneuvers Example of a Rendezvous Conclusions and Current Development Status Slide 24

25 Safety concept: ROE movement due to local control Out-of-plane control In-plane control optimal / sub-optimal Slide 25

26 Safety concept: ROE movement due guidance passive safety related to φ = ϕ θ keep (anti) parallel δe/δi during RdV guidance to minimize the total ROE P i distribute along the direction of ROE total variation Slide 26

27 Example of a Rendezvous Scenario 500 km high, inclination 98 deg B target: 0.01 m 2 /kg B/B: 2% normal [m] along track [m] radial [m] 400 Input to MAP P 0 = [5, 10000, 50, 250, 30, 200] m P F = [0, 3000, 0, 100, 0, 100] m t F : 18 orbits after t 0 time constraints mode: max-observability delta v, δv t δv n [m/s] Normalized δe/δi plane Total delta v: [m/s] Slide time [orbital periods]

28 Example of a Rendezvous - 2 Relative eccentricity and inclination vectors Drift and mean relative longitude over time aδe y aδi y [m] start target aδe aδi [m] x x aδλ [m] aδa [m] time [orbital periods] time [orbital periods] Slide 28

29 Contents Overview of the AVANTI experiment Overall Concept of the MAneuver Planner (MAP) The Guidance Problem The Computation of the Maneuvers Example of a Rendezvous Conclusions and Current Development Status Slide 29

30 Conclusions and current development status Impulsive MAaneuvers Planner for formation reconfigurations and rendezvous for the AVANTI experiment (DLR/FireBird mission) experiment operational conditions (onboard functioning, space segment requirements,...) design concept (simplicity and determinism) provided an example of the MAP output Current work flight software implementation performance assessment in realistic simulation environment Future work design of the AVANTI experiment campaign Slide 30

31 ROE parameterization and safety concept D Amico, S., Autonomous Formation Flying in Low Earth Orbit, Ph.D. Dissertation, Technical University of Delft, The Netherlands, D Amico, S., and Montenbruck, O., Proximity Operations of Formation Flying Spacecraft using an Eccentricity/Inclination Vector Separation, Journal of Guidance, Control, and Dynamics, Vol. 29, No. 3, 2006, pp ARGON development and flight results Gaias, G., D Amico, S., Ardaens, J. -S., Angles-only Navigation to a Noncooperative Satellite Using Relative Orbital Elements, Journal of Guidance, Control, and Dynamics (accepted for publication). D Amico, S., Ardaens, J. -S., Gaias, G., Benninghoff, H., Schlepp, B, and Jørgensen, J. L., Noncooperative Rendezvous Using Angles-only Optical Navigation: System Design and Flight Results, Journal of Guidance, Control, and Dynamics, accessed September 13, doi: / MAP development Gaias, G., D Amico, S., Ardaens, J. -S., Generalized Multi-Impulsive Maneuvers for Optimum Spacecraft Rendezvous, International Conference on Spacecraft Formation Flying Missions & Technologies (SFFMT), Munich, Germany, Slide 31

32 Onboard Maneuver Planning for the AVANTI experiment within the DLR FireBird mission AVANTI experiment Guidance Solution Example MAP Concept Control Solution Conclusions

GENERALIZED MULTI-IMPULSIVE MANEUVERS FOR OPTIMUM SPACECRAFT RENDEZVOUS

GENERALIZED MULTI-IMPULSIVE MANEUVERS FOR OPTIMUM SPACECRAFT RENDEZVOUS GENERALIZED MULTI-IMPULSIVE MANEUVERS FOR OPTIMUM SPACECRAFT RENDEZVOUS G. Gaias (1), S. D Amico (2), and J.-S. Ardaens (3) (1)(2)(3) German Aerospace Center (DLR), Münchner Str. 20, 82234 Wessling, Germany,

More information

Relative Orbital Elements: Theory and Applications

Relative Orbital Elements: Theory and Applications aa.stanford.edu stanford.edu Relative Orbital Elements: Theory and Applications Simone D Amico, PhD Assist. Prof. of Aeronautics and Astronautics Director, Space Rendezvous Laboratory (SLAB) Slide 1 Table

More information

Generalised multi-impulsive manoeuvres for optimum spacecraft rendezvous in near-circular orbit

Generalised multi-impulsive manoeuvres for optimum spacecraft rendezvous in near-circular orbit 68 Int. J. Space Science and Engineering, Vol. 3, No. 1, 2015 Generalised multi-impulsive manoeuvres for optimum spacecraft rendezvous in near-circular orbit Gabriella Gaias* GSOC/Space Flight Technology

More information

Semi-Analytical Framework for Precise Relative Motion in Low Earth Orbits

Semi-Analytical Framework for Precise Relative Motion in Low Earth Orbits Semi-Analytical Framework for Precise Relative Motion in Low Earth Orbits G. Gaias, C. Colombo 7th ICATT 6-9 Nov 218 DLR Oberpfaffenhofen, Germany Foreword Formation Flying applications, multi-satellite

More information

SAFE RELEASE OF A PICOSATELLITE FROM A SMALL SATELLITE CARRIER IN LOW EARTH ORBIT

SAFE RELEASE OF A PICOSATELLITE FROM A SMALL SATELLITE CARRIER IN LOW EARTH ORBIT AAS 14-414 SAFE RELEASE OF A PICOSATELLITE FROM A SMALL SATELLITE CARRIER IN LOW EARTH ORBIT Martin Wermuth, Gabriella Gaias, and Simone D Amico The BIROS satellite, which is scheduled for launch in 215

More information

OPERATIONAL CONCEPT OF A PICOSATELLITE RELEASE FROM A LEO SATELLITE Martin Wermuth (1), and Gabriella Gaias (2)

OPERATIONAL CONCEPT OF A PICOSATELLITE RELEASE FROM A LEO SATELLITE Martin Wermuth (1), and Gabriella Gaias (2) OPERATIONAL CONCEPT OF A PICOSATELLITE RELEASE FROM A LEO SATELLITE Martin Wermuth (1), and Gabriella Gaias (2) (1)(2) German Space Operations Center (GSOC/DLR), Oberpfaffenhofen, 82234 Wessling, Germany,

More information

Angles-only Navigation to a Non-Cooperative Satellite using Relative Orbital Elements

Angles-only Navigation to a Non-Cooperative Satellite using Relative Orbital Elements Angles-only Navigation to a Non-Cooperative Satellite using Relative Orbital Elements G. Gaias, S. D Amico, and J.-S. Ardaens German Aerospace Center DLR), Münchner Str. 2, 82234 Wessling, Germany This

More information

Autonomous Vision Based Detection of Non-stellar Objects Flying in formation with Camera Point of View

Autonomous Vision Based Detection of Non-stellar Objects Flying in formation with Camera Point of View Autonomous Vision Based Detection of Non-stellar Objects Flying in formation with Camera Point of View SFFMT 213 München May 31 st 213 Mathias Benn, As.Prof, PhD John L. Jørgensen, Prof. DTU Space Overview

More information

Analysis of Relative Motion of Collocated Geostationary Satellites with Geometric Constraints

Analysis of Relative Motion of Collocated Geostationary Satellites with Geometric Constraints Analysis of Relative Motion of Collocated Geostationary Satellites with Geometric Constraints F.J. de Bruijn, E. Gill Abstract This paper investigates the design of the relative motion orbits of geostationary

More information

PAVING THE WAY FOR FUTURE ON-ORBIT SERVICING MISSIONS: THE AVANTI EXPERIMENT

PAVING THE WAY FOR FUTURE ON-ORBIT SERVICING MISSIONS: THE AVANTI EXPERIMENT PAVING THE WAY FOR FUTURE ON-ORBIT SERVICING MISSIONS: THE AVANTI EXPERIMENT G. Gaias (1), J.-S. Ardaens (2), and T. Terzibaschian (3) (1)(2) German Aerospace Center (DLR), German Space Operations Center(GSOC),

More information

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010 Orbit Design Marcelo Suárez Orbit Design Requirements The following Science Requirements provided drivers for Orbit Design: Global Coverage: the entire extent (100%) of the ice-free ocean surface to at

More information

Analysis of Relative Motion of Collocated Geostationary Satellites with Geometric Constraints

Analysis of Relative Motion of Collocated Geostationary Satellites with Geometric Constraints www.dlr.de Chart 1 Analysis of Relative Motion of Collocated Geostationary Satellites with Geometric Constraints SFFMT2013, München F. de Bruijn & E. Gill 31 May 2013 www.dlr.de Chart 2 Presentation Outline

More information

THE AVANTI EXPERIMENT: FLIGHT RESULTS

THE AVANTI EXPERIMENT: FLIGHT RESULTS THE AVANTI EXPERIMENT: FLIGHT RESULTS G. Gaias (1), J.-S. Ardaens (1), C. Schultz (2) (1) German Aerospace Center (DLR), German Space Operations Center, 82234 Wessling, Germany, gabriella.gaias@dlr.de,

More information

SPACECRAFT FORMATION CONTROL USING ANALYTICAL INTEGRATION OF GAUSS VARIATIONAL EQUATIONS. Mohamed Khalil Ben Larbi, Enrico Stoll

SPACECRAFT FORMATION CONTROL USING ANALYTICAL INTEGRATION OF GAUSS VARIATIONAL EQUATIONS. Mohamed Khalil Ben Larbi, Enrico Stoll SPACECRAFT FORMATION CONTROL USING ANALYTICAL INTEGRATION OF GAUSS VARIATIONAL EQUATIONS Mohamed Khalil Ben Larbi, Enrico Stoll Institute of Space Systems Technische Universitaet Braunschweig Hermann-Blenk-Str.

More information

New Closed-Form Solutions for Optimal Impulsive Control of Spacecraft Relative Motion

New Closed-Form Solutions for Optimal Impulsive Control of Spacecraft Relative Motion New Closed-Form Solutions for Optimal Impulsive Control of Spacecraft Relative Motion Michelle Chernick and Simone D Amico Aeronautics and Astronautics, Stanford University, Stanford, California, 94305,

More information

TanDEM-X Autonomous Formation Flying System: Flight Results

TanDEM-X Autonomous Formation Flying System: Flight Results TanDEM-X Autonomous Formation Flying System: Flight Results J.-S. Ardaens*, D. Fischer** * German Space Operations Center (DLR/GSOC), 82234 Wessling, Germany (e-mail: jean-sebastien.ardaens@dlr.de) **

More information

Navigation and Control of the PRISMA formation: In-Orbit Experience

Navigation and Control of the PRISMA formation: In-Orbit Experience Navigation and Control of the PRISMA formation: In-Orbit Experience S. D Amico*, R. Larsson** * German Space Operations Center (DLR/GSOC), 82234 Wessling, Germany (e-mail: simone.damico@dlr.de). ** Swedish

More information

Autonomous Vision Based Detection of Non-stellar Objects Flying in Formation with Camera Point of View

Autonomous Vision Based Detection of Non-stellar Objects Flying in Formation with Camera Point of View Autonomous Vision Based Detection of Non-stellar Objects Flying in Formation with Camera Point of View As.Prof. M. Benn (1), Prof. J. L. Jørgensen () (1) () DTU Space, Elektrovej 37, 4553438, mb@space.dtu.dk,

More information

Satellite Orbital Maneuvers and Transfers. Dr Ugur GUVEN

Satellite Orbital Maneuvers and Transfers. Dr Ugur GUVEN Satellite Orbital Maneuvers and Transfers Dr Ugur GUVEN Orbit Maneuvers At some point during the lifetime of most space vehicles or satellites, we must change one or more of the orbital elements. For example,

More information

RELATIVE NAVIGATION TO NON-COOPERATIVE TARGETS IN LEO: ACHIEVABLE ACCURACY FROM RADAR TRACKING MEASUREMENTS

RELATIVE NAVIGATION TO NON-COOPERATIVE TARGETS IN LEO: ACHIEVABLE ACCURACY FROM RADAR TRACKING MEASUREMENTS RELATIVE NAVIGATION TO NON-COOPERATIVE TARGETS IN LEO: ACHIEVABLE ACCURACY FROM RADAR TRACKING MEASUREMENTS Ralph Kahle (1), Martin Weigel (2), Michael Kirschner, (3) Sofya Spiridonova (4), Erin Kahr (5)

More information

CONSTRAINED LOW-THRUST SATELLITE FORMATION-FLYING USING RELATIVE ORBIT ELEMENTS

CONSTRAINED LOW-THRUST SATELLITE FORMATION-FLYING USING RELATIVE ORBIT ELEMENTS AAS 17-291 CONSTRAINED LOW-THRUST SATELLITE FORMATION-FLYING USING RELATIVE ORBIT ELEMENTS Lukas M. Steindorf *, Simone D Amico, Julian Scharnagl, Florian Kempf, and Klaus Schilling INTRODUCTION This paper

More information

New Worlds Observer Final Report Appendix J. Appendix J: Trajectory Design and Orbit Determination Lead Author: Karen Richon

New Worlds Observer Final Report Appendix J. Appendix J: Trajectory Design and Orbit Determination Lead Author: Karen Richon Appendix J: Trajectory Design and Orbit Determination Lead Author: Karen Richon The two NWO spacecraft will orbit about the libration point created by the Sun and Earth/Moon barycenter at the far side

More information

RELATIVE MISSION ANALYSIS FOR PROBA 3: SAFE ORBITS AND CAM

RELATIVE MISSION ANALYSIS FOR PROBA 3: SAFE ORBITS AND CAM 5TH INTERNATIONAL CONFERENCE ON SPACECRAFT FORMATION FLYING MISSIONS AND TECHNOLOGIES RELATIVE MISSION ANALYSIS FOR PROBA 3: SAFE ORBITS AND CAM Munich, 31 st May 2013 T. V. Peters D. Escorial Presented

More information

Distributed Coordination and Control of Formation Flying Spacecraft

Distributed Coordination and Control of Formation Flying Spacecraft Distributed Coordination and Control of Formation Flying Spacecraft Michael Tillerson, Louis Breger, and Jonathan P. How MIT Department of Aeronautics and Astronautics {mike t, lbreger, jhow}@mit.edu Abstract

More information

End of Life Re-orbiting The Meteosat-5 Experience

End of Life Re-orbiting The Meteosat-5 Experience End of Life Re-orbiting The Meteosat-5 Experience Milan EUMETSAT, Darmstadt, Germany This article illustrates the orbit maneuver sequence performed during Meteosat- 5 End of Life (EOL) re-orbiting operations

More information

FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING

FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING Elias F. Solorzano University of Toronto (Space Flight Laboratory) Toronto, ON (Canada) August 10 th, 2016 30 th AIAA/USU

More information

Guidance, Navigation, and Control for Commercial and Scientific Applications of Formation Flying

Guidance, Navigation, and Control for Commercial and Scientific Applications of Formation Flying SSC18-VIII-6 Guidance, Navigation, and Control for Commercial and Scientific Applications of Formation Flying Nathan J. Cole, Starla R. Talbot University of Toronto Institute for Aerospace Studies Space

More information

COUPLED ORBITAL AND ATTITUDE CONTROL SIMULATION

COUPLED ORBITAL AND ATTITUDE CONTROL SIMULATION COUPLED ORBITAL AND ATTITUDE CONTROL SIMULATION Scott E. Lennox AOE 5984: Advanced Attitude Spacecraft Dynamics and Control December 12, 23 INTRODUCTION In the last few years the space industry has started

More information

PRELIMINAJ3.:( 6/8/92 SOFTWARE REQUIREMENTS SPECIFICATION FOR THE DSPSE GUIDANCE, NAVIGATION, AND CONTROL CSCI. Prepared by

PRELIMINAJ3.:( 6/8/92 SOFTWARE REQUIREMENTS SPECIFICATION FOR THE DSPSE GUIDANCE, NAVIGATION, AND CONTROL CSCI. Prepared by PRELIMINAJ3.:( SOFTWARE REQUIREMENTS SPECIFICATION FOR THE DSPSE GUIDANCE, NAVIGATION, AND CONTROL CSCI Prepared by Space Applications Corporation 6/8/92.. 1 SCOPE 1.1 IDENTIFICATION 1.2 OVERVIEW This

More information

Formation Flying and Rendezvous and Docking Simulator for Exploration Missions (FAMOS-V2)

Formation Flying and Rendezvous and Docking Simulator for Exploration Missions (FAMOS-V2) Formation Flying and Rendezvous and Docking Simulator for Exploration Missions (FAMOS-V2) Galder Bengoa, F. Alonso, D. García, M. Graziano (GMV S.A.) Dr. Guillermo Ortega (ESA/ESTEC) 2nd ESA Workshop on

More information

Previous Lecture. Orbital maneuvers: general framework. Single-impulse maneuver: compatibility conditions

Previous Lecture. Orbital maneuvers: general framework. Single-impulse maneuver: compatibility conditions 2 / 48 Previous Lecture Orbital maneuvers: general framework Single-impulse maneuver: compatibility conditions closed form expression for the impulsive velocity vector magnitude interpretation coplanar

More information

F. Letterio, S. Tonetti, S. Cornara, G. Vicario presented by Mariano Sánchez Nogales

F. Letterio, S. Tonetti, S. Cornara, G. Vicario presented by Mariano Sánchez Nogales DESEO Design Engineering F. Letterio, S. Tonetti, S. Cornara, G. Vicario presented by Mariano Sánchez Nogales DEIMOS Space S.L.U., Spain - 1 - Table of Contents DESEO Overview Toolkit Heritage Software

More information

Hybrid (Ion and Chemical) GEO Stationkeeping Maneuver Planning Software

Hybrid (Ion and Chemical) GEO Stationkeeping Maneuver Planning Software Hybrid (Ion and Chemical) GEO Stationkeeping Maneuver Planning Software J. K. Skipper, D. Racicot, S. Li, R. Provencher and J. Palimaka Telesat Canada, Ottawa, Ontario, Canada. Abstract In the geochronous

More information

GUIDANCE, NAVIGATION, AND CONTROL TECHNIQUES AND TECHNOLOGIES FOR ACTIVE DEBRIS REMOVAL

GUIDANCE, NAVIGATION, AND CONTROL TECHNIQUES AND TECHNOLOGIES FOR ACTIVE DEBRIS REMOVAL GUIDANCE, NAVIGATION, AND CONTROL TECHNIQUES AND TECHNOLOGIES FOR ACTIVE DEBRIS REMOVAL Antonio Rinalducci, Guillermo Ortega Hernando, Sven Erb, Alexander Cropp, Thomas Voirin, Olivier Dubois-Matra, Gianfranco

More information

No End of Push-broom Operations

No End of Push-broom Operations Page 1 of 5 ESA Science & Technology 06-Mar-2006 17:30:17 No. 46 - End of Push-broom Operations 23 Dec 2005 Report for period 21 November to 18 December 2005 Smart-1 push-broom operations have continued

More information

THE PRISMA FORMATION FLYING DEMONSTRATOR: OVERVIEW AND CONCLUSIONS FROM THE NOMINAL MISSION

THE PRISMA FORMATION FLYING DEMONSTRATOR: OVERVIEW AND CONCLUSIONS FROM THE NOMINAL MISSION (Preprint) AAS 12-72 THE PRISMA FORMATION FLYING DEMONSTRATOR: OVERVIEW AND CONCLUSIONS FROM THE NOMINAL MISSION Per Bodin, * Ron Noteborn, * Robin Larsson, * Thomas Karlsson, * Simone D Amico, Jean Sebastien

More information

DARE Mission and Spacecraft Overview

DARE Mission and Spacecraft Overview DARE Mission and Spacecraft Overview October 6, 2010 Lisa Hardaway, PhD Mike Weiss, Scott Mitchell, Susan Borutzki, John Iacometti, Grant Helling The information contained herein is the private property

More information

SSTD = Standard deviation SMA = Semi Major Axis

SSTD = Standard deviation SMA = Semi Major Axis - 1 C - EPC-95-212 NOVEL ORBT RASNG STRATEGY MAKES LOW THRUST COMMERCALLY VABLE. ARNON SPTZER* ABSTRACT A new technique for utilizing low thrust Electric Propulsion System (EPS) for orbit raising has been

More information

The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit

The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit Ryan Tyler, D.J. McComas, Howard Runge, John Scherrer, Mark Tapley 1 IBEX Science Requirements IBEX

More information

The Orbit Control of ERS-1 and ERS-2 for a Very Accurate Tandem Configuration

The Orbit Control of ERS-1 and ERS-2 for a Very Accurate Tandem Configuration The Orbit Control of ERS-1 and ERS-2 for a Very Accurate Tandem Configuration Mats Rosengren European Space Operations Centre Robert Bosch Str 5 D64293 Darmstadt Germany Email: mrosengr@esoc.esa.de Abstract

More information

NAVIGATION & MISSION DESIGN BRANCH

NAVIGATION & MISSION DESIGN BRANCH c o d e 5 9 5 National Aeronautics and Space Administration Michael Mesarch Michael.A.Mesarch@nasa.gov NAVIGATION & MISSION DESIGN BRANCH www.nasa.gov Outline Orbital Elements Orbital Precession Differential

More information

ADVANCED NAVIGATION STRATEGIES FOR AN ASTEROID SAMPLE RETURN MISSION

ADVANCED NAVIGATION STRATEGIES FOR AN ASTEROID SAMPLE RETURN MISSION AAS 11-499 ADVANCED NAVIGATION STRATEGIES FOR AN ASTEROID SAMPLE RETURN MISSION J. Bauman,* K. Getzandanner, B. Williams,* K. Williams* The proximity operations phases of a sample return mission to an

More information

Figure 1. View of ALSAT-2A spacecraft

Figure 1. View of ALSAT-2A spacecraft ALSAT-2A TRANSFER AND FIRST YEAR OPERATIONS M. Kameche (1), A.H. Gicquel (2), D. Joalland (3) (1) CTS/ASAL, 1 Avenue de la Palestine, BP 13, Arzew 31200 Oran, Algérie, email:mo_kameche@netcourrier.com

More information

Previous Lecture. The Von Zeipel Method. Application 1: The Brouwer model. Application 2: The Cid-Lahulla model. Simplified Brouwer transformation.

Previous Lecture. The Von Zeipel Method. Application 1: The Brouwer model. Application 2: The Cid-Lahulla model. Simplified Brouwer transformation. 2 / 36 Previous Lecture The Von Zeipel Method. Application 1: The Brouwer model. Application 2: The Cid-Lahulla model. Simplified Brouwer transformation. Review of Analytic Models 3 / 36 4 / 36 Review:

More information

FORMATION FLYING FOR ALONG-TRACK INTERFEROMETRIC OCEANOGRAPHY FIRST IN-FLIGHT DEMONSTRATION WITH TANDEM-X Ralph Kahle (1), Hartmut Runge (2), Jean-Sebastien Ardaens (1), Steffen Suchandt (2), and Roland

More information

The TerraSAR-X / TanDEM-X Formation Flight: Challenges to Flight Dynamics and First Results. Wessling, Germany,

The TerraSAR-X / TanDEM-X Formation Flight: Challenges to Flight Dynamics and First Results. Wessling, Germany, The TerraSAR-X / TanDEM-X Formation Flight: Challenges to Flight Dynamics and First Results R. Kahle 1, M. Wermuth 1, B. Schlepp 1, S. Aida 1 1 German Aerospace Center / German Space Operations Center

More information

483 Lecture. Space Mission Requirements. February11, Definition Examples Dos/ Don ts Traceability

483 Lecture. Space Mission Requirements. February11, Definition Examples Dos/ Don ts Traceability 483 Lecture Space Mission February11, 2012 Photo Credit:: http://www.spacewallpapers.info/cool-space-wallpaper What s a Requirement? ification? Requirement A concept independent statement of a mix of needs,

More information

The post launch assessment review confirmed the following previous assertions about the mission status:

The post launch assessment review confirmed the following previous assertions about the mission status: 1 GRACE Newsletter No. 2 August 15, 2003 Topics: http://www.csr.utexas/grace/ http://www.gfz-potsdam.de/grace 1. Editorial 2. Major events in Mission Operations since last Newsletter 3. Current status

More information

Current Status of Hayabusa2. Makoto Yoshikawa, Yuichi Tsuda, Hayabusa2 Project Japan Aerospace Exploration Agency

Current Status of Hayabusa2. Makoto Yoshikawa, Yuichi Tsuda, Hayabusa2 Project Japan Aerospace Exploration Agency Current Status of Hayabusa2 Makoto Yoshikawa, Yuichi Tsuda, Hayabusa2 Project Japan Aerospace Exploration Agency Small Body Assessment Group 19th Meeting, June 14, 2018 Outline of mission flow Launch December

More information

HERA MISSION & CM16 lessons learned

HERA MISSION & CM16 lessons learned HERA MISSION HERA MISSION & CM16 lessons learned (CM16) Schedule criticality for 2020 launch Prepare Asteroid mission with launch opportunities in 2023 (with back-up in 2024 and 2025) (CM16) Payload selection

More information

Conjunction Risk Assessment and Avoidance Maneuver Planning Tools

Conjunction Risk Assessment and Avoidance Maneuver Planning Tools Conjunction Risk Assessment and Avoidance Maneuver Planning Tools Saika Aida DLR German Space Operations Center (GSOC), Oberpfaffenhofen, 834 Weßling, Germany +49 8153 8-158, saika.aida@dlr.de ASTRACT

More information

SOLVING THE INTERNATIONAL SPACE STATION (ISS) MOTION CONTROL LONG-TERM PLANNING PROBLEM

SOLVING THE INTERNATIONAL SPACE STATION (ISS) MOTION CONTROL LONG-TERM PLANNING PROBLEM SOLVING THE INTERNATIONAL SPACE STATION (ISS) MOTION CONTROL LONG-TERM PLANNING PROBLEM V. N. Zhukov, Dr. E. K. Melnikov, A. I. Smirnov Mission Control Center, Central Research Institute of Machine Building,

More information

ESMO Mission Analysis

ESMO Mission Analysis Changing the economics of space ESMO Mission Analysis SRR Workshop Alison Gibbings 22 nd 26 th March 2010 Review of the existing baseline Sensitivity analysis Contents At lunar Injection Along the WSB-Moon

More information

AIM RS: Radio Science Investigation with AIM

AIM RS: Radio Science Investigation with AIM Prepared by: University of Bologna Ref. number: ALMARS012016 Version: 1.0 Date: 08/03/2017 PROPOSAL TO ESA FOR AIM RS Radio Science Investigation with AIM ITT Reference: Partners: Radio Science and Planetary

More information

A Low-Cost Mission for LISA Markus Landgraf, Florian Renk, Pierre Joachim, Rüdiger Jehn HSO-GFA

A Low-Cost Mission for LISA Markus Landgraf, Florian Renk, Pierre Joachim, Rüdiger Jehn HSO-GFA A Low-Cost Mission for LISA Markus Landgraf, Florian Renk, Pierre Joachim, Rüdiger Jehn HSO-GFA LISA Internal Final Presentation July 8 th, 2011 CDF HSO-GFA Page 1 Overview Basic working assumptions Operational

More information

CHAPTER 3 PERFORMANCE

CHAPTER 3 PERFORMANCE PERFORMANCE 3.1 Introduction The LM-3A performance figures given in this chapter are based on the following assumptions: Launching from XSLC (Xichang Satellite Launch Center, Sichuan Province, China),

More information

Vision-based navigation around small bodies

Vision-based navigation around small bodies Astronet-II, International Final Conference Vision-based navigation around small bodies Pawel Kicman VISION-BASED NAVIGATION IN SPACE Camera LOS (Line-of-sight) sensor Star-horizon measurements Apparent

More information

ANALYTICAL APPROACH TO FORMATION FLYING WITH LOW-THRUST RELATIVE SPIRAL TRAJECTORIES

ANALYTICAL APPROACH TO FORMATION FLYING WITH LOW-THRUST RELATIVE SPIRAL TRAJECTORIES IWSCFF 7-34 ANALYTICAL APPROACH TO FORMATION FLYING WITH LOW-THRUST RELATIVE SPIRAL TRAJECTORIES Matthew Willis and Simone D Amico This work addresses the growing need for an intuitive, systematic approach

More information

Prospector-1: A Low-Cost Commercial Asteroid Mission Grant Bonin SmallSat 2016

Prospector-1: A Low-Cost Commercial Asteroid Mission Grant Bonin SmallSat 2016 Prospector-1: A Low-Cost Commercial Asteroid Mission Grant Bonin SmallSat 2016 About DSI A space technology and resources company Vision to enable the human space development by harvesting asteroid materials

More information

AUTONOMOUS AND ROBUST RENDEZVOUS GUIDANCE ON ELLIPTICAL ORBIT SUBJECT TO J 2 PERTURBATION.

AUTONOMOUS AND ROBUST RENDEZVOUS GUIDANCE ON ELLIPTICAL ORBIT SUBJECT TO J 2 PERTURBATION. AUTONOMOUS AND ROBUST RENDEZVOUS GUIDANCE ON ELLIPTICAL ORBIT SUBJECT TO J 2 PERTURBATION Emmanuel GOGIBUS (1), Hervé CHARBONNEL (2), Patrick DELPY (3) (1) Astrium Space Transportation, 66 route de Verneuil,

More information

Lunar Satellite Attitude Determination System

Lunar Satellite Attitude Determination System Lunar Satellite Attitude Determination System SENIOR DESIGN PROPOSAL PRESENTATION TEAM EPOCH KUPOLUYI, TOLULOPE (LEAD DEVELOPER) SONOIKI, OLUWAYEMISI (LEAD RESEARCHER) WARREN, DANAH (PROJECT MANAGER) NOVEMBER

More information

OUT-OF-PLANE MANOEUVRE CAMPAIGNS FOR METOP-A: PLANNING, MODELLING, CALIBRATION AND RECONSTRUCTION. +49(0) ,

OUT-OF-PLANE MANOEUVRE CAMPAIGNS FOR METOP-A: PLANNING, MODELLING, CALIBRATION AND RECONSTRUCTION. +49(0) , OUT-OF-PLANE MANOEUVRE CAMPAIGNS FOR METOP-A: PLANNING, MODELLING, CALIBRATION AND RECONSTRUCTION Francisco Sancho (1), David Lázaro (2), Pier Luigi Righetti (3) (1) GMV at EUMETSAT, Eumetsat-Allee 1,

More information

Hayabusa Status and Proximity Operation. As of September 2nd, 2005

Hayabusa Status and Proximity Operation. As of September 2nd, 2005 Hayabusa Status and Proximity Operation As of September 2nd, 2005 2005/9/2 0 What is Hayabusa? World s First Round-trip Interplanetary Flight HAYABUSA Challenge to Asteroid Sample Return Touch-down + Dimensions

More information

PROBA 1. F. Teston ESA/ESTEC D/TEC-EL

PROBA 1. F. Teston ESA/ESTEC D/TEC-EL PROBA 1 F. Teston ESA/ESTEC D/TEC-EL Frederic.Teston@esa.int PROBA 1 launch PROBA 1 has been launched on 21 October 2001 Orbital parameters: Altitude: 681-561 km Near polar (inclination of 97.9 ) Sun-synchronous

More information

Automated Proximity Operations Using Image- Based Relative Navigation

Automated Proximity Operations Using Image- Based Relative Navigation GEORGIA INSTITUTE OF TECHNOLOGY Automated Proximity Operations Using Image- Based Relative Navigation Special Problems Report Luke Walker Spring 2012 Automated Proximity Operations Using Image-Based Relative

More information

FORMATION FLYING WITH SHEPHERD SATELLITES NIAC Fellows Meeting Michael LaPointe Ohio Aerospace Institute

FORMATION FLYING WITH SHEPHERD SATELLITES NIAC Fellows Meeting Michael LaPointe Ohio Aerospace Institute FORMATION FLYING WITH SHEPHERD SATELLITES 2001 NIAC Fellows Meeting Michael LaPointe Ohio Aerospace Institute WHAT IS FORMATION FLYING? Two or more satellites flying in prescribed orbits at a fixed separation

More information

Autonomous Formation Flying and Proximity Operations using Differential Drag on the Mars Atmosphere

Autonomous Formation Flying and Proximity Operations using Differential Drag on the Mars Atmosphere Autonomous Formation Flying and Proximity Operations using Differential Drag on the Mars Atmosphere Andrés E. Villa M.S. in Aerospace Engineering candidate California Polytechnic State University May 5

More information

Generation X. Attitude Control Systems (ACS) Aprille Ericsson Dave Olney Josephine San. July 27, 2000

Generation X. Attitude Control Systems (ACS) Aprille Ericsson Dave Olney Josephine San. July 27, 2000 Generation X Attitude Control Systems (ACS) Aprille Ericsson Dave Olney Josephine San July 27, 2000 ACS Overview Requirements Assumptions Disturbance Torque Assessment Component and Control Mode Recommendations

More information

AN ANALYTICAL SOLUTION TO QUICK-RESPONSE COLLISION AVOIDANCE MANEUVERS IN LOW EARTH ORBIT

AN ANALYTICAL SOLUTION TO QUICK-RESPONSE COLLISION AVOIDANCE MANEUVERS IN LOW EARTH ORBIT AAS 16-366 AN ANALYTICAL SOLUTION TO QUICK-RESPONSE COLLISION AVOIDANCE MANEUVERS IN LOW EARTH ORBIT Jason A. Reiter * and David B. Spencer INTRODUCTION Collision avoidance maneuvers to prevent orbital

More information

A Regional Microsatellite Constellation with Electric Propulsion In Support of Tuscan Agriculture

A Regional Microsatellite Constellation with Electric Propulsion In Support of Tuscan Agriculture Berlin, 20 th - 24 th 2015 University of Pisa 10 th IAA Symposium on Small Satellites for Earth Observation Student Conference A Regional Microsatellite Constellation with Electric Propulsion In Support

More information

Distributed Coordination and Control of Formation Flying Spacecraft

Distributed Coordination and Control of Formation Flying Spacecraft Distributed Coordination and Control of Formation Flying Spacecraft Michael Tillerson, Louis Breger, and Jonathan P. How MIT Department of Aeronautics and Astronautics {mike-t, lbreger, jhow}@mit.edu Abstract

More information

SIMBOL-X: A FORMATION FLYING MISSION ON HEO FOR EXPLORING THE UNIVERSE

SIMBOL-X: A FORMATION FLYING MISSION ON HEO FOR EXPLORING THE UNIVERSE SIMBOL-X: A FORMATION FLYING MISSION ON HEO FOR EXPLORING THE UNIVERSE P. Gamet, R. Epenoy, C. Salcedo Centre National D Etudes Spatiales (CNES) 18 avenue Edouard Belin, 31401 TOULOUSE Cedex 9, France

More information

Measurements & Instrumentation Systems National Space Institute Technical University of Denmark

Measurements & Instrumentation Systems National Space Institute Technical University of Denmark Measurements & Instrumentation Systems National Space Institute Technical University of Denmark Assessment Study of Autonomous Optical Navigation for an Asteroid Impact Mission -Executive Summary- Prepared

More information

The B-Plane Interplanetary Mission Design

The B-Plane Interplanetary Mission Design The B-Plane Interplanetary Mission Design Collin Bezrouk 2/11/2015 2/11/2015 1 Contents 1. Motivation for B-Plane Targeting 2. Deriving the B-Plane 3. Deriving Targetable B-Plane Elements 4. How to Target

More information

SPACECRAFT FORMATION CONTROL IN VICINITY OF LIBRATION POINTS USING SOLAR SAILS

SPACECRAFT FORMATION CONTROL IN VICINITY OF LIBRATION POINTS USING SOLAR SAILS SPACECRAFT FORMATION CONTROL IN VICINITY OF LIBRATION POINTS USING SOLAR SAILS D. Novikov (1), R. Nazirov (), N. Eismont (3) (1) E-mail: dnovikov@iki.rssi.ru () E-mail: rnazirov@rssi.ru (3) E-mail: neismont@iki.rssi.ru

More information

Proba-3 mission and the ASPIICS coronagraph

Proba-3 mission and the ASPIICS coronagraph Proba-3 mission and the ASPIICS coronagraph Marek Stęślicki 1 and the Proba-3 SWT 1 Space Research Centre Polish Academy of Sciences General objectives The Proba-3 project aims: To develop and demonstrate

More information

BINARY ASTEROID ORBIT MODIFICATION

BINARY ASTEROID ORBIT MODIFICATION 2013 IAA PLANETARY DEFENSE CONFERENCE BEAST BINARY ASTEROID ORBIT MODIFICATION Property of GMV All rights reserved TABLE OF CONTENTS 1. Mission Concept 2. Asteroid Selection 3. Physical Principles 4. Space

More information

ACHIEVING THE ERS-2 ENVISAT INTER-SATELLITE INTERFEROMETRY TANDEM CONSTELLATION.

ACHIEVING THE ERS-2 ENVISAT INTER-SATELLITE INTERFEROMETRY TANDEM CONSTELLATION. ACHIEVING THE ERS-2 ENVISAT INTER-SATELLITE INTERFEROMETRY TANDEM CONSTELLATION M. A. Martín Serrano (1), M. A. García Matatoros (2), M. E. Engdahl (3) (1) VCS-SciSys at ESA/ESOC, Robert-Bosch-Strasse

More information

6th International Workshop on Satellite Constellation and Formation Flying, Taipei, Taiwan, November 1~3, 2010

6th International Workshop on Satellite Constellation and Formation Flying, Taipei, Taiwan, November 1~3, 2010 IWSCFF-2010-Paper-4-2 FORMATION FLYING WITHIN A CONSTELLATION OF NANO-SATELLITES: THE QB50 MISSION E. Gill 1, P. Sundaramoorthy 1, J. Bouwmeester 1, B. Zandbergen 1, R. Reinhard 2 1 Chair of Space Systems

More information

Relative Spiral Trajectories for Low-Thrust Formation Flying

Relative Spiral Trajectories for Low-Thrust Formation Flying Relative Spiral Trajectories for Low-Thrust Formation Flying By Matthew Willis 1) and Simone D Amico 2) 1) Department of Mechanical Engineering, Stanford University, USA 2) Department of Aeronautics and

More information

MULTI PURPOSE MISSION ANALYSIS DEVELOPMENT FRAMEWORK MUPUMA

MULTI PURPOSE MISSION ANALYSIS DEVELOPMENT FRAMEWORK MUPUMA MULTI PURPOSE MISSION ANALYSIS DEVELOPMENT FRAMEWORK MUPUMA Felipe Jiménez (1), Francisco Javier Atapuerca (2), José María de Juana (3) (1) GMV AD., Isaac Newton 11, 28760 Tres Cantos, Spain, e-mail: fjimenez@gmv.com

More information

Pico-Satellite Orbit Control by Vacuum Arc Thrusters as Enabling Technology for Formations of Small Satellites

Pico-Satellite Orbit Control by Vacuum Arc Thrusters as Enabling Technology for Formations of Small Satellites 1/25 Pico-Satellite Orbit Control by Vacuum Arc Thrusters as Enabling Technology for Formations of Small Satellites Igal Kronhaus, Mathias Pietzka, Klaus Schilling, Jochen Schein Department of Computer

More information

GCOM-C/SGLI and its Lunar Calibration

GCOM-C/SGLI and its Lunar Calibration GCOM-C/SGLI and its Lunar Calibration Lunar Calibration Workshop December 1-4, 2014 JAXA/GCOM Proj. Yoshihiko Okamura (okamura.yoshihiko@jaxa.jp) 1. Overview of GCOM-C satellite and SGLI (1) Global Change

More information

ESSE Payload Design. 1.2 Introduction to Space Missions

ESSE Payload Design. 1.2 Introduction to Space Missions ESSE4360 - Payload Design 1.2 Introduction to Space Missions Earth, Moon, Mars, and Beyond Department of Earth and Space Science and Engineering Room 255, Petrie Science and Engineering Building Tel: 416-736

More information

LONG-TERM ANALYTICAL PROPAGATION OF SATELLITE RELATIVE MOTION IN PERTURBED ORBITS

LONG-TERM ANALYTICAL PROPAGATION OF SATELLITE RELATIVE MOTION IN PERTURBED ORBITS AAS 17-3 LONG-TERM ANALYTICAL PROPAGATION OF SATELLITE RELATIVE MOTION IN PERTURBED ORBITS Tommaso Guffanti, Simone D Amico and Michèle Lavagna INTRODUCTION Many scientific applications require the implementation

More information

OPTIMAL FORMATION DESIGN OF A MINIATURIZED DISTRIBUTED OCCULTER/TELESCOPE IN EARTH ORBIT

OPTIMAL FORMATION DESIGN OF A MINIATURIZED DISTRIBUTED OCCULTER/TELESCOPE IN EARTH ORBIT AAS 15-799 OPTIMAL FORMATION DESIGN OF A MINIATURIZED DISTRIBUTED OCCULTER/TELESCOPE IN EARTH ORBIT Adam W. Koenig, Simone D Amico, Bruce Macintosh, and Charles J. Titus, This paper presents a novel formation

More information

CHAPTER 3 PERFORMANCE

CHAPTER 3 PERFORMANCE PERFORMANCE 3.1 Introduction The LM-3B performance figures given in this chapter are based on the following assumptions: Launching from XSLC (Xichang Satellite Launch Center, Sichuan Province, China),

More information

COLLISION RISK ASSESSMENT AND MITIGATION STRATEGY FOR THE GSOC GEO SATELLITES

COLLISION RISK ASSESSMENT AND MITIGATION STRATEGY FOR THE GSOC GEO SATELLITES COLLISION RISK ASSESSMENT AND MITIGATION STRATEGY FOR THE GSOC GEO SATELLITES Saika Aida (1), Michael Kirschner (2), Florian Meissner (3) (1) DLR German Space Operations Center (GSOC), Münchner Str.20,

More information

THE MICRO ADVANCED STELLAR COMPASS FOR ESA S PROBA 2 MISSION

THE MICRO ADVANCED STELLAR COMPASS FOR ESA S PROBA 2 MISSION THE MICRO ADVANCED STELLAR COMPASS FOR ESA S PROBA 2 MISSION P.S. Jørgensen (1), J.L. Jørgensen (1), T. Denver (1), Pieter van den Braembuche (2) (1) Technical University of Denmark, Ørsted*DTU, Measurement

More information

A DISTRIBUTED FLIGHT SOFTWARE DESIGN FOR SATELLITE FORMATION FLYING CONTROL

A DISTRIBUTED FLIGHT SOFTWARE DESIGN FOR SATELLITE FORMATION FLYING CONTROL A DISTRIBUTED FLIGHT SOFTWARE DESIGN FOR SATELLITE FORMATION FLYING CONTROL Joseph B. Mueller and Margarita Brito Princeton Satellite Systems 33 Witherspoon Street Princeton, NJ 08542 {jmueller, megui}@psatellite.com

More information

Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu. Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA)

Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu. Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA) Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA) Highlights of Hayabusa2 Hayabusa2 is the 2nd Japanese sample return

More information

Appendix O. Implementation of the Equation of Time in Sun Synchronous Orbit Modelling and ESARAD Planet Temperature Mapping Error at the Poles

Appendix O. Implementation of the Equation of Time in Sun Synchronous Orbit Modelling and ESARAD Planet Temperature Mapping Error at the Poles 197 Appendix O Implementation of the Equation of Time in Sun Synchronous Orbit Modelling and ESARAD Planet Temperature Mapping Error at the Poles Arne Sauer (EADS Astrium, Germany) 198 Abstract The Equation

More information

Rosetta Optical Navigation

Rosetta Optical Navigation Rosetta Optical Navigation Mathias Lauer ESA / ESOC / Flight Dynamics Page 1 Overview Rosetta: Mission and Spacecraft Asteroid Flybys (Steins): - Scenario - Navigation Strategy - Image Processing - Autonomous

More information

OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology. 3 rd Mission Idea Contest UNISEC Global

OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology. 3 rd Mission Idea Contest UNISEC Global OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology 3 rd Mission Idea Contest UNISEC Global The Idea We want to take image for the moon phases as seen from Earth Why? Introduction 1.6 billion,23.4%

More information

Nano-JASMINE: A Small Infrared Astrometry Satellite

Nano-JASMINE: A Small Infrared Astrometry Satellite SSC07-VI-4 Nano-JASMINE: A Small Infrared Astrometry Satellite 21 st Annual AIAA/USU Conference on Small Satellites 14th/August/2007 Intelligent Space Systems Laboratory, University of Tokyo Nobutada Sako,

More information

Orbital Debris Observation via Laser Illuminated Optical Measurement Techniques

Orbital Debris Observation via Laser Illuminated Optical Measurement Techniques Orbital Debris Observation via Laser Illuminated Optical Measurement Techniques Makoto TAGAWA Kyushu University Toshiya HANADA Kyushu University Kozue HASHIMOTO, Yukihito KITAZAWA, Aritsune KAWABE IHI

More information

Electric Propulsion Survey: outlook on present and near future technologies / perspectives. by Ing. Giovanni Matticari

Electric Propulsion Survey: outlook on present and near future technologies / perspectives. by Ing. Giovanni Matticari Electric Propulsion Survey: outlook on present and near future technologies / perspectives by Ing. Giovanni Matticari Electric Propulsion: a concrete reality on many S/C GOCE ARTEMIS ARTEMIS SMART-1 EP

More information

FLIGHT DYNAMICS MISSION ANALYSIS AND OPERATIONS FOR GALILEO SATELLITES: ORBITAL MANEUVERS STRATEGY DESIGN AND PERFORMANCES

FLIGHT DYNAMICS MISSION ANALYSIS AND OPERATIONS FOR GALILEO SATELLITES: ORBITAL MANEUVERS STRATEGY DESIGN AND PERFORMANCES FLIGHT DYNAMICS MISSION ANALYSIS AND OPERATIONS FOR GALILEO SATELLITES: ORBITAL MANEUVERS STRATEGY DESIGN AND PERFORMANCES Angélique Gaudel (1), Denis Carbonne (2), Pierre Labourdette (3), Laurence Lorda

More information

SELENE TRANSLUNAR TRAJECTORY AND LUNAR ORBIT INJECTION

SELENE TRANSLUNAR TRAJECTORY AND LUNAR ORBIT INJECTION SELENE TRANSLUNAR TRAJECTORY AND LUNAR ORBIT INJECTION Yasuihiro Kawakatsu (*1) Ken Nakajima (*2), Masahiro Ogasawara (*3), Yutaka Kaneko (*1), Yoshisada Takizawa (*1) (*1) National Space Development Agency

More information

NEW EUMETSAT POLAR SYSTEM ATTITUDE MONITORING SOFTWARE

NEW EUMETSAT POLAR SYSTEM ATTITUDE MONITORING SOFTWARE NEW EUMETSAT POLAR SYSTEM ATTITUDE MONITORING SOFTWARE Pablo García Sánchez (1), Antonio Pérez Cambriles (2), Jorge Eufrásio (3), Pier Luigi Righetti (4) (1) GMV Aerospace and Defence, S.A.U., Email: pgarcia@gmv.com,

More information