Concordia University Department of Electrical and Computer Engineering Fundamentals of Control Systems (ELEC372) S. Hashtrudi Zad

Size: px
Start display at page:

Download "Concordia University Department of Electrical and Computer Engineering Fundamentals of Control Systems (ELEC372) S. Hashtrudi Zad"

Transcription

1 Concordia University Department of Electrical and Computer Engineering Fundamentals of Control Systems (ELEC372) S. Hashtrudi Zad Project: Analysis of the Performance of a Satellite Pitch Control System Due: Friday, Nov. 16, 2018, noon (in instructor s mailbox in EV5-175) The project must be done in groups of two or three. One report per group. Only original hardcopy of the report is accepted. The Attitude Determination and Control Subsystem (ADCS) of a spacecraft controls the orientation of the spacecraft in space. In this assignment, the control system for the pitch angle of a spacecraft is studied. 1 Satellite Model Fig. 1 depicts a satellite in a circular geostationary orbit at an altitude of approximately Earth θ Satellite Figure 1: Satellite in circular geostationary orbit. 36,000 km.. The period of a satellite in this type of orbit is the Earth s day (about 24 hours) and thus the angular velocity of the satellite in its orbit is ω o rad/s. A satellite 1

2 in a circular equitorial geostationary orbit will hover over a spot on Earth and hence will be useful for communications. The satellite s attitude is controlled using a momentum wheel. (Sample actuator and sensor data sheets are enclosed.) In this assignment, we investiagte the design of the system that controls the pitch angle (θ). The linearized model of the pitch motion is I d2 θ dt 2 = T(t) = T c(t)+t d (t) where I = 400 N.m.s 2 is the momentum of inertial of the satellite about the pitch axis, T c (t) is the control torque (due to the momentum wheel) and T d (t) is the disturbance torque. Note that the pitch angle θ is in radians. At a geostationary orbit, the two main sources of disturbance are solar pressure torque and thruster misalignment torque. We ignore thrust maneuvers and thus only consider solar pressure torque. The distrubance torque along the pitch axis is T d (t) = 10 4 cosω o t (N.m). Note that the disturbance is periodic, with a period equal to the satellite s period. 2 Problem Statement Fig. 2 shows the block diagram of the pitch angle control system. The desired reference pitch θ ref (s) + K (s) T m (s) 1 T d (s) T c (s) + + G(s) θ(s) Figure 2: Pitch control system. is θ ref = 0 rad. The transfer function of the satellite is G(s) = θ(s) T(s) = 1 Is 2 K (s) is the controller, T m (s) is the torque on the momentum wheel (exerted by a motor) and T c (s) is the control torque (T c = T m ). The block diagram of Fig. 2 can be redrawn in the familiar form of Fig. 3 where K(s) = K (s). It is desired to design K(s) (and hence the controller K (s)) so that the following design specifications are satisfied. 2

3 θ ref (s) + K(s) T d (s) T c (s) + + G(s) θ(s) Figure 3: Pitch control system redrawn. (DS1) The closed loop system must be stable. (DS2) The settling time of response to step inputs must be less than 300s. (DS3) The percentage of overshoot of response to step inputs must be less than 25%. (DS4) The pitch angle accuracy must be at least 0.05 deg; that is the effect of disturbance on the output in steady state should be less than 0.05 deg. (DS5) As with other satellite subsystems, the ADCS is subject to a power budget. Hence it is desirable to minimize the power consumption of the ADCS (i.e., the sum of power consumptions of the actuators, sensors and processing electronics). The following three controllers have been proposed for the above problem: K 1 (s) = s K 2 (s) = s+1 4s+1 K 3 (s) = s+1 s+2 Choose the controller that best satisfies the design specifications DS1 to DS5. You may use a combination of analytical calculations and computer simulation using MATLAB s Control System Toolbox in your analysis. All simulations have to be done using MATLAB s Control System Toolbox and the m- files must be included in the report. The students are encouraged to use Simulink or Linear System Analysis app for simulations additionally but these results do not replace Control System Toolbox simulations. 3 Report Prepare a report explaining your results. First start by providing a brief review of the problem. In the next section describe your methodology: 3

4 (i) The criteria used to evaluate the controllers. (ii) The method used to evaluate each criterion (e.g., analytical, computer simulation, etc.) and the reason for choosing the method. Then in following sections apply the methodolgy to evaluate the controllers(one section for each controller). For analytical evaluations provide the calculations. For computer simulations provide the information such as input signals and computer code. Describe any assumption made in your analysis. Next provide your final decision with explanation (You must choose one controller.) Finally, name two important sources of inaccuracy (i.e., difference between your simulation results and the corresponding actual values) in your analysis. Your report should contain the following four graphs for each controller. 1. The output θ(t) in response to a step reference input of 5 deg = 5π/180 rad. 2. The control torque T c (t) in response to a step reference input of 5 deg = 5π/180 rad. 3. The output θ(t) in response to disturbance T d (t). 4. The control torque T c (t) in response to disturbance T d (t). Finally note the following. The simulations for the responses to step inputs should cover up to a few hundreds of seconds when the response settles. The simulations for the periodic disturbance should last for about one orbit period (24 hours), or perferrably two periods (48 hours), to fully demonstrate the behaviour in steady state. For the purpose of plotting, convert the pitch angle from radians to degrees. All plots should be properly labeled. Do not forget to indicate the units used for each axis. 4 Appendix Data sheet for SSTL reaction wheels ( Data sheet for Sodern horizon sensor ( 4

5 SSTL Microwheels The 10SP-M and 100SP-O reaction wheels are configured to provide a highly agile 3-axis attitude control solution for Earth observation or space science missions. 10SP-M microwheels use a dry lubrication technology to deliver a maximum torque of 11 mnm, while the 100SP-O is oil lubricated, delivering a maximum torque of 110 mnm. The 100SP-O control electronics are heavily based upon the 10SP-M integral design. Fifty-four 10SP microwheels have been flown to date, accumulating 248 years of in-orbit operation; a further seventy-three 10SP microwheels and twenty-one 100SP microwheels are waiting launch delivery either on SSTL or third party missions. SSTL has flight-proven the 10SP-M for use on high resolution imaging spacecraft, but can provide microvibration isolation system mounts as an option. Benefits Flight proven Low cost 12 months typical delivery 7+ years design life Small and lightweight High momentum to mass ratio Fly the subsystems we fly! Features Dry lubrication technology (10SP-M) or oil lubrication (100SP-O), with hermetically sealed motor unit Integrated electronics controller Operates in torque or speed control mode v005 April 2013

6 SSTL Microwheels Performance Design life Angular momentum Max speed (+/-) Speed accuracy Max torque (peak) Environmental Conditions Operating temperature Survival temperature Radiation Random vibration (qualification) First mode Mechanical Mass Volume Moment of inertia (wheel) Static unbalance Dynamic unbalance Lubrication Electrical & Control Integrated electronics Control mode Power (standby) : 20 C Power (5000rpm) : 20 C Power (maximum torque) : 20 C Supply voltage(s) Data interface Telemetry data examples 10SP-M 7.5 years 0.42 Nms 5000 rpm <0.1 rpm rms N.m -20 to +50 C -30 to +60 C 5 krad 18 grms (all axes) >400 Hz 0.96 kg Ø109x101 mm kg.m² <0.1 gcm <0.2 gcm² Dry Yes Output Speed up to 5Hz ~1.5 W ~ 2.8 W ~ 13 W 5V / 22-34V DC (single supply also available) CAN bus or RS422 Speed, Motor current Electronics Temperature 100SP-O 7.5 years 1.5 Nms 5000 rpm <0.055 rpm rms 0.11 N.m -20 to +50 C -30 to +60 C 5 krad 15 grms (all axes) * >300 Hz 2.6 kg Ø120x120 mm kg.m² <0.2 gcm <0.3 gcm² Oil Yes Output Speed or Torque up to 5Hz ~ 1.2 W ~ 10 W ~ 113 W 17-35V DC CAN bus or RS422 Speed, Motor current Electronics & Motor Temperature * Mechanism levels tested. Life & electronics qualifications tested at lower values. Electronics can accept 10SP-M levels based on heritage design. SSTL is ISO9001:2008 certified 10SP-M Heritage Manufacture to: UK-DMC-2 (2009) ECSS Q-ST-70-08C Deimos-1 (2009) ECSS Q-ST-70-38C NigeriaSat-2 (2011) All work overseen by ESA trained assembly ExactView-1 (2012) staff Third party missions Available as part of SSTL s AOCS suite 100SP-O Heritage TechDemoSat-1 (launching 2013) Kazakhstan (launching 2014) DMC3 Constellation (launching 2014) Product specification may be subject to change without notification Surrey Satellite Technology Ltd. Magnetorquers Magnetometers Sun Sensor Inertial Sensors Star Trackers Reaction Wheels GPS Receivers Tycho House, 20 Stephenson Road, Surrey Research Park, Guildford, Surrey, GU27YE, United Kingdom Tel: +44(0) Fax:+44(0) subsystems@sstl.co.uk Web:

7 STD 15 EARTH SENSOR The STD 15 is a dual conical scanning Earth Sensor able to meet the more stringent requirements and environmental constraints of GEO missions. Scanning Infrared Horizon Sensor for GEO Orbits Since 1991, more than 100 units have been delivered in the world for the STD 15/16 product line. Most do them have been launched and operated on board telecommunication satellites, such as: TC2-A, TC2-B, TC2-C, TC2-D, HISPASAT 1A, HISPASAT 1B, HOT BIRD 2, HOT BIRD 3, HOT BIRD 4, HOT BIRD 5, HOT BIRD 7, WORLDSTAR 1, WORLDSTAR 2, SINGASAT 1, NILESAT 1, NILESAT 2, RESSAT, SESAT, ASTRA 2B, HELASAT, EXPRESS-AM, W3A.

8 STD 15: PROVEN TECHNOLOGIES FOR MEASURING PITCH AND ROLL ON BOARD GEO SATELLITES: An optronic sensor with a rotating mirror and fixed mirrors ϕ 4 Trace 2 ϕ 3 Earth disk Roll axis An infrared bolometer to detect Earth to Space and Space to Earth transition A dual track scanning pattern to increase accuracy ϕ 1 Pitch axis Trace 1 ϕ 2 Electronic functions for driving the scanning mechanism as well as operating the bolometer and data processing Scanning Format PERFORMANCES Altitude range: km Operating depointing range: - Nominal: Pitch range: ± 12 deg (Roll = 0) - Roll range : ± 2.9 deg (Pitch = 0) - Extended: Pitch range: ± 15.6 deg (Roll = 0) - Roll range : ± 14.5 deg (Pitch = 0) Output data rate: 1.25 Hz Accuracy budget: 3 σ - bias: deg - typical noise: deg. ENVIRONMENTAL CHARACTERISTICS Operating temperature: -25 C, +55 C Storage temperature: -40 C, +60 C Vibration: Hz : - Z axis: 16.9 g.rms - X, Y axis: 13.2 g.rms MECHANICAL INTERFACES Operating temperature: -25 C, +55 C Height: 168 mm - width: 206 mm - length: 206 mm Mass: 3.4 kg ELECTRICAL INTERFACES Typical consumption: 6.5 W Power supply: 20 to 55 Volts Output data: 1553 protocole RELIABILITY < Fits LIFE-SPAN 15 years in GEO orbit. 20, avenue Descartes Because of constant improvement to our product, LIMEIL-BREVANNES CEDEX FRANCE specifications are subject to change without notice. Tél.33 (0) Fax : 33 (0) Printed in France - AGENAE 33 (0) ISO 9001 C

Design of Attitude Determination and Control Subsystem

Design of Attitude Determination and Control Subsystem Design of Attitude Determination and Control Subsystem 1) Control Modes and Requirements Control Modes: Control Modes Explanation 1 ) Spin-Up Mode - Acquisition of Stability through spin-up maneuver -

More information

MAE 142 Homework #5 Due Friday, March 13, 2009

MAE 142 Homework #5 Due Friday, March 13, 2009 MAE 142 Homework #5 Due Friday, March 13, 2009 Please read through the entire homework set before beginning. Also, please label clearly your answers and summarize your findings as concisely as possible.

More information

Subsystems & Payloads

Subsystems & Payloads Subsystems & Payloads Surrey Satellite Technology is the world s leading small satellite manufacturer We are pioneering space company Surrey Satellite Technology world leader in designing, manufacturing,

More information

Spacecraft Bus / Platform

Spacecraft Bus / Platform Spacecraft Bus / Platform Propulsion Thrusters ADCS: Attitude Determination and Control Subsystem Shield CDH: Command and Data Handling Subsystem Payload Communication Thermal Power Structure and Mechanisms

More information

ADCSS 2017: Sodern presentation

ADCSS 2017: Sodern presentation ADCSS 2017: Sodern presentation 1 Agenda Star trackers road map: a wide range of products End of CCD star trackers: SED26 replaced by Horus as standalone multi mission star tracker Hydra maintained beyond

More information

Attitude Determination and. Attitude Control

Attitude Determination and. Attitude Control Attitude Determination and Placing the telescope in orbit is not the end of the story. It is necessary to point the telescope towards the selected targets, or to scan the selected sky area with the telescope.

More information

Generation X. Attitude Control Systems (ACS) Aprille Ericsson Dave Olney Josephine San. July 27, 2000

Generation X. Attitude Control Systems (ACS) Aprille Ericsson Dave Olney Josephine San. July 27, 2000 Generation X Attitude Control Systems (ACS) Aprille Ericsson Dave Olney Josephine San July 27, 2000 ACS Overview Requirements Assumptions Disturbance Torque Assessment Component and Control Mode Recommendations

More information

Attitude control system for ROCSAT-3 microsatellite: a conceptual design

Attitude control system for ROCSAT-3 microsatellite: a conceptual design Acta Astronautica 56 (5) 9 5 www.elsevier.com/locate/actaastro Attitude control system for ROCSAT- microsatellite: a conceptual design Y.W. Jan a;b; ;, J.C. Chiou b; a National Space Program Oce, Hsinchu,

More information

Spinning Satellites Examples. ACS: Gravity Gradient. ACS: Single Spin

Spinning Satellites Examples. ACS: Gravity Gradient. ACS: Single Spin Attitude Determination and Attitude Control Placing the telescope in orbit is not the end of the story. It is necessary to point the telescope towards the selected targets, or to scan the selected sky

More information

On-Orbit Performance of KOMPSAT-2 AOCS Korea Aerospace Research Institute Seung-Wu Rhee, Ph. D.

On-Orbit Performance of KOMPSAT-2 AOCS Korea Aerospace Research Institute Seung-Wu Rhee, Ph. D. SSC07-VII-9 On-Orbit Performance of AOCS 2007. 8. Korea Aerospace Research Institute Seung-Wu Rhee, Ph. D. 1 Program - is Low Earth Orbit Satellite - Mission : Cartographic Mission of Korean Peninsula

More information

Lunette: Satellite to Satellite Gravity Mapping of the Moon

Lunette: Satellite to Satellite Gravity Mapping of the Moon Lunette: Satellite to Satellite Gravity Mapping of the Moon Maria Short 9th ILEWG International Conference on Exploration and Utilisation n of the Moon Authors: M. Short, C. Short, A. Philip, J. Gryzmisch,

More information

Preliminary Development of an Experimental Lightweight Pulsed Plasma Thruster for Solar Sail Attitude Control

Preliminary Development of an Experimental Lightweight Pulsed Plasma Thruster for Solar Sail Attitude Control Preliminary Development of an Experimental Lightweight Pulsed Plasma Thruster for Solar Sail Attitude Control Kevin Pryor, Bong Wie, and Pavlos Mikellides Arizona State University 18 th Annual AIAA/USU

More information

Agile Maneuvers for Near Earth Object (NEO) Fly-by Missions

Agile Maneuvers for Near Earth Object (NEO) Fly-by Missions Agile Maneuvers for Near Earth Object (NEO) Fly-by Missions Vaios Lappas 1, Bong Wie 2 and Jozef van der Ha 3 1 Surrey Space Centre, University of Surrey, GU2 7XH, United Kingdom, E-mail: v.lappas@surrey.ac.uk

More information

Jitter and Basic Requirements of the Reaction Wheel Assembly in the Attitude Control System

Jitter and Basic Requirements of the Reaction Wheel Assembly in the Attitude Control System Jitter and Basic Requirements of the Reaction Wheel Assembly in the Attitude Control System Lulu Liu August, 7 1 Brief Introduction Photometric precision is a major concern in this space mission. A pointing

More information

PRELIMINARY HARDWARE DESIGN OF ATTITUDE CONTROL SUBSYSTEM OF LEONIDAS SPACECRAFT

PRELIMINARY HARDWARE DESIGN OF ATTITUDE CONTROL SUBSYSTEM OF LEONIDAS SPACECRAFT PRELIMINARY HARDWARE DESIGN OF ATTITUDE CONTROL SUBSYSTEM OF LEONIDAS SPACECRAFT Chak Shing Jackie Chan College of Engineering University of Hawai i at Mānoa Honolulu, HI 96822 ABSTRACT In order to monitor

More information

An Attitude Control System and Commissioning Results of the SNAP-1 Nanosatellite

An Attitude Control System and Commissioning Results of the SNAP-1 Nanosatellite An Attitude Control System and Commissioning Results of the SNAP-1 Nanosatellite WH Steyn, Y Hashida and V Lappas Surrey Space Centre University of Surrey Guildford, Surrey GU2 5XH United Kingdom Abstract.

More information

The basic principle to be used in mechanical systems to derive a mathematical model is Newton s law,

The basic principle to be used in mechanical systems to derive a mathematical model is Newton s law, Chapter. DYNAMIC MODELING Understanding the nature of the process to be controlled is a central issue for a control engineer. Thus the engineer must construct a model of the process with whatever information

More information

Canadian Advanced Nanospace experiment 2 Orbit Operations:

Canadian Advanced Nanospace experiment 2 Orbit Operations: Canadian Advanced Nanospace experiment 2 Orbit Operations: One Year of Pushing the Nanosat Performance Envelope Karan Sarda Cordell Grant, Stuart Eagleson Daniel D. Kekez, Amee Shah Robert E. Zee Space

More information

Hybrid spacecraft attitude control system

Hybrid spacecraft attitude control system Int. Jnl. of Multiphysics Volume 1 Number 2 2007 221 Hybrid spacecraft attitude control system Renuganth Varatharajoo *, Ramly Ajir, Tamizi Ahmad Department of Aerospace Engineering, University Putra Malaysia,

More information

Attitude Determination System of Small Satellite

Attitude Determination System of Small Satellite Attitude Determination System of Small Satellite Satellite Research Centre Jiun Wei Chia, M. Sheral Crescent Tissera and Kay-Soon Low School of EEE, Nanyang Technological University, Singapore 24 th October

More information

Satellite Attitude Control System Design Using Reaction Wheels Bhanu Gouda Brian Fast Dan Simon

Satellite Attitude Control System Design Using Reaction Wheels Bhanu Gouda Brian Fast Dan Simon Satellite Attitude Control System Design Using Reaction Wheels Bhanu Gouda Brian Fast Dan Simon Outline 1. Overview of Attitude Determination and Control system. Problem formulation 3. Control schemes

More information

OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology. 3 rd Mission Idea Contest UNISEC Global

OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology. 3 rd Mission Idea Contest UNISEC Global OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology 3 rd Mission Idea Contest UNISEC Global The Idea We want to take image for the moon phases as seen from Earth Why? Introduction 1.6 billion,23.4%

More information

Launches and On-Orbit Performance

Launches and On-Orbit Performance Launches and On-Orbit Performance An Update on Nanosatellite Missions at the UTIAS Space Flight Laboratory Daniel D. Kekez,, Robert E. Zee, Freddy M. Pranajaya Space Flight Laboratory University of Toronto

More information

Attitude Control Simulator for the Small Satellite and Its Validation by On-orbit Data of QSAT-EOS

Attitude Control Simulator for the Small Satellite and Its Validation by On-orbit Data of QSAT-EOS SSC17-P1-17 Attitude Control Simulator for the Small Satellite and Its Validation by On-orbit Data of QSAT-EOS Masayuki Katayama, Yuta Suzaki Mitsubishi Precision Company Limited 345 Kamikmachiya, Kamakura

More information

FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING

FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING Elias F. Solorzano University of Toronto (Space Flight Laboratory) Toronto, ON (Canada) August 10 th, 2016 30 th AIAA/USU

More information

High Power Electric Propulsion Pointing Mechanisms (HP EPPM) Technical Development Activities (TDA s) strategy, status and planning

High Power Electric Propulsion Pointing Mechanisms (HP EPPM) Technical Development Activities (TDA s) strategy, status and planning High Power Electric Propulsion Pointing Mechanisms (HP EPPM) Technical Development Activities (TDA s) strategy, status and planning Objectives of this presentation are: To provide primes with: ESA preliminary

More information

Laboratory 11 Control Systems Laboratory ECE3557. State Feedback Controller for Position Control of a Flexible Joint

Laboratory 11 Control Systems Laboratory ECE3557. State Feedback Controller for Position Control of a Flexible Joint Laboratory 11 State Feedback Controller for Position Control of a Flexible Joint 11.1 Objective The objective of this laboratory is to design a full state feedback controller for endpoint position control

More information

An Inverse Dynamics Attitude Control System with Autonomous Calibration. Sanny Omar Dr. David Beale Dr. JM Wersinger

An Inverse Dynamics Attitude Control System with Autonomous Calibration. Sanny Omar Dr. David Beale Dr. JM Wersinger An Inverse Dynamics Attitude Control System with Autonomous Calibration Sanny Omar Dr. David Beale Dr. JM Wersinger Outline Attitude Determination and Control Systems (ADACS) Overview Coordinate Frames

More information

Integrated Test Facility for Nanosat Assessment and Verification

Integrated Test Facility for Nanosat Assessment and Verification Integrated Test Facility for Nanosat Assessment and Verification Steve Wassom, Quinn Young, Bryan Bingham, Rees Fullmer, Mitch Whiteley, Robert Burt, Mike Watson, Tom Ortiz, Joe Richards, Sam Wilcox Utah

More information

ESSE Payload Design. 1.2 Introduction to Space Missions

ESSE Payload Design. 1.2 Introduction to Space Missions ESSE4360 - Payload Design 1.2 Introduction to Space Missions Earth, Moon, Mars, and Beyond Department of Earth and Space Science and Engineering Room 255, Petrie Science and Engineering Building Tel: 416-736

More information

Attitude Control Strategy for HAUSAT-2 with Pitch Bias Momentum System

Attitude Control Strategy for HAUSAT-2 with Pitch Bias Momentum System SSC06-VII-5 Attitude Control Strategy for HAUSAT-2 with Pitch Bias Momentum System Young-Keun Chang, Seok-Jin Kang, Byung-Hoon Lee, Jung-on Choi, Mi-Yeon Yun and Byoung-Young Moon School of Aerospace and

More information

State Feedback Controller for Position Control of a Flexible Link

State Feedback Controller for Position Control of a Flexible Link Laboratory 12 Control Systems Laboratory ECE3557 Laboratory 12 State Feedback Controller for Position Control of a Flexible Link 12.1 Objective The objective of this laboratory is to design a full state

More information

THE MICRO ADVANCED STELLAR COMPASS FOR ESA S PROBA 2 MISSION

THE MICRO ADVANCED STELLAR COMPASS FOR ESA S PROBA 2 MISSION THE MICRO ADVANCED STELLAR COMPASS FOR ESA S PROBA 2 MISSION P.S. Jørgensen (1), J.L. Jørgensen (1), T. Denver (1), Pieter van den Braembuche (2) (1) Technical University of Denmark, Ørsted*DTU, Measurement

More information

Attitude Determination and Control

Attitude Determination and Control Attitude Determination and Control Dan Hegel Director, Advanced Development hegel@bluecanyontech.com 1 Dan Hegel - Intro Director of Advanced Development at Blue Canyon Technologies Advanced mission concepts

More information

GUIDANCE, NAVIGATION, AND CONTROL TECHNIQUES AND TECHNOLOGIES FOR ACTIVE DEBRIS REMOVAL

GUIDANCE, NAVIGATION, AND CONTROL TECHNIQUES AND TECHNOLOGIES FOR ACTIVE DEBRIS REMOVAL GUIDANCE, NAVIGATION, AND CONTROL TECHNIQUES AND TECHNOLOGIES FOR ACTIVE DEBRIS REMOVAL Antonio Rinalducci, Guillermo Ortega Hernando, Sven Erb, Alexander Cropp, Thomas Voirin, Olivier Dubois-Matra, Gianfranco

More information

Semi-Analytical Guidance Algorithm for Fast Retargeting Maneuvers Computation during Planetary Descent and Landing

Semi-Analytical Guidance Algorithm for Fast Retargeting Maneuvers Computation during Planetary Descent and Landing ASTRA 2013 - ESA/ESTEC, Noordwijk, the Netherlands Semi-Analytical Guidance Algorithm for Fast Retargeting Maneuvers Computation during Planetary Descent and Landing Michèle LAVAGNA, Paolo LUNGHI Politecnico

More information

An Attitude Control System for a Low-Cost Earth Observation Satellite with Orbit Maintenance Capability

An Attitude Control System for a Low-Cost Earth Observation Satellite with Orbit Maintenance Capability An Attitude Control System for a Low-Cost Earth Observation Satellite with Orbit Maintenance Capability Willem H Steyn Yoshi Hashida Surrey Space Centre University of Surrey Guildford, Surrey GU2 5XH United

More information

Development of Microwave Engine

Development of Microwave Engine Development of Microwave Engine IEPC-01-224 Shin SATORI*, Hiroyuki OKAMOTO**, Ted Mitsuteru SUGIKI**, Yoshinori AOKI #, Atsushi NAGATA #, Yasumasa ITO** and Takayoshi KIZAKI # * Hokkaido Institute of Technology

More information

Coupled Drive Apparatus Modelling and Simulation

Coupled Drive Apparatus Modelling and Simulation University of Ljubljana Faculty of Electrical Engineering Victor Centellas Gil Coupled Drive Apparatus Modelling and Simulation Diploma thesis Menthor: prof. dr. Maja Atanasijević-Kunc Ljubljana, 2015

More information

Manufacturing Equipment Control

Manufacturing Equipment Control QUESTION 1 An electric drive spindle has the following parameters: J m = 2 1 3 kg m 2, R a = 8 Ω, K t =.5 N m/a, K v =.5 V/(rad/s), K a = 2, J s = 4 1 2 kg m 2, and K s =.3. Ignore electrical dynamics

More information

Design and Development of an Unrestricted Satellite Motion Simulator

Design and Development of an Unrestricted Satellite Motion Simulator Design and Development of an Unrestricted Satellite Motion Simulator Eryn Culton, Jeffery King, Paige Ward United States Naval Academy Annapolis, MD 21402 POC: jking@usna.edu 31st Annual AIAA/USU Conference

More information

ESMO Mission Analysis

ESMO Mission Analysis Changing the economics of space ESMO Mission Analysis SRR Workshop Alison Gibbings 22 nd 26 th March 2010 Review of the existing baseline Sensitivity analysis Contents At lunar Injection Along the WSB-Moon

More information

Attitude Determination using Infrared Earth Horizon Sensors

Attitude Determination using Infrared Earth Horizon Sensors SSC14-VIII-3 Attitude Determination using Infrared Earth Horizon Sensors Tam Nguyen Department of Aeronautics and Astronautics, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge,

More information

Flight Demonstration of Electrostatic Thruster Under Micro-Gravity

Flight Demonstration of Electrostatic Thruster Under Micro-Gravity Flight Demonstration of Electrostatic Thruster Under Micro-Gravity Shin SATORI*, Hiroyuki MAE**, Hiroyuki OKAMOTO**, Ted Mitsuteru SUGIKI**, Yoshinori AOKI # and Atsushi NAGATA # * Hokkaido Institute of

More information

Combined Sensor Platform for Boost Guidance and Attitude Control of Sounding Rocket Payload

Combined Sensor Platform for Boost Guidance and Attitude Control of Sounding Rocket Payload Combined Sensor Platform for Boost Guidance and Attitude Control of Sounding Rocket Payload Examensarbete utfört i Reglerteknik vid Tekniska Högskolan i Linköping av Per Abrahmsson Reg nr: LiTH-ISY-EX-3479-2004

More information

Quanser NI-ELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control. DC Motor Control Trainer (DCMCT) Student Manual

Quanser NI-ELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control. DC Motor Control Trainer (DCMCT) Student Manual Quanser NI-ELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control DC Motor Control Trainer (DCMCT) Student Manual Table of Contents 1 Laboratory Objectives1 2 References1 3 DCMCT Plant

More information

Attitude Control on the Pico Satellite Solar Cell Testbed-2

Attitude Control on the Pico Satellite Solar Cell Testbed-2 SSC12-II-1 Attitude Control on the Pico Satellite Solar Cell Testbed-2 Siegfried W. Janson, Brian S. Hardy, Andrew Y. Chin, Daniel L. Rumsey, Daniel A. Ehrlich, and David A. Hinkley The Aerospace Corporation

More information

Implementation of a Communication Satellite Orbit Controller Design Using State Space Techniques

Implementation of a Communication Satellite Orbit Controller Design Using State Space Techniques ASEAN J Sci Technol Dev, 29(), 29 49 Implementation of a Communication Satellite Orbit Controller Design Using State Space Techniques M T Hla *, Y M Lae 2, S L Kyaw 3 and M N Zaw 4 Department of Electronic

More information

ENAE483: Principles of Space System Design Power Propulsion Thermal System

ENAE483: Principles of Space System Design Power Propulsion Thermal System Power Propulsion Thermal System Team B4: Ben Abresch Jason Burr Kevin Lee Scott Wingate November 8th, 2012 Presentation Overview Mission Guidelines Project Specifications Initial Design Power Thermal Insulation

More information

EXAMPLE: MODELING THE PT326 PROCESS TRAINER

EXAMPLE: MODELING THE PT326 PROCESS TRAINER CHAPTER 1 By Radu Muresan University of Guelph Page 1 EXAMPLE: MODELING THE PT326 PROCESS TRAINER The PT326 apparatus models common industrial situations in which temperature control is required in the

More information

The E-SAIL programme. 10th IAA Symposium on Small Satellites for Earth Observation April 20-24, 2015 Berlin LuxSpace s.à.r.

The E-SAIL programme. 10th IAA Symposium on Small Satellites for Earth Observation April 20-24, 2015 Berlin LuxSpace s.à.r. The E-SAIL programme 10th IAA Symposium on Small Satellites for Earth Observation April 20-24, 2015 Berlin LuxSpace s.à.r.l An OHB company Contents LuxSpace Background Consortium Spacecraft Specific issues

More information

XENON RESISTOJETS AS SECONDARY PROPULSION ON EP SPACECRAFTS AND PERFORMANCE RESULTS OF RESISTOJETS USING XENON

XENON RESISTOJETS AS SECONDARY PROPULSION ON EP SPACECRAFTS AND PERFORMANCE RESULTS OF RESISTOJETS USING XENON XENON RESISTOJETS AS SECONDARY PROPULSION ON EP SPACECRAFTS AND PERFORMANCE RESULTS OF RESISTOJETS USING XENON D. Nicolini (a), D. Robertson (a), E. Chesta (a), G. Saccoccia (a), D. Gibbon (b), A. Baker

More information

FEEDBACK CONTROL SYSTEMS

FEEDBACK CONTROL SYSTEMS FEEDBAC CONTROL SYSTEMS. Control System Design. Open and Closed-Loop Control Systems 3. Why Closed-Loop Control? 4. Case Study --- Speed Control of a DC Motor 5. Steady-State Errors in Unity Feedback Control

More information

Quaternion-Based Tracking Control Law Design For Tracking Mode

Quaternion-Based Tracking Control Law Design For Tracking Mode A. M. Elbeltagy Egyptian Armed forces Conference on small satellites. 2016 Logan, Utah, USA Paper objectives Introduction Presentation Agenda Spacecraft combined nonlinear model Proposed RW nonlinear attitude

More information

The development of a family of Resistojet Thruster Propulsion Systems for Small Spacecraft

The development of a family of Resistojet Thruster Propulsion Systems for Small Spacecraft The development of a family of Resistojet Thruster Propulsion Systems for Small Spacecraft D.Gibbon, I.Coxhill, A.Baker, M.Sweeting Surrey Satellite Technology Ltd, University of Surrey, Guildford, England

More information

The Swarm Vector Field Magnetometer (VFM): instrument commissioning & performance assessment José M. G. Merayo

The Swarm Vector Field Magnetometer (VFM): instrument commissioning & performance assessment José M. G. Merayo instrument commissioning & performance assessment José M. G. Merayo DTU Space, Technical University of Denmark Division Measurement & Instrumentation Systems overview Fluxgate principle Amorphous magnetic

More information

CALIBRATION MECHANISM FOR INFRARED SPACE TELESCOPE. Patrice Kerhousse

CALIBRATION MECHANISM FOR INFRARED SPACE TELESCOPE. Patrice Kerhousse CALIBRATION MECHANISM FOR INFRARED SPACE TELESCOPE Patrice Kerhousse Alcatel space industries Boulevard du Midi, BP 99-06156 Cannes la Bocca Cedex Telephone : 33-(0)4-92-92-72-38 / Fax : 33-(0)4-92-92--20

More information

Lecture Module 5: Introduction to Attitude Stabilization and Control

Lecture Module 5: Introduction to Attitude Stabilization and Control 1 Lecture Module 5: Introduction to Attitude Stabilization and Control Lectures 1-3 Stability is referred to as a system s behaviour to external/internal disturbances (small) in/from equilibrium states.

More information

Lunar Satellite Attitude Determination System

Lunar Satellite Attitude Determination System Lunar Satellite Attitude Determination System SENIOR DESIGN PROPOSAL PRESENTATION TEAM EPOCH KUPOLUYI, TOLULOPE (LEAD DEVELOPER) SONOIKI, OLUWAYEMISI (LEAD RESEARCHER) WARREN, DANAH (PROJECT MANAGER) NOVEMBER

More information

Positioning Servo Design Example

Positioning Servo Design Example Positioning Servo Design Example 1 Goal. The goal in this design example is to design a control system that will be used in a pick-and-place robot to move the link of a robot between two positions. Usually

More information

Simplified Filtering Estimator for Spacecraft Attitude Determination from Phase Information of GPS Signals

Simplified Filtering Estimator for Spacecraft Attitude Determination from Phase Information of GPS Signals WCE 7, July - 4, 7, London, U.K. Simplified Filtering Estimator for Spacecraft Attitude Determination from Phase Information of GPS Signals S. Purivigraipong, Y. Hashida, and M. Unwin Abstract his paper

More information

Physics. Student Materials Advanced Higher. Tutorial Problems Mechanics HIGHER STILL. Spring 2000

Physics. Student Materials Advanced Higher. Tutorial Problems Mechanics HIGHER STILL. Spring 2000 Spring 2000 HIGHER STILL Physics Student Materials Advanced Higher Tutorial Problems Mechanics TUTORIAL 1 You will find tutorials on each topic. The fully worked out answers are available. The idea is

More information

Nano-JASMINE: A Small Infrared Astrometry Satellite

Nano-JASMINE: A Small Infrared Astrometry Satellite SSC07-VI-4 Nano-JASMINE: A Small Infrared Astrometry Satellite 21 st Annual AIAA/USU Conference on Small Satellites 14th/August/2007 Intelligent Space Systems Laboratory, University of Tokyo Nobutada Sako,

More information

Example: Modeling DC Motor Position Physical Setup System Equations Design Requirements MATLAB Representation and Open-Loop Response

Example: Modeling DC Motor Position Physical Setup System Equations Design Requirements MATLAB Representation and Open-Loop Response Page 1 of 5 Example: Modeling DC Motor Position Physical Setup System Equations Design Requirements MATLAB Representation and Open-Loop Response Physical Setup A common actuator in control systems is the

More information

TRAJECTORY SIMULATIONS FOR THRUST-VECTORED ELECTRIC PROPULSION MISSIONS

TRAJECTORY SIMULATIONS FOR THRUST-VECTORED ELECTRIC PROPULSION MISSIONS RAJECORY SIMULAIONS FOR HRUS-VECORED ELECRIC PROPULSION MISSIONS Abstract N. Leveque, C. Welch, A. Ellery, A. Curley Kingston University, Astronautics and Space Systems Group School of Engineering Friars

More information

Rotary Motion Servo Plant: SRV02. Rotary Experiment #11: 1-DOF Torsion. 1-DOF Torsion Position Control using QuaRC. Student Manual

Rotary Motion Servo Plant: SRV02. Rotary Experiment #11: 1-DOF Torsion. 1-DOF Torsion Position Control using QuaRC. Student Manual Rotary Motion Servo Plant: SRV02 Rotary Experiment #11: 1-DOF Torsion 1-DOF Torsion Position Control using QuaRC Student Manual Table of Contents 1. INTRODUCTION...1 2. PREREQUISITES...1 3. OVERVIEW OF

More information

Attitude Determination and Control System Design for STU-2A Cubesat and In-Orbit Results

Attitude Determination and Control System Design for STU-2A Cubesat and In-Orbit Results 13 th Annual Summer CubeSat Developer s Workshop August 6-7, 2016, Logan, Utah Attitude Determination and Control System Design for STU-2A Cubesat and In-Orbit Results Presented by Shufan Wu Guowen Sun,

More information

PID Control. Objectives

PID Control. Objectives PID Control Objectives The objective of this lab is to study basic design issues for proportional-integral-derivative control laws. Emphasis is placed on transient responses and steady-state errors. The

More information

Design of Sliding Mode Attitude Control for Communication Spacecraft

Design of Sliding Mode Attitude Control for Communication Spacecraft Design of Sliding Mode Attitude Control for Communication Spacecraft Erkan Abdulhamitbilal 1 and Elbrous M. Jafarov 1 ISTAVIA Engineering, Istanbul Aeronautics and Astronautics Engineering, Istanbul Technical

More information

Space mission environments: sources for loading and structural requirements

Space mission environments: sources for loading and structural requirements Space structures Space mission environments: sources for loading and structural requirements Prof. P. Gaudenzi Università di Roma La Sapienza, Rome Italy paolo.gaudenzi@uniroma1.it 1 THE STRUCTURAL SYSTEM

More information

AS3010: Introduction to Space Technology

AS3010: Introduction to Space Technology AS3010: Introduction to Space Technology L E C T U R E 22 Part B, Lecture 22 19 April, 2017 C O N T E N T S Attitude stabilization passive and active. Actuators for three axis or active stabilization.

More information

Performance characteristics are based on customer requirements. As such, they are not representative of component capabilities or limitations.

Performance characteristics are based on customer requirements. As such, they are not representative of component capabilities or limitations. ADN Micro Propulsion System 13066300-01 The VACCO / ECAPS CubeSat ADN Delta-V Propulsion System is a high performance micro propulsion system (MiPS) specifically designed for CubeSats. The ADN Delta-V

More information

CS491/691: Introduction to Aerial Robotics

CS491/691: Introduction to Aerial Robotics CS491/691: Introduction to Aerial Robotics Topic: Midterm Preparation Dr. Kostas Alexis (CSE) Areas of Focus Coordinate system transformations (CST) MAV Dynamics (MAVD) Navigation Sensors (NS) State Estimation

More information

Design and performance simulation of a satellite momentum exchange actuator

Design and performance simulation of a satellite momentum exchange actuator Australian Journal of Mechanical Engineering ISSN: 1448-4846 (Print) 2204-2253 (Online) Journal homepage: http://www.tandfonline.com/loi/tmec20 Design and performance simulation of a satellite momentum

More information

Advanced Higher Physics. Rotational motion

Advanced Higher Physics. Rotational motion Wallace Hall Academy Physics Department Advanced Higher Physics Rotational motion Problems AH Physics: Rotational Motion 1 2013 Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration

More information

Thermal Design and Analysis of the BroadBand Radiometer. Oliver Poyntz-Wright (Rutherford Appleton Laboratory, United Kingdom)

Thermal Design and Analysis of the BroadBand Radiometer. Oliver Poyntz-Wright (Rutherford Appleton Laboratory, United Kingdom) 255 Appendix T Thermal Design and Analysis of the BroadBand Radiometer Oliver Poyntz-Wright (Rutherford Appleton Laboratory, United Kingdom) 256 Thermal Design and Analysis of the BroadBand Radiometer

More information

An Agile Multi-Use Nano Star Camera for Constellation Applications

An Agile Multi-Use Nano Star Camera for Constellation Applications An Agile Multi-Use Nano Star Camera for Constellation Applications Scott Palo 1,2, George Stafford 2 and Alan Hoskins 1 1 University of Colorado 2 Blue Canyon Technologies Partnership The BCT technical

More information

Thrust Balance Characterization of a 200W Quad Confinement Thruster for High Thrust Regimes

Thrust Balance Characterization of a 200W Quad Confinement Thruster for High Thrust Regimes Thrust Balance Characterization of a 200W Quad Confinement Thruster for High Thrust Regimes IEPC-2013-155 Presented at the 33rd International Electric Propulsion Conference, The George Washington University

More information

Design Architecture of Attitude Determination and Control System of ICUBE

Design Architecture of Attitude Determination and Control System of ICUBE Design Architecture of Attitude Determination and Control System of ICUBE 9th Annual Spring CubeSat Developers' Workshop, USA Author : Co-Author: Affiliation: Naqvi Najam Abbas Dr. Li YanJun Space Academy,

More information

James Paul Mason CU Boulder LASP

James Paul Mason CU Boulder LASP On-Orbit Performance and the First Flight of the BCT XACT 3-axis ADCS James Paul Mason CU Boulder LASP photo credit: NASA/ESA Tim Peake Matthew D. Baumgart, Thomas N. Woods, Chloe Downs, (BCT) Daniel Hegel,

More information

Pointing Control for Low Altitude Triple Cubesat Space Darts

Pointing Control for Low Altitude Triple Cubesat Space Darts Pointing Control for Low Altitude Triple Cubesat Space Darts August 12 th, 2009 U.S. Naval Research Laboratory Washington, D.C. Code 8231-Attitude Control System James Armstrong, Craig Casey, Glenn Creamer,

More information

QUATERNION FEEDBACK ATTITUDE CONTROL DESIGN: A NONLINEAR H APPROACH

QUATERNION FEEDBACK ATTITUDE CONTROL DESIGN: A NONLINEAR H APPROACH Asian Journal of Control, Vol. 5, No. 3, pp. 406-4, September 003 406 Brief Paper QUAERNION FEEDBACK AIUDE CONROL DESIGN: A NONLINEAR H APPROACH Long-Life Show, Jyh-Ching Juang, Ying-Wen Jan, and Chen-zung

More information

GOSAT MISSION and SPACECRAFT PARTS REQUIRMENTS

GOSAT MISSION and SPACECRAFT PARTS REQUIRMENTS MISSION and SPACECRAFT PARTS REQUIRMENTS OCT. 22, 2004 GOSAT PROJECT TEAM Japan Aerospace Exploration Agency (JAXA) GOSAT Objectives (1) Kyoto Protocol (1997): Mandatory for Developed Nations to Reduce

More information

A DETAILED IMPACT RISK ASSESSMENT OF POSSIBLE PROTECTION ENHANCEMENTS TO TWO LEO SPACECRAFT

A DETAILED IMPACT RISK ASSESSMENT OF POSSIBLE PROTECTION ENHANCEMENTS TO TWO LEO SPACECRAFT A DETAILED IMPACT RISK ASSESSMENT OF POSSIBLE PROTECTION ENHANCEMENTS TO TWO LEO SPACECRAFT H. Stokes (1), C. Cougnet (2), M. David (3), J. Gelhaus (4), M. Röthlingshöfer (5) (1) PHS Space Ltd, 8 Dixon

More information

A Miniaturized Satellite Attitude Determination and Control System with Autonomous Calibration Capabilities

A Miniaturized Satellite Attitude Determination and Control System with Autonomous Calibration Capabilities A Miniaturized Satellite Attitude Determination and Control System with Autonomous Calibration Capabilities Sanny Omar Dr. David Beale Dr. JM Wersinger Introduction ADACS designed for CubeSats CubeSats

More information

Reduction of the Response Time of Earth Observation Satellite Constellations using Inter-satellite Links

Reduction of the Response Time of Earth Observation Satellite Constellations using Inter-satellite Links Reduction of the Response Time of Earth Observation Satellite Constellations using Inter-satellite Links S. De Florio Data quality of Earth observation satellites is often evaluated in terms of short system

More information

Figure 1. View of ALSAT-2A spacecraft

Figure 1. View of ALSAT-2A spacecraft ALSAT-2A TRANSFER AND FIRST YEAR OPERATIONS M. Kameche (1), A.H. Gicquel (2), D. Joalland (3) (1) CTS/ASAL, 1 Avenue de la Palestine, BP 13, Arzew 31200 Oran, Algérie, email:mo_kameche@netcourrier.com

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BSC (HONS) MECHATRONICS TOP-UP SEMESTER 1 EXAMINATION 2017/2018 ADVANCED MECHATRONIC SYSTEMS

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BSC (HONS) MECHATRONICS TOP-UP SEMESTER 1 EXAMINATION 2017/2018 ADVANCED MECHATRONIC SYSTEMS ENG08 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BSC (HONS) MECHATRONICS TOP-UP SEMESTER EXAMINATION 07/08 ADVANCED MECHATRONIC SYSTEMS MODULE NO: MEC600 Date: 7 January 08 Time: 0.00.00 INSTRUCTIONS TO

More information

Sliding Mode Control Strategies for Spacecraft Rendezvous Maneuvers

Sliding Mode Control Strategies for Spacecraft Rendezvous Maneuvers Osaka University March 15, 2018 Sliding Mode Control Strategies for Spacecraft Rendezvous Maneuvers Elisabetta Punta CNR-IEIIT, Italy Problem Statement First Case Spacecraft Model Position Dynamics Attitude

More information

ECE 5670/6670 Lab 8. Torque Curves of Induction Motors. Objectives

ECE 5670/6670 Lab 8. Torque Curves of Induction Motors. Objectives ECE 5670/6670 Lab 8 Torque Curves of Induction Motors Objectives The objective of the lab is to measure the torque curves of induction motors. Acceleration experiments are used to reconstruct approximately

More information

BIRDY-T : Focus on propulsive aspects of an icubsat to small bodies of the solar system

BIRDY-T : Focus on propulsive aspects of an icubsat to small bodies of the solar system BIRDY-T : Focus on propulsive aspects of an icubsat to small bodies of the solar system Gary Quinsac, PhD student at PSL Supervisor: Benoît Mosser Co-supervisors: Boris Segret, Christophe Koppel icubesat,

More information

Circular Motion & Gravitation FR Practice Problems

Circular Motion & Gravitation FR Practice Problems 1) A mass m is attached to a length L of string and hung straight strainght down from a pivot. Small vibrations at the pivot set the mass into circular motion, with the string making an angle θ with the

More information

CHAPTER 5 FUZZY LOGIC FOR ATTITUDE CONTROL

CHAPTER 5 FUZZY LOGIC FOR ATTITUDE CONTROL 104 CHAPTER 5 FUZZY LOGIC FOR ATTITUDE CONTROL 5.1 INTRODUCTION Fuzzy control is one of the most active areas of research in the application of fuzzy set theory, especially in complex control tasks, which

More information

The Quantum Sensor Challenge Designing a System for a Space Mission. Astrid Heske European Space Agency The Netherlands

The Quantum Sensor Challenge Designing a System for a Space Mission. Astrid Heske European Space Agency The Netherlands The Quantum Sensor Challenge Designing a System for a Space Mission Astrid Heske European Space Agency The Netherlands Rencontres de Moriond - Gravitation, La Thuile, 2017 Quantum Sensors in Lab Experiments

More information

FAULT DETECTION for SPACECRAFT ATTITUDE CONTROL SYSTEM. M. Amin Vahid D. Mechanical Engineering Department Concordia University December 19 th, 2010

FAULT DETECTION for SPACECRAFT ATTITUDE CONTROL SYSTEM. M. Amin Vahid D. Mechanical Engineering Department Concordia University December 19 th, 2010 FAULT DETECTION for SPACECRAFT ATTITUDE CONTROL SYSTEM M. Amin Vahid D. Mechanical Engineering Department Concordia University December 19 th, 2010 Attitude control : the exercise of control over the orientation

More information

A Stellar Gyroscope for CubeSat Attitude Determination

A Stellar Gyroscope for CubeSat Attitude Determination A Stellar Gyroscope for CubeSat Attitude Determination Samir A. Rawashdeh and James E. Lumpp, Jr. Space Systems Laboratory University of Kentucky James Barrington-Brown and Massimiliano Pastena SSBV Space

More information

Final Examination 2015

Final Examination 2015 THE UNIVERSITY OF SYDNEY School of Aerospace, Mechanical and Mechatronic Engineering AERO 2705: Space Engineering 1 Final Examination 2015 READ THESE INSTRUCTIONS CAREFULLY! Answer at least 4 (four of

More information

Experiment # 5 5. Coupled Water Tanks

Experiment # 5 5. Coupled Water Tanks Experiment # 5 5. Coupled Water Tanks 5.. Objectives The Coupled-Tank plant is a Two-Tank module consisting of a pump with a water basin and two tanks. The two tanks are mounted on the front plate such

More information

GP-B Attitude and Translation Control. John Mester Stanford University

GP-B Attitude and Translation Control. John Mester Stanford University GP-B Attitude and Translation Control John Mester Stanford University 1 The GP-B Challenge Gyroscope (G) 10 7 times better than best 'modeled' inertial navigation gyros Telescope (T) 10 3 times better

More information

Influence of electromagnetic stiffness on coupled micro vibrations generated by solar array drive assembly

Influence of electromagnetic stiffness on coupled micro vibrations generated by solar array drive assembly Influence of electromagnetic stiffness on coupled micro vibrations generated by solar array drive assembly Mariyam Sattar 1, Cheng Wei 2, Awais Jalali 3 1, 2 Beihang University of Aeronautics and Astronautics,

More information