Canadian Advanced Nanospace experiment 2 Orbit Operations:

Size: px
Start display at page:

Download "Canadian Advanced Nanospace experiment 2 Orbit Operations:"

Transcription

1 Canadian Advanced Nanospace experiment 2 Orbit Operations: One Year of Pushing the Nanosat Performance Envelope Karan Sarda Cordell Grant, Stuart Eagleson Daniel D. Kekez, Amee Shah Robert E. Zee Space Flight Laboratory University of Toronto 11 August rd Annual Small Satellite Conference Logan, Utah, USA

2 Space Flight Laboratory SFL, founded in engineering staff 15 graduate students MOST: Canada s First Space Telescope Long duration stellar photometry 60-kg microsatellite CanX Program: Nanosatellites (1-7 kg) Highly capable Quick-to-launch (1-3yrs) Tight budget Modular/heritage-based design 2

3 CanX-2 - Mission Mission Goals: Technology demonstrator for future SFL spacecraft Evaluate technologies critical for formation-flight Test-bed for scientists & researchers Demonstrating cost-effective access to space 3

4 Technology Demonstration GPS Hardware Sun Sensors & magnetometer Reaction Wheel NANO Propulsion System (NANOPS) On-Board Computer CMOS Imagers S-Band Transmitter 4

5 Science Payloads Atmospheric Spectrometer: Green-house gasses GPS Occultation: Water vapour concentration (Troposphere) & Electron density (Ionosphere) Materials Science: Evaluate AO resistant coating 5

6 z CanX-2 Bus y x Reaction Wheel GPS Antenna Materials Experiment Li-ion battery GPS Receiver Computers Wheel-axis NANO Propulsion System (NANOPS) 34 cm x 10 cm x 10 cm 3.5 kg total mass 1.25W time-average power consumption Tray-based design UHF & S-band Radios Atmospheric Spectrometer 6

7 CanX-2 External layout x Deployable Magnetometer Deployable UHF Antennas (4) y z S-band Patch Antennas (2) NANOPS Nozzle Spectrometer Aperture Sun Sensors (6) GPS Antenna z Body-Mounted Solar Cells (20) Materials Experiment CMOS Imagers (2) y x 7

8 Launch Day Delfi-C3 SEEDS NTS (CanX-6) COMPASS-1 AAUSat-2 CanX-2 CUTE1.7+APDII ISRO/Antrix PSLV C9 Vehicle Assembly Building Sriharikota, India NLS-4 & NLS-5 Spacecraft & XPOD deployment systems integrated with PSLV upper stage Launch: April 28 th 03:53 UTC 8

9 Telemetry: Battery Voltage 9

10 Telemetry: Power Generation Nominal Controlled Attitude: Orbit Normal Alignment of Long Axis 10

11 Telemetry: Power Generation 7 Peak power consumption when transmitting. CanX-2 Generated vs. Consumed Power Power generated ~5W in Nominal Controlled Attitude (Y-Thomson Configuration) 6 5 Power (W) Nominal consumed power 1 0 9/25/ :36 9/26/2008 2:24 9/26/2008 7:12 9/26/ :00 9/26/ :48 9/26/ :36 9/27/2008 2:24 Battery charging Date (UTC) Generated Power (W) Consumed Power (W) 11

12 Telemetry: Temperature CanX-2 Structural Panel and Battery Temperature 12

13 CanX-2 Primary Objective: Formation Flight Technology Demonstration 13

14 CanX-2 ADCS Sun Sensors (6) Magnetorquers (3) Magnetometer Reaction Wheel Control Modes B-dot (rate damping) Momentum Align (Y-thomson configuration orbit-normal alignment) Wheel pitch (payload targeting about wheel axis) 14

15 B-Dot Control CanX-2 b-dot rate damping controller reducing angular rates from 50 o /s to 0 o /s 15

16 Momentum Align Control Long-axis orbit normal Momentum align controller reducing angle between spacecraft Y-axis and orbit normal towards 0 o 16

17 Wheel Pitch Control Aligns payloads to targets of interest in orbit frame 135 o slew in 60s <5 o pointing accuracy 1 o stability over 25 minutes Wheel pitch controller aligning GPS antenna towards zenith 17

18 CubeSat Compact Three-Axis Attitude Actuator and Sensor Pack with Three-axis, achievable pointing accuracy of 1-2 deg RMS Package includes: 3 reaction wheels (10mNms) 3 magnetorquers 6 sun sensors (up to two are external) 1 magnetometer (external) Power: < 1 W typical Magnetorquer Mass: <1 kg Dimensions: 95x95x61 mm Magnetometer Optional deployable magnetometer boom Easy-to-integrate box, compatible with Pumpkin CubeSat Kit CanX-2 heritage (1.3 years) and proven on-orbit performance Sun Sensor 61mm 95mm 10mNms Wheel 18

19 NANO Propulsion System CanX-4 & -5 Propulsion System: CNAPS NANOPS Basics: Liquid fuel, cold-gas propulsion system Sulfer Hexaflouride propellant Built entirely using commercial technologies Purpose: Qualify proof-of-concept propulsion system SFL s CanX-4 & -5 formation flight mission will use a scaled-up propulsion system 19

20 NANOPS Orbit Results Fuel Leakage: Negligible fuel loss Consistent with ground-based testing 20

21 NANOPS Test Results Fuel Leakage: Negligable ISP Minimum: 44s Average: 46s SF 6 Theoretical Maximum: 45s-50s 21

22 NANOPS Test Results Fuel Leakage: Negligable ISP: ~46s Minimum Impulse Bit: 0.07 mns 75psi) 0.15 mns 255psi) 0.13 mns average 22

23 NANOPS Test Results Fuel Leakage: Negligable ISP: ~46s Minimum Impulse Bit: ~0.13 mns Upcoming NANOPS testing Long-duration thrust Determine Impulse & thrust-level at various pressures 23

24 Radios UHF Transceiver S-Band Transmitter Radios functioning nominally Data rates up to 1mbps demonstrated on orbit Over 400MB of payload & telemetry data downloaded 24

25 CanX-2 Secondary Objective: Scientific Experimentation 25

26 Spectrometer Argus Spectrometer 1000 provided by York University, Toronto STK animation of CanX -2 spectrometer observation Spectra of greenhouse gasses taken over Ontario, Canada by CanX-2/Argus 1000 spectrometer 26

27 GPS Occultation Mapping of watervapour (troposphere) and electron density (ionosphere) can be generated through measurement occulting L2 GPS signals. Widespread weather applications & improve GPS estimate accuracy 27

28 GPS Occultation Outer edge is nadir Orbit Normal Attitude plot of successful CanX-2 occultation trial Require 5 tracked GPS satellites min. 4 above atmosphere, 1 occulting in atmosphere. Occulting spacecraft near center of antenna FOV to maximize weak L2 signal. Record occulting data at 50Hz Negative velocity Earth Atmosphere boundary GPS antenna FOV 28

29 Conclusion First fifteen months in orbit is a success! 29

30 Conclusion First fifteen months in orbit are a success! Many achievements have been accomplished during 1 st year in orbit Rapid commissioning of spacecraft hardware & software Payload operations commenced mere days after launch Characterization of NANOPS, orbit results matching expectations Accurate attitude estimation and pointing demonstrated Solid performance of attitude sensors and miniature wheel Unprecedented radio performance for operational nanosatellite Proven accuracy of power & thermal models Hundreds of successful scientific experiments executed on orbit 30

31 Conclusion First fifteen months in orbit are a success! Many achievements have been accomplished during 1 st year in orbit CanX-2 is a clear-cut example of what a nanosatellite on a limited budget is capable of accomplishing. 34cm 31

32 Conclusion First fifteen months in orbit are a success! Many achievements have been accomplished during 1 st year in orbit CanX-2 is a clear-cut example of what a nanosatellite on a limited budget is capable of accomplishing. 34cm 32

33 Conclusion First fifteen months in orbit are a success! Many achievements have been accomplished during 1 st year in orbit CanX-2 is a clear-cut example of what a nanosatellite on a limited budget is capable of accomplishing. 34cm 33

34 Conclusion First fifteen months in orbit are a success! Many achievements have been accomplished during 1 st year in orbit CanX-2 is a clear-cut example of what a nanosatellite on a limited budget is capable of accomplishing. CanX-2: A trail blazing mission; demonstrate critical technologies 34

35 Conclusion First fifteen months in orbit are a success! Many achievements have been accomplished during 1 st year in orbit CanX-2 is a clear-cut example of what a nanosatellite on a limited budget is capable of accomplishing. CanX-2: A trail blazing, technology demonstration mission for SFL Generic Nanosatellite Bus (GNB): An even more capable platform. Built upon heritage & experience of CanX-2 First GNB Launch: 2009 Please visit our booth for more info! 35

36 CanX Missions Generic Nanosatellite Bus (GNB) AISSat-1 CanX-4/-5 CanX-3 AIS-sensor payload (Norway) Formation-Flight Demonstration Stellar Photometry Constellation 36

37 CanX Missions UniBRITE and AISSat-1 SFL Clean Room 37

38 38

39 CanX Missions Technology demonstrator 10x10x10cm; 1kg Launched in 2003 CanX-2 NTS (CanX-6) CanX-1 39

40 CanX Missions Technology demonstrator Science platform 34x10x10cm; 3.5kg CanX-2 NTS (CanX-6) CanX-1 40

41 CanX Missions Space-based AIS-sensor (Com Dev Intl.) 7 mo. from conception to launch 20x20x20cm; 6.5kg CanX-2 NTS (CanX-6) CanX-1 41

42 Wheel Spin-up Reaction wheel speed plot 25 rad/s wheel speed 50 rad/s wheel speed Wheel spindown Time (s) Body-axes: x y z CanX-2 body-rate plot Wheel operates nominally: Actual bodyrates match expected rates! Time (s) 10 o /s Induced body-rates about CanX-2 wheel-axis 20 o /s 42

43 NANOPS Schematic NANOPS Propulsion A A B D E C D Stainless Steel Tubing Tefzel Tubing C F B E F Legend A: Storage Tank B: Relief Valve C: Regulator Valve D: Pressure Sensor E: Thruster Valve F: Nozzle 43

44 NANOPS Test Results Fuel Leakage: Negligable ISP: ~46s Minimum Impulse Bit: ~0.13 mns Thrust valve on-time (testing to date): Min: 1ms Max: 500ms 44

45 NANOPS Test Results NANOPS Orbit-Testing Results Fuel Leakage: Negligable ISP: ~46s Minimum Impulse Bit: ~0.13 mns Valve on-time (testing to date): 1ms - 500ms Upcoming NANOPS testing Constant thrust Pulse-Width Modulation thrusting PWM regulator valve to thrust at quasi-constant pressures 45

46 GPS Occultation Position difference (radial, in-track, crosstrack) between GPS receiver relative to TLEestimated ground track on the order of several hundred meters 46

Launches and On-Orbit Performance

Launches and On-Orbit Performance Launches and On-Orbit Performance An Update on Nanosatellite Missions at the UTIAS Space Flight Laboratory Daniel D. Kekez,, Robert E. Zee, Freddy M. Pranajaya Space Flight Laboratory University of Toronto

More information

New Nanosat el l it e Devel opment s at t he UTIAS Space Fl ight Labor at or y

New Nanosat el l it e Devel opment s at t he UTIAS Space Fl ight Labor at or y New Nanosat el l it e Devel opment s at t he UTIAS Space Fl ight Labor at or y Daniel D. Kekez, Robert E. Zee, Freddy M. Pranajaya 6 August 2011 UniBRI TE Out l ine Update on the UTIAS Space Flight Laboratory

More information

Lunette: Satellite to Satellite Gravity Mapping of the Moon

Lunette: Satellite to Satellite Gravity Mapping of the Moon Lunette: Satellite to Satellite Gravity Mapping of the Moon Maria Short 9th ILEWG International Conference on Exploration and Utilisation n of the Moon Authors: M. Short, C. Short, A. Philip, J. Gryzmisch,

More information

Hodoyoshi Panel Discussion

Hodoyoshi Panel Discussion Hodoyoshi Panel Discussion FREDDY PRANAJAYA Head of Research and Development Space Flight Laboratory University of Toronto Institute for Aerospace Studies 4925 Dufferin Street, Toronto, Ontario, Canada,

More information

SFL Nanosatellite Missions and Launches in

SFL Nanosatellite Missions and Launches in SFL Nanosatellite Missions and Launches in 2007- Freddy M. Pranajaya Manager, Advanced Systems SPACE FLIGHT LABORATORY University of Toronto Institute for Aerospace Studies Presentation Outline The Space

More information

Attitude Determination and Control System Design for STU-2A Cubesat and In-Orbit Results

Attitude Determination and Control System Design for STU-2A Cubesat and In-Orbit Results 13 th Annual Summer CubeSat Developer s Workshop August 6-7, 2016, Logan, Utah Attitude Determination and Control System Design for STU-2A Cubesat and In-Orbit Results Presented by Shufan Wu Guowen Sun,

More information

BRITE One Year in Orbit

BRITE One Year in Orbit BRITE One Year in Orbit O. Koudelka, M.Unterberger, P.Romano Graz University of Technology W.Weiss, R.Kuschnig University of Vienna 1 Contents Scientific Goals Mission Description Commissioning Science

More information

Exploring the Mysteries of the Cosmos on the MOST Microsatellite Mission

Exploring the Mysteries of the Cosmos on the MOST Microsatellite Mission Exploring the Mysteries of the Cosmos on the MOST Microsatellite Mission Dr. Simon Grocott Dr. Robert E Zee Dr. Jaymie Matthews Dynacon Inc UTIAS SFL UBC 13 August 2003 Outline MOST (Microvariability and

More information

FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING

FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING Elias F. Solorzano University of Toronto (Space Flight Laboratory) Toronto, ON (Canada) August 10 th, 2016 30 th AIAA/USU

More information

A CubeSat Mission for Exoplanet Transit Detection and Astroseismology

A CubeSat Mission for Exoplanet Transit Detection and Astroseismology A CubeSat Mission for Exoplanet Transit Detection and Astroseismology Jeremy Bailey (UNSW, Physics) Steve Tsitas (UNSW, ACSER) Daniel Bayliss (RSAA, ANU) Tim Bedding (Univ. Sydney) ESO Very Large Telescope

More information

INCA. Ionospheric Neutron Content Analyzer. New Mexico State University University NanoSat-8. CubeSat Workshop Presentation August 2, 2014; Logan, UT

INCA. Ionospheric Neutron Content Analyzer. New Mexico State University University NanoSat-8. CubeSat Workshop Presentation August 2, 2014; Logan, UT INCA Ionospheric Neutron Content Analyzer New Mexico State University University NanoSat-8 CubeSat Workshop Presentation August 2, 2014; Logan, UT Presentation Outline Mission Overview Mission Relevance

More information

INCA. Ionospheric Neutron Content Analyzer. New Mexico State University University NanoSat-8. CubeSat Workshop Presentation August 2, 2014; Logan, UT

INCA. Ionospheric Neutron Content Analyzer. New Mexico State University University NanoSat-8. CubeSat Workshop Presentation August 2, 2014; Logan, UT INCA Ionospheric Neutron Content Analyzer New Mexico State University University NanoSat-8 CubeSat Workshop Presentation August 2, 2014; Logan, UT Mission Overview Mission Relevance ConOps INCA Payload

More information

Spacecraft Bus / Platform

Spacecraft Bus / Platform Spacecraft Bus / Platform Propulsion Thrusters ADCS: Attitude Determination and Control Subsystem Shield CDH: Command and Data Handling Subsystem Payload Communication Thermal Power Structure and Mechanisms

More information

Pointing Control for Low Altitude Triple Cubesat Space Darts

Pointing Control for Low Altitude Triple Cubesat Space Darts Pointing Control for Low Altitude Triple Cubesat Space Darts August 12 th, 2009 U.S. Naval Research Laboratory Washington, D.C. Code 8231-Attitude Control System James Armstrong, Craig Casey, Glenn Creamer,

More information

Increasing the Accuracy of Orbital Position Information from NORAD SGP4 Using Intermittent GPS Readings

Increasing the Accuracy of Orbital Position Information from NORAD SGP4 Using Intermittent GPS Readings Increasing the Accuracy of Orbital Position Information from NORAD SGP4 Using Intermittent GPS Readings Michael Greene Robert E. Zee Space Flight Laboratory University of Toronto 12 August 2009 23 rd Annual

More information

The Attitude Determination and Control System of the Generic Nanosatellite Bus. Michael R. Greene

The Attitude Determination and Control System of the Generic Nanosatellite Bus. Michael R. Greene The Attitude Determination and Control System of the Generic Nanosatellite Bus by Michael R. Greene A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate

More information

BRITE Nanosatellite Constellation- Four Years of Successful Operations

BRITE Nanosatellite Constellation- Four Years of Successful Operations BRITE Nanosatellite Constellation- Four Years of Successful Operations O. Koudelka, R.Kuschnig, M.Unterberger, P.Romano Graz University of Technology W.Weiss University of Vienna Contents Introduction

More information

An Attitude Control System and Commissioning Results of the SNAP-1 Nanosatellite

An Attitude Control System and Commissioning Results of the SNAP-1 Nanosatellite An Attitude Control System and Commissioning Results of the SNAP-1 Nanosatellite WH Steyn, Y Hashida and V Lappas Surrey Space Centre University of Surrey Guildford, Surrey GU2 5XH United Kingdom Abstract.

More information

ASPECT Spectral Imager CubeSat Mission to Didymos

ASPECT Spectral Imager CubeSat Mission to Didymos ASPECT Spectral Imager CubeSat Mission to Didymos Kestilä A. 1),Näsilä A. 2), Kohout T. 3),Tikka T. 1),Granvik M. 3) 1. Aalto University, Finland. 2. Technical Research Center of Finland, Finland 3. Helsinki

More information

ExoplanetSat: A Nanosatellite Space Telescope for Detecting Transiting Exoplanets

ExoplanetSat: A Nanosatellite Space Telescope for Detecting Transiting Exoplanets 1 2 ExoplanetSat: A Nanosatellite Space Telescope for Detecting Transiting Exoplanets Matthew W. Smith 1 (m_smith@mit.edu), Sara Seager 1, Christopher M. Pong 1, Sungyung Lim 2, Matthew W. Knutson 1, Timothy

More information

Attitude Control on the Pico Satellite Solar Cell Testbed-2

Attitude Control on the Pico Satellite Solar Cell Testbed-2 SSC12-II-1 Attitude Control on the Pico Satellite Solar Cell Testbed-2 Siegfried W. Janson, Brian S. Hardy, Andrew Y. Chin, Daniel L. Rumsey, Daniel A. Ehrlich, and David A. Hinkley The Aerospace Corporation

More information

ESSE Payload Design. 1.2 Introduction to Space Missions

ESSE Payload Design. 1.2 Introduction to Space Missions ESSE4360 - Payload Design 1.2 Introduction to Space Missions Earth, Moon, Mars, and Beyond Department of Earth and Space Science and Engineering Room 255, Petrie Science and Engineering Building Tel: 416-736

More information

OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology. 3 rd Mission Idea Contest UNISEC Global

OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology. 3 rd Mission Idea Contest UNISEC Global OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology 3 rd Mission Idea Contest UNISEC Global The Idea We want to take image for the moon phases as seen from Earth Why? Introduction 1.6 billion,23.4%

More information

The Torque Rudder: A Novel Semi-Passive Actuator for Small Spacecraft Attitude Control

The Torque Rudder: A Novel Semi-Passive Actuator for Small Spacecraft Attitude Control The Torque Rudder: A Novel Semi-Passive Actuator for Small Spacecraft Attitude Control Grant Bonin, Vincent Tarantini, Luke Stras, and Robert E. Zee UTIAS Space Flight Laboratory Toronto, On. Canada M3H

More information

Simulation Results of Alternative Methods for Formation Separation Control

Simulation Results of Alternative Methods for Formation Separation Control Simulation Results of Alternative Methods for Formation Separation Control Thomas Heine, Charles Bussy-Virat, Mark Moldwin, Aaron Ridley Department of Climate and Space Sciences and Engineering University

More information

Integrated Test Facility for Nanosat Assessment and Verification

Integrated Test Facility for Nanosat Assessment and Verification Integrated Test Facility for Nanosat Assessment and Verification Steve Wassom, Quinn Young, Bryan Bingham, Rees Fullmer, Mitch Whiteley, Robert Burt, Mike Watson, Tom Ortiz, Joe Richards, Sam Wilcox Utah

More information

Final Examination 2015

Final Examination 2015 THE UNIVERSITY OF SYDNEY School of Aerospace, Mechanical and Mechatronic Engineering AERO 2705: Space Engineering 1 Final Examination 2015 READ THESE INSTRUCTIONS CAREFULLY! Answer at least 4 (four of

More information

New Worlds Observer Final Report Appendix E. Section E: Starshades Subsection E.6: Starshade Spacecraft Lead Author: Amy Lo

New Worlds Observer Final Report Appendix E. Section E: Starshades Subsection E.6: Starshade Spacecraft Lead Author: Amy Lo Section E: Starshades Subsection E.6: Starshade Spacecraft Lead Author: Amy Lo Introduction Starshade Spacecraft Functional Requirements The main function of the starshade spacecraft is to: 1) support

More information

Satellite Components & Systems. Dr. Ugur GUVEN Aerospace Engineer (P.hD) Nuclear Science & Technology Engineer (M.Sc)

Satellite Components & Systems. Dr. Ugur GUVEN Aerospace Engineer (P.hD) Nuclear Science & Technology Engineer (M.Sc) Satellite Components & Systems Dr. Ugur GUVEN Aerospace Engineer (P.hD) Nuclear Science & Technology Engineer (M.Sc) Definitions Attitude: The way the satellite is inclined toward Earth at a certain inclination

More information

The E-SAIL programme. 10th IAA Symposium on Small Satellites for Earth Observation April 20-24, 2015 Berlin LuxSpace s.à.r.

The E-SAIL programme. 10th IAA Symposium on Small Satellites for Earth Observation April 20-24, 2015 Berlin LuxSpace s.à.r. The E-SAIL programme 10th IAA Symposium on Small Satellites for Earth Observation April 20-24, 2015 Berlin LuxSpace s.à.r.l An OHB company Contents LuxSpace Background Consortium Spacecraft Specific issues

More information

ENAE483: Principles of Space System Design Power Propulsion Thermal System

ENAE483: Principles of Space System Design Power Propulsion Thermal System Power Propulsion Thermal System Team B4: Ben Abresch Jason Burr Kevin Lee Scott Wingate November 8th, 2012 Presentation Overview Mission Guidelines Project Specifications Initial Design Power Thermal Insulation

More information

Attitude Determination and Control

Attitude Determination and Control Attitude Determination and Control Dan Hegel Director, Advanced Development hegel@bluecanyontech.com 1 Dan Hegel - Intro Director of Advanced Development at Blue Canyon Technologies Advanced mission concepts

More information

Drift Recovery and Station Keeping Results for the Historic CanX-4/CanX-5 Formation Flying Mission

Drift Recovery and Station Keeping Results for the Historic CanX-4/CanX-5 Formation Flying Mission SSC15-VIII-1 Drift Recovery and Station Keeping Results for the Historic CanX-4/CanX-5 Formation Flying Mission Josh Newman Supervisor: Dr. Robert E. Zee University of Toronto Institute for Aerospace Studies,

More information

DARE Mission and Spacecraft Overview

DARE Mission and Spacecraft Overview DARE Mission and Spacecraft Overview October 6, 2010 Lisa Hardaway, PhD Mike Weiss, Scott Mitchell, Susan Borutzki, John Iacometti, Grant Helling The information contained herein is the private property

More information

An Agile Multi-Use Nano Star Camera for Constellation Applications

An Agile Multi-Use Nano Star Camera for Constellation Applications An Agile Multi-Use Nano Star Camera for Constellation Applications Scott Palo 1,2, George Stafford 2 and Alan Hoskins 1 1 University of Colorado 2 Blue Canyon Technologies Partnership The BCT technical

More information

Design and Development of an Unrestricted Satellite Motion Simulator

Design and Development of an Unrestricted Satellite Motion Simulator Design and Development of an Unrestricted Satellite Motion Simulator Eryn Culton, Jeffery King, Paige Ward United States Naval Academy Annapolis, MD 21402 POC: jking@usna.edu 31st Annual AIAA/USU Conference

More information

A Stellar Gyroscope for CubeSat Attitude Determination

A Stellar Gyroscope for CubeSat Attitude Determination A Stellar Gyroscope for CubeSat Attitude Determination Samir A. Rawashdeh and James E. Lumpp, Jr. Space Systems Laboratory University of Kentucky James Barrington-Brown and Massimiliano Pastena SSBV Space

More information

Quaternion-Based Tracking Control Law Design For Tracking Mode

Quaternion-Based Tracking Control Law Design For Tracking Mode A. M. Elbeltagy Egyptian Armed forces Conference on small satellites. 2016 Logan, Utah, USA Paper objectives Introduction Presentation Agenda Spacecraft combined nonlinear model Proposed RW nonlinear attitude

More information

A Comparison of Low Cost Transfer Orbits from GEO to LLO for a Lunar CubeSat Mission

A Comparison of Low Cost Transfer Orbits from GEO to LLO for a Lunar CubeSat Mission A Comparison of Low Cost Transfer Orbits from GEO to LLO for a Lunar CubeSat Mission A presentation for the New Trends in Astrodynamics conference Michael Reardon 1, Jun Yu 2, and Carl Brandon 3 1 PhD

More information

Attitude Determination System of Small Satellite

Attitude Determination System of Small Satellite Attitude Determination System of Small Satellite Satellite Research Centre Jiun Wei Chia, M. Sheral Crescent Tissera and Kay-Soon Low School of EEE, Nanyang Technological University, Singapore 24 th October

More information

The development of a family of Resistojet Thruster Propulsion Systems for Small Spacecraft

The development of a family of Resistojet Thruster Propulsion Systems for Small Spacecraft The development of a family of Resistojet Thruster Propulsion Systems for Small Spacecraft D.Gibbon, I.Coxhill, A.Baker, M.Sweeting Surrey Satellite Technology Ltd, University of Surrey, Guildford, England

More information

Advancing the Utility of Small Satellites with the Development of a Hybrid Electric-Laser Propulsion (HELP) System

Advancing the Utility of Small Satellites with the Development of a Hybrid Electric-Laser Propulsion (HELP) System Advancing the Utility of Small Satellites with the Development of a Hybrid Electric-Laser Propulsion (HELP) System Dr. Rachel Leach, Gerry Murphy & Tom Adams Design_Net Engineering LLC August 12, 2004

More information

Figure 1. View of ALSAT-2A spacecraft

Figure 1. View of ALSAT-2A spacecraft ALSAT-2A TRANSFER AND FIRST YEAR OPERATIONS M. Kameche (1), A.H. Gicquel (2), D. Joalland (3) (1) CTS/ASAL, 1 Avenue de la Palestine, BP 13, Arzew 31200 Oran, Algérie, email:mo_kameche@netcourrier.com

More information

ON-ORBIT PERFORMANCE OF THE BRIGHT TARGET EXPLORER (BRITE) NANOSATELLITE ASTRONOMY CONSTELLATION

ON-ORBIT PERFORMANCE OF THE BRIGHT TARGET EXPLORER (BRITE) NANOSATELLITE ASTRONOMY CONSTELLATION ON-ORBIT PERFORMANCE OF THE BRIGHT TARGET EXPLORER (BRITE) NANOSATELLITE ASTRONOMY CONSTELLATION Karan Sarda, C. Cordell Grant, Monica Chaumont, Seung Yun Choi, Bryan Johnston- Lemke, Robert E. Zee Space

More information

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010 Orbit Design Marcelo Suárez Orbit Design Requirements The following Science Requirements provided drivers for Orbit Design: Global Coverage: the entire extent (100%) of the ice-free ocean surface to at

More information

FORMOSAT-3 Satellite Thermal Control Design and Analysis *

FORMOSAT-3 Satellite Thermal Control Design and Analysis * Journal of Aeronautics, Astronautics and Aviation, Series A, Vol.39, No.4, pp.287-292 (27) 287 Technical Note FORMOSAT-3 Satellite Thermal Control Design and Analysis * Ming-Shong Chang **, Chia-Ray Chen,

More information

A Regional Microsatellite Constellation with Electric Propulsion In Support of Tuscan Agriculture

A Regional Microsatellite Constellation with Electric Propulsion In Support of Tuscan Agriculture Berlin, 20 th - 24 th 2015 University of Pisa 10 th IAA Symposium on Small Satellites for Earth Observation Student Conference A Regional Microsatellite Constellation with Electric Propulsion In Support

More information

SSC13-VI-1 MISSION DESIGN CONCEPT

SSC13-VI-1 MISSION DESIGN CONCEPT SSC13-VI-1 INTRODUCTION TO FORMOSAT-7/COSMIC-2 MISSION Alex da Silva Curiel, Meryl Lambert, Doug Liddle, Prof Sir Martin Sweeting. Surrey Satellite Technology Ltd. Tycho House, Surrey Research Park, ;

More information

The BRITE Space Telescope: A Nanosatellite Constellation for High-Precision Photometry of the Brightest Stars

The BRITE Space Telescope: A Nanosatellite Constellation for High-Precision Photometry of the Brightest Stars SSC06-X-1 The BRITE Space Telescope: A Nanosatellite Constellation for High-Precision Photometry of the Brightest Stars Norman C. Deschamps, C. Cordell Grant, Dan G. Foisy, Robert E. Zee Space Flight Laboratory,

More information

CubeSat and astrophysical polarimetry

CubeSat and astrophysical polarimetry CubeSat and astrophysical polarimetry Prof. Lachezar FILIPOV Dr. Daniela Boneva Bulgarian Academy of Sciences Space Research and Technology Institute Space Astrophysics Department The idea of this report

More information

Preliminary Development of an Experimental Lightweight Pulsed Plasma Thruster for Solar Sail Attitude Control

Preliminary Development of an Experimental Lightweight Pulsed Plasma Thruster for Solar Sail Attitude Control Preliminary Development of an Experimental Lightweight Pulsed Plasma Thruster for Solar Sail Attitude Control Kevin Pryor, Bong Wie, and Pavlos Mikellides Arizona State University 18 th Annual AIAA/USU

More information

Make Your Cubesat Overnight and Put it in Any Orbit (Well almost)

Make Your Cubesat Overnight and Put it in Any Orbit (Well almost) Make Your Cubesat Overnight and Put it in Any Orbit (Well almost) Jim White, Walter Holemans, Planetary Systems Inc. Dr. Adam Huang, University of Arkansas RAMPART Summary Main Components The Promise of

More information

Study Participants: T.E. Sarris, E.R. Talaat, A. Papayannis, P. Dietrich, M. Daly, X. Chu, J. Penson, A. Vouldis, V. Antakis, G.

Study Participants: T.E. Sarris, E.R. Talaat, A. Papayannis, P. Dietrich, M. Daly, X. Chu, J. Penson, A. Vouldis, V. Antakis, G. GLEME: GLOBAL LIDAR EXPLORATION OF THE MESOSPHERE Project Technical Officer: E. Armandillo Study Participants: T.E. Sarris, E.R. Talaat, A. Papayannis, P. Dietrich, M. Daly, X. Chu, J. Penson, A. Vouldis,

More information

System engineering approach toward the problem of required level of in-orbit autonomousoperation of a LEO microsatellite mission

System engineering approach toward the problem of required level of in-orbit autonomousoperation of a LEO microsatellite mission System engineering approach toward the problem of required level of in-orbit autonomousoperation of a LEO microsatellite mission H.Bonyan Amirkabir University of Technology (AUT) H.Bonyan@dena.aut.ac.ir

More information

Propulsion means for CubeSats

Propulsion means for CubeSats Propulsion means for CubeSats C. Scharlemann and D. Krejci 2009 CubeSat Developers Workshop, San Louis Obispo, CA Welcome to the Austrian Research Centers Space Propulsion & Advanced Concepts Staff: 11

More information

Performance characteristics are based on customer requirements. As such, they are not representative of component capabilities or limitations.

Performance characteristics are based on customer requirements. As such, they are not representative of component capabilities or limitations. ADN Micro Propulsion System 13066300-01 The VACCO / ECAPS CubeSat ADN Delta-V Propulsion System is a high performance micro propulsion system (MiPS) specifically designed for CubeSats. The ADN Delta-V

More information

End of Life Re-orbiting The Meteosat-5 Experience

End of Life Re-orbiting The Meteosat-5 Experience End of Life Re-orbiting The Meteosat-5 Experience Milan EUMETSAT, Darmstadt, Germany This article illustrates the orbit maneuver sequence performed during Meteosat- 5 End of Life (EOL) re-orbiting operations

More information

NASA Future Magnetospheric Missions. J. Slavin & T. Moore Laboratory for Solar & Space Physics NASA GSFC

NASA Future Magnetospheric Missions. J. Slavin & T. Moore Laboratory for Solar & Space Physics NASA GSFC NASA Future Magnetospheric Missions J. Slavin & T. Moore Laboratory for Solar & Space Physics NASA GSFC Future Magnetospheric Missions Strategic Missions Radiation Belt Storm Probes (LWS/2011) Magnetospheric

More information

Vicky Chu, Jer Ling, Tom Lin, Joe Fong, Feng-Tai Huang, Guey-Shin Chang. April 15, 2011

Vicky Chu, Jer Ling, Tom Lin, Joe Fong, Feng-Tai Huang, Guey-Shin Chang. April 15, 2011 FORMOSAT-7/COSMIC-2 Overview Vicky Chu, Jer Ling, Tom Lin, Joe Fong, Feng-Tai Huang, Guey-Shin Chang April 15, 2011 Program Status AIT-TECRO Agreement on FORMOSAT-7/COSMIC-2 joint program has been signed

More information

Electric Sail Propulsion Modeling and Mission Analysis

Electric Sail Propulsion Modeling and Mission Analysis Electric Sail Propulsion Modeling and Mission Analysis IEPC-007-35 Presented at the 30 th International Electric Propulsion Conference, Florence, Italy Pekka Janhunen Finnish Meteorological Institute,

More information

GOES-R Instrument Status and Accommodations. Barbara Pfarr GOES-R Program Systems Engineering January 2010 AMS Conference

GOES-R Instrument Status and Accommodations. Barbara Pfarr GOES-R Program Systems Engineering January 2010 AMS Conference GOES-R Instrument Status and Accommodations Barbara Pfarr GOES-R Program Systems Engineering January 2010 AMS Conference Agenda Instrument Developmental Status Significant Changes in the Last Year Introducing

More information

Creating Large Space Platforms From Small Satellites

Creating Large Space Platforms From Small Satellites SSC99-VI-6 Creating Large Space Platforms From Small Satellites Andrew W. Lewin Principal Systems Engineer Orbital Sciences Corporation Dulles, VA 20166 (703) 406-5000 lewin.andy@orbital.com Abstract.

More information

Concordia University Department of Electrical and Computer Engineering Fundamentals of Control Systems (ELEC372) S. Hashtrudi Zad

Concordia University Department of Electrical and Computer Engineering Fundamentals of Control Systems (ELEC372) S. Hashtrudi Zad Concordia University Department of Electrical and Computer Engineering Fundamentals of Control Systems (ELEC372) S. Hashtrudi Zad Project: Analysis of the Performance of a Satellite Pitch Control System

More information

BUILDING LOW-COST NANO-SATELLITES: THE IMPORTANCE OF A PROPER ENVIRONMENTAL TESTS CAMPAIGN. Jose Sergio Almeida INPE (Brazil)

BUILDING LOW-COST NANO-SATELLITES: THE IMPORTANCE OF A PROPER ENVIRONMENTAL TESTS CAMPAIGN. Jose Sergio Almeida INPE (Brazil) BUILDING LOW-COST NANO-SATELLITES: THE IMPORTANCE OF A PROPER ENVIRONMENTAL TESTS CAMPAIGN Jose Sergio Almeida INPE (Brazil) 1 st International Academy of Astronautics Latin American Symposium on Small

More information

Presentation by Indian Delegation. to 49 th STSC UNCOPUOS. February 2012 Vienna

Presentation by Indian Delegation. to 49 th STSC UNCOPUOS. February 2012 Vienna Presentation by Indian Delegation to 49 th STSC UNCOPUOS February 2012 Vienna ASTROSAT Astrosat is India s first dedicated multiwavelength astronomy satellite with a capability to observe target sources

More information

Navigation and Control Design for the CanX-4/-5 Satellite Formation Flying Mission. Niels Henrik Roth

Navigation and Control Design for the CanX-4/-5 Satellite Formation Flying Mission. Niels Henrik Roth Navigation and Control Design for the CanX-4/-5 Satellite Formation Flying Mission by Niels Henrik Roth A thesis submitted in conformity with the requirements for the degree of Master of Applied Science

More information

Attitude control system for ROCSAT-3 microsatellite: a conceptual design

Attitude control system for ROCSAT-3 microsatellite: a conceptual design Acta Astronautica 56 (5) 9 5 www.elsevier.com/locate/actaastro Attitude control system for ROCSAT- microsatellite: a conceptual design Y.W. Jan a;b; ;, J.C. Chiou b; a National Space Program Oce, Hsinchu,

More information

A Concept of Nanosatellite Small Fleet for Earth Observation

A Concept of Nanosatellite Small Fleet for Earth Observation A Concept of Nanosatellite Small Fleet for Earth Observation Prof. Janusz Narkiewicz jnark@meil.pw.edu.pl Sebastian Topczewski stopczewski@meil.pw.edu.pl Mateusz Sochacki msochacki@meil.pw.edu.pl 10-11

More information

James Paul Mason CU Boulder LASP

James Paul Mason CU Boulder LASP On-Orbit Performance and the First Flight of the BCT XACT 3-axis ADCS James Paul Mason CU Boulder LASP photo credit: NASA/ESA Tim Peake Matthew D. Baumgart, Thomas N. Woods, Chloe Downs, (BCT) Daniel Hegel,

More information

Radio occultation mission to Mars using cubesats

Radio occultation mission to Mars using cubesats Radio occultation mission to Mars using cubesats LCPM-12 2017 W. Williamson, A.J. Mannucci, C. Ao 2017 California Institute of Technology. Government sponsorship acknowledged. 1 Radio Occultation Overview

More information

Exploring Space on a Small Satellite, STSAT-2 : A Test Bed for New Technologies

Exploring Space on a Small Satellite, STSAT-2 : A Test Bed for New Technologies 17 th AIAA/USU Conference on Small Satellites @ Logan, Utah, USA. - 2003.8.13. Exploring Space on a Small Satellite, STSAT-2 : A Test Bed for New Technologies Jong-Tae LIM, Myeong-Ryong NAM, Kwangsun RYU,

More information

Design of Attitude Determination and Control Subsystem

Design of Attitude Determination and Control Subsystem Design of Attitude Determination and Control Subsystem 1) Control Modes and Requirements Control Modes: Control Modes Explanation 1 ) Spin-Up Mode - Acquisition of Stability through spin-up maneuver -

More information

Lunar Flashlight & NEA Scout A NanoSat Architecture for Deep Space Exploration

Lunar Flashlight & NEA Scout A NanoSat Architecture for Deep Space Exploration National Aeronautics and Space Administration Lunar Flashlight & NEA Scout A NanoSat Architecture for Deep Space Exploration Payam Banazadeh (JPL/Caltech) Andreas Frick (JPL/Caltech) EM-1 Secondary Payload

More information

Plasma Spectroscopy CubeSat: A demonstration of on-orbit electric propulsion system diagnostics

Plasma Spectroscopy CubeSat: A demonstration of on-orbit electric propulsion system diagnostics Plasma Spectroscopy CubeSat: A demonstration of on-orbit electric propulsion system diagnostics Jennifer Hudson and Kristina Lemmer Department of Mechanical and Aerospace Engineering, Western Michigan

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 ANUSAT (ANna University SATellite) During the year 2002, Indian Space Research Organization (ISRO) threw an open challenge to the educational institutions in India to take

More information

DAVID: Diminutive Asteroid Visitor with Ion Drive A Cubesat Asteroid Mission

DAVID: Diminutive Asteroid Visitor with Ion Drive A Cubesat Asteroid Mission DAVID: Diminutive Asteroid Visitor with Ion Drive A Cubesat Asteroid Mission Geoffrey A. Landis NASA Glenn Research Center COMPASS Team at NASA Glenn: Steve Oleson, Melissa McGuire, Aloysius Hepp, James

More information

CNESOC FLIGHT DYNAMICS MONITORING AND COMMAND OPERATIONS DURING GALILEO FOC1 LEOP AND RECOVERY.

CNESOC FLIGHT DYNAMICS MONITORING AND COMMAND OPERATIONS DURING GALILEO FOC1 LEOP AND RECOVERY. CNESOC FLIGHT DYNAMICS MONITORING AND COMMAND OPERATIONS DURING GALILEO FOC1 LEOP AND RECOVERY Jorge Lopez Merida (1), Livio Tucci (2), Riccardo Di Corato (3), Fernando Alonso Zotes (4) (1) GMV @ESA/ESOC,

More information

DISC Experiment Overview and On-Orbit Performance Results

DISC Experiment Overview and On-Orbit Performance Results DISC Experiment Overview and On-Orbit Performance Results SSC12-XI-7 Andrew Nicholas, Ted Finne, Ivan Galysh, Ed Kline Naval Research Laboratory 4555 Overlook Ave., Washington, DC 20375; 202-767-2441 andrew.nicholas@nrl.navy.mil

More information

Flight Demonstration of Electrostatic Thruster Under Micro-Gravity

Flight Demonstration of Electrostatic Thruster Under Micro-Gravity Flight Demonstration of Electrostatic Thruster Under Micro-Gravity Shin SATORI*, Hiroyuki MAE**, Hiroyuki OKAMOTO**, Ted Mitsuteru SUGIKI**, Yoshinori AOKI # and Atsushi NAGATA # * Hokkaido Institute of

More information

PICASSO PICo-satellite for Atmospheric and Space Science Observations

PICASSO PICo-satellite for Atmospheric and Space Science Observations PICASSO PICo-satellite for Atmospheric and Space Science Observations A scientific CubeSat mission Fussen D., Anciaux M., Bonnewijn S., Cardoen P., Dekemper E., De Keyser J., Demoulin Ph.,, Pieroux D.,

More information

ADCSS 2017: Sodern presentation

ADCSS 2017: Sodern presentation ADCSS 2017: Sodern presentation 1 Agenda Star trackers road map: a wide range of products End of CCD star trackers: SED26 replaced by Horus as standalone multi mission star tracker Hydra maintained beyond

More information

Attitude Control Strategy for HAUSAT-2 with Pitch Bias Momentum System

Attitude Control Strategy for HAUSAT-2 with Pitch Bias Momentum System SSC06-VII-5 Attitude Control Strategy for HAUSAT-2 with Pitch Bias Momentum System Young-Keun Chang, Seok-Jin Kang, Byung-Hoon Lee, Jung-on Choi, Mi-Yeon Yun and Byoung-Young Moon School of Aerospace and

More information

Attitude Determination using Infrared Earth Horizon Sensors

Attitude Determination using Infrared Earth Horizon Sensors SSC14-VIII-3 Attitude Determination using Infrared Earth Horizon Sensors Tam Nguyen Department of Aeronautics and Astronautics, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge,

More information

Andrea Sainati, Anupam Parihar, Stephen Kwan Seklam 31 A Very Low Altitude Constellation For Earth Observation

Andrea Sainati, Anupam Parihar, Stephen Kwan Seklam 31 A Very Low Altitude Constellation For Earth Observation Andrea Sainati, Anupam Parihar, Stephen Kwan Seklam 31 A Very Low Altitude Constellation For Earth Observation Andrea Sainati, Anupam Parihar, Stephen Kwan Seklam MSc students, Department of Aerospace

More information

The Silicon-Tungsten Tracker of the DAMPE Mission

The Silicon-Tungsten Tracker of the DAMPE Mission The Silicon-Tungsten Tracker of the DAMPE Mission Philipp Azzarello, DPNC, University of Geneva for the DAMPE-STK collaboration 10th International Hiroshima Symposium on the Development and Application

More information

Technical Proposal: Self-Assembling Space Structures

Technical Proposal: Self-Assembling Space Structures Excerpt For Public Release: Technical Proposal: 2018 Marcus van Bavel All rights Reserved Part 1: Table of Contents Part 1: Table of Contents... 1 Part 2: Significance of...1 Theory of Operation...3 Example

More information

Miniaturised Asteroid Remote Geophysical Observer (M-ARGO): A stand-alone deep space CubeSat system for lowcost science and exploration missions

Miniaturised Asteroid Remote Geophysical Observer (M-ARGO): A stand-alone deep space CubeSat system for lowcost science and exploration missions Miniaturised Asteroid Remote Geophysical Observer (M-ARGO): A stand-alone deep space CubeSat system for lowcost science and exploration missions Prepared by R. Walker (1), D. Koschny, C. Bramanti & ESA

More information

Prospector-1: A Low-Cost Commercial Asteroid Mission Grant Bonin SmallSat 2016

Prospector-1: A Low-Cost Commercial Asteroid Mission Grant Bonin SmallSat 2016 Prospector-1: A Low-Cost Commercial Asteroid Mission Grant Bonin SmallSat 2016 About DSI A space technology and resources company Vision to enable the human space development by harvesting asteroid materials

More information

The Space-based Telescopes for Actionable Refinement of Ephemeris (STARE) mission

The Space-based Telescopes for Actionable Refinement of Ephemeris (STARE) mission LLNL-PRES-641541 Performance Measures x.x, x.x, and x.x SSC13-XI-11 The Space-based Telescopes for Actionable Refinement of Ephemeris (STARE) mission Vincent Riot, Willem de Vries, Lance Simms, Brian Bauman,

More information

SOLAR ROCKET PROPULSION Ground and Space Technology Demonstration. Dr. Michael Holmes, AFRL/PRSS

SOLAR ROCKET PROPULSION Ground and Space Technology Demonstration. Dr. Michael Holmes, AFRL/PRSS SOLAR ROCKET PROPULSION Ground and Space Technology Demonstration Dr. Michael Holmes, AFRL/PRSS Solar Thermal Propulsion Concept Parabolic Mirror Sun Create thrust by collecting and focusing sunlight to

More information

Development of Microwave Engine

Development of Microwave Engine Development of Microwave Engine IEPC-01-224 Shin SATORI*, Hiroyuki OKAMOTO**, Ted Mitsuteru SUGIKI**, Yoshinori AOKI #, Atsushi NAGATA #, Yasumasa ITO** and Takayoshi KIZAKI # * Hokkaido Institute of Technology

More information

SPD QM Thermal Vacuum Testing

SPD QM Thermal Vacuum Testing SPD 10003 QM Thermal Vacuum Testing Document Author(s): Seongwhan Lee swhan@khu.ac.kr Responsible Engineer(s): Seongwhan Lee Jungho Lee swhan@khu.ac.kr overthewater@khu.ac.kr Page 1/23 Revision History

More information

D-SAT Simplified Magnetic Attitude Control

D-SAT Simplified Magnetic Attitude Control D-SAT Simplified Magnetic Attitude Control Warren K. Soh, Norhizam Hamzah, Ahmad Sabirin Arshad Astronautic Technology (M) Sdn. Bhd. (ATSB) Suite G1A, Enterprise 3, Technology Park Malaysia, Bukit Jalil

More information

Astrophysics Advisory Committee

Astrophysics Advisory Committee Astrophysics Advisory Committee K2 End of Mission Science Planning Charlie Sobeck July 20, 2017 K2 Mission Genesis K2 is a follow-on to the original Kepler mission, driven by the loss of two reaction wheels.

More information

Coverage Options for a Low cost, High Resolution Optical Constellation

Coverage Options for a Low cost, High Resolution Optical Constellation PAPER REFERENCE NUMBER SSC3-VI-3 Coverage Options for a Low cost, High Resolution Optical Constellation *, W Levett **, K Graham *** * Space Department 14, A8 Building QinetiQ Cody Technology Park Farnborough

More information

A Concept for Real-Time Solar Wind Monitor at Multiple Locations

A Concept for Real-Time Solar Wind Monitor at Multiple Locations A Concept for Real-Time Solar Wind Monitor at Multiple Locations L5 in Tandem with L1: Future Space-Weather Missions Workshop March 8 th, 2017 George C. Ho Sector Science and Space Instrumentation Branch

More information

AN ANALYTICAL SOLUTION TO QUICK-RESPONSE COLLISION AVOIDANCE MANEUVERS IN LOW EARTH ORBIT

AN ANALYTICAL SOLUTION TO QUICK-RESPONSE COLLISION AVOIDANCE MANEUVERS IN LOW EARTH ORBIT AAS 16-366 AN ANALYTICAL SOLUTION TO QUICK-RESPONSE COLLISION AVOIDANCE MANEUVERS IN LOW EARTH ORBIT Jason A. Reiter * and David B. Spencer INTRODUCTION Collision avoidance maneuvers to prevent orbital

More information

Science planning and operations for Mars Express

Science planning and operations for Mars Express Science planning and operations for Mars Express René Pischel and Tanja Zegers ESA/ESTEC, Research and Scientific Support Department, Postbus 299, 2200 AG Noordwijk, The Netherlands I. Introduction The

More information

FIREBIRD and SSEL Space Weather Missions

FIREBIRD and SSEL Space Weather Missions Space Science and Engineering Laboratory FIREBIRD and SSEL Space Weather Missions Ehson Mosleh Systems Engineer Space Science and Engineering Laboratory Montana State University CubeSat Developers Workshop

More information

The Compact Infrared Imager and Radiometer

The Compact Infrared Imager and Radiometer The Compact Infrared Imager and Radiometer Earth System Science from a 6U nanosat? Neil Bowles (Univ. Oxford) On behalf of the CIIR Consortium. 22 April 2015 CEOI-ST Technology 1 The Why study a tightly

More information