Satellite communications and the environment of space. V 1.1 Swiss Space Summer Camp 2016 Images: NASA 1

Size: px
Start display at page:

Download "Satellite communications and the environment of space. V 1.1 Swiss Space Summer Camp 2016 Images: NASA 1"

Transcription

1 Satellite communications and the environment of space Swiss Space Summer Camp 2016 Images: NASA 1

2 Can you name these satellites?

3 Sputnik The first man made satellite Launched in 1957 by The USSR Mass 84kg, diameter 53cm The Hubble Space Telescope The International Space Station

4 Now there are hundreds of satellites in orbit around the Earth while others are exploring the solar system.

5 You need an earth station.. Source: Swiss Space Summer Camp 2016 google/flickr/goonhilly 5

6 Swiss Space Summer Camp 2016 Satellite basics for building a simple ground station

7 Satellite basics Ground segment Ground station Hardware Software Project Contents Swiss Space Summer Camp

8 Satellites GPS Navstar Erdfunkstelle Raisting Swiss Space Summer Camp

9 Range of applications for satellites Earth observation satellites meteorologic (weather) satellite spy satellite radar satellite Communication satellites for commercial purposes e. g. Inmarsat, Iridium, Thuraia mil-com satellites for experimental tasks: amateur radio satellites Television satellites Astra Eutelsat Astronomy satellites for scientific purposes Killer satellites to destroy hostile satellites Debris removal satellites Research satellites, e. g. for experiments in micro-gravity Space Platforms for scientific purposes Navigation satellites (GNSS) GPS (USA, seit 1995) Glonass (Russland, seit 1993) Galileo (EU, ab 2014) Swiss Space Summer Camp

10 Different trajectories of satellites Geostationary Earth Orbiter (GEO) distance from earth: km orbit directly above the Earth's equator transmitter and receiver antennas can be permanently targeted. Medium Earth Orbiter (MEO) rotating around the earth flying altitude between km and km. Low Earth Orbiter (LEO) rotating around the earth flying altitude between 700 km und km Swiss Space Summer Camp

11 Geostationary trajectories and footprint Swiss Space Summer Camp

12 Geostationary trajectories and footprintmit with three satellites Swiss Space Summer Camp

13 Calculation of satellite trajectories The three Kepler's laws of planetary motion describe the movement of satellites: The orbit of a planet is an ellipse with the host star at one of the two foci. A line segment joining a satellite and the host star sweeps out equal areas during equal intervals of time. The square of the orbital period of a satellite is proportional to the cube of the semi-major axis of its orbit. Swiss Space Summer Camp

14 Link Budget Signal power is critical. Satellites dispose of low power Distances between space segment and ground segment are very long. (e. g. mobile phone <-> satellite) Antennas are susceptible to failure The Signal-to-Noise Ratio (SNR) has to be big enough The calculation of the SNR of the complete round trip connection (uplink/downlink) is called Link Budget: Cassegrain Antenne Swiss Space Summer Camp

15 Link Budget, numerical example of a commercial satellite Swiss Space Summer Camp

16 Let's calculate a link Budget of "our" satellite AO-73 Swiss Space Summer Camp

17 "Ideal" Downlink Budget Downlink Budget Analysis, f = 437 MHz, data rate = 9600 bps Transmit Power P Tx Connector-, Cable- and Impedance-Loss (L con, L cab, L imp ) Antenna Gain G Tx (ideal Monopole) Friis Formula (R S = 1815 km, h Orbit = 550 km, δ = 10 ) Atmospheric & Ionospheric Losses (L atm, L ion ) [1] Antenna Gain G Rx Polarisation Loss (L pol ) Connector-, Cable- and Impedance-Loss (L con, L cab, L imp ) Power at Receiver P Rx Receiver Sensitivity (TS2000, S/N=16 db) [2] Link Margin +30 dbm -2.0 db +5.1 dbi db -0.2 db +24 dbi -3 db -5.0 db dbm dbm db Swiss Space Summer Camp

18 Missing items in an "ideal" link budget a) UHF monopole antenna on a 1U CubeSat is never ideal b) Dynamic and static antenna pointing errors (serious problem for high gain GS antennas) c) Signal fading due to multipath (Atmosphere, Ionosphere, Terrain Reflection and Diffraction) Swiss Space Summer Camp

19 Channel Coding necessary Even more error sources: Offset between electrical and mechanical antenna axis Thermal deformation and wind force disturbance Gravity deformation Gear backlash Atmospheric refraction Therefore Channel Coding: moderate channel quality (Pb approx. 10-4) Link is available for 2 times of 10 minutes per day Payload (PL) produces large volume of compressed data Signal fading due to scintillation, especially by low elevation angels Swiss Space Summer Camp

20 Glossary Zenith: Nadir: Apogee: Perigee: AOS TCA: LOS: point directly "above" a particular location point directly below a particular location point farthest away from the Earth point nearest to the earth Acquisition of Signal Time of Closest Approach Loss of Signal Azimuth: the angle of horizontal deviation (from north) source: AMSAT Elevation: the angle of vertical deviation (from horizon) UTC: Coordinated Universal Time Doppler: An increase (decrease) in the frequency waves as the source and observer move towards (away from) each other. Uplink/Downlink: transmission from earth to space and vice versa Swiss Space Summer Camp

21 System structure: SEGMENTS Space segment Ground segment, Ground Station Control segment User segment Swiss Space Summer Camp

22 Space-/Ground-/User Segment Swiss Space Summer Camp

23 We focus on the Ground Segment (GS) Build a simple omni-directional antenna Use a Software Defined Radio (SDR) Front-End Use a Software Defined Radio (SDR) and a SW telemetry decoder Source: Surrey Space Technology Limited (SSTL) Swiss Space Summer Camp

24 GS Park Source: Surrey Space Technology Limited (SSTL) Swiss Space Summer Camp

25 Awaiting next pass in Horw Swiss Space Summer Camp

26 Mission Swiss Space Summer Camp

27 Your project's radio receiver front-end Swiss Space Summer Camp

28 Inside your project's radio receiver front-end Converts a radio signal from the antenna to baseband, i. e. makes it processible (easy to handle) by software. Swiss Space Summer Camp

29 Inside your project's radio receiver front-end, much more detailed Swiss Space Summer Camp

30 Software Defined Radio (SDR) Software All signal processing is done in software. Source: GeraldYoungblood, AC5OG, K5SDR Swiss Space Summer Camp

31 this is how a SDR looks like Swiss Space Summer Camp

32 Satellite Tracking Software: example: ISS real time tracking Ground track. The orbit data is extracted from the following two-line orbital elements U 98067A Epoch (UTC): 31 August :39:08 Eccentricity: inclination: perigee height: 402 km apogee height: 406 km right ascension of ascending node: argument of perigee: revolutions per day: mean anomaly at epoch: orbit number at epoch: Swiss Space Summer Camp

33 Practical example: ISS real time tracking Ground track. The orbit data is extracted from the following two-line orbital elements U 98067A Epoch (UTC): 31 August :39:08 Time of snapshot of orbital Elements Eccentricity e: Shape of the ellipsis (e = 0 for a circle) Inclination i: Angle between planes of equator and ellipsis Perigee height: 402 km Distance from closest point to earth Apogee height: 406 km Distance from farthest point to earth Right Ascension of ascending node: Point, where the satellite crosses the equator from south to north. Defines together with inclination i the orbital plane Argument of perigee: Angle of the point closest to earth Revolutions per day: i. e minutes for one revolution Mean anomaly at epoch: Orbit number at epoch: 1677 Total number of revolutions up till now Drag Not appropriate (Why?) Swiss Space Summer Camp

34 Block diagram of a simple ground station Swiss Space Summer Camp

Mobile and Wireless Networks Course Instructor: Dr. Safdar Ali

Mobile and Wireless Networks Course Instructor: Dr. Safdar Ali Mobile and Wireless Networks Course Instructor: Dr. Safdar Ali Satellite Communication INTRODUCTION INTRODUCTION Communication satellite are off-course only one means of telecommunication transmission.

More information

AS3010: Introduction to Space Technology

AS3010: Introduction to Space Technology AS3010: Introduction to Space Technology L E C T U R E 6 Part B, Lecture 6 17 March, 2017 C O N T E N T S In this lecture, we will look at various existing satellite tracking techniques. Recall that we

More information

Space Environment & Technology Space Policy and Law Course 2018

Space Environment & Technology Space Policy and Law Course 2018 Space Environment & Technology Space Policy and Law Course 2018 Professor Alan Smith Mullard Space Science Laboratory University College London 15 October 2018 Orbits and Space The Space Environment The

More information

Orbit and Transmit Characteristics of the CloudSat Cloud Profiling Radar (CPR) JPL Document No. D-29695

Orbit and Transmit Characteristics of the CloudSat Cloud Profiling Radar (CPR) JPL Document No. D-29695 Orbit and Transmit Characteristics of the CloudSat Cloud Profiling Radar (CPR) JPL Document No. D-29695 Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 26 July 2004 Revised

More information

Creating Satellite Orbits

Creating Satellite Orbits Exercises using Satellite ToolKit (STK) vivarad@ait.ac.th Creating Satellite Orbits 1. What You Will Do Create a low-earth orbit (LEO) satellite Create a medium-earth orbit (MEO) satellite Create a highly

More information

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY QUESTION BANK UNIT I PART A

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY QUESTION BANK UNIT I PART A MAHALAKSHMI ENGINEERING COLLEGE-TRICHY QUESTION BANK SATELLITE COMMUNICATION DEPT./SEM.:ECE/VIII UNIT I PART A 1.What are the different applications of satellite systems? *Largest International System(Intel

More information

CHAPTER 25 SATELLITE COMMUNICATIONS # DEFINITIONS TERMS. Satellite. 1) A celestial body that orbits around a planet.

CHAPTER 25 SATELLITE COMMUNICATIONS # DEFINITIONS TERMS. Satellite. 1) A celestial body that orbits around a planet. CHAPTER 25 SATELLITE COMMUNICATIONS # DEFINITIONS TERMS 1) A celestial body that orbits around a planet. Satellite 2) Man-made satellites that orbit earth, providing a multitude of communication functions

More information

Analytical Method for Space Debris propagation under perturbations in the geostationary ring

Analytical Method for Space Debris propagation under perturbations in the geostationary ring Analytical Method for Space Debris propagation under perturbations in the geostationary ring July 21-23, 2016 Berlin, Germany 2nd International Conference and Exhibition on Satellite & Space Missions Daniel

More information

Experimental Analysis of Low Earth Orbit Satellites due to Atmospheric Perturbations

Experimental Analysis of Low Earth Orbit Satellites due to Atmospheric Perturbations Experimental Analysis of Low Earth Orbit Satellites due to Atmospheric Perturbations Aman Saluja #1, Manish Bansal #2, M Raja #3, Mohd Maaz #4 #Aerospace Department, University of Petroleum and Energy

More information

(ii) We have already found out the velocity of the satellite in orbit in part (i) (using equation (2.5)) to be km/s

(ii) We have already found out the velocity of the satellite in orbit in part (i) (using equation (2.5)) to be km/s Chapter 2 Questions and Solutions Question 1. Explain what the terms centrifugal and centripetal mean with regard to a satellite in orbit around the earth. A satellite is in a circular orbit around the

More information

GNSS: Global Navigation Satellite Systems

GNSS: Global Navigation Satellite Systems GNSS: Global Navigation Satellite Systems Global: today the American GPS (Global Positioning Service), http://gps.losangeles.af.mil/index.html the Russian GLONASS, http://www.glonass-center.ru/frame_e.html

More information

Learning Lab Seeing the World through Satellites Eyes

Learning Lab Seeing the World through Satellites Eyes Learning Lab Seeing the World through Satellites Eyes ESSENTIAL QUESTION What is a satellite? Lesson Overview: Engage students will share their prior knowledge about satellites and explore what satellites

More information

Satellite meteorology

Satellite meteorology GPHS 422 Satellite meteorology GPHS 422 Satellite meteorology Lecture 1 6 July 2012 Course outline 2012 2 Course outline 2012 - continued 10:00 to 12:00 3 Course outline 2012 - continued 4 Some reading

More information

Fundamentals of Satellite technology

Fundamentals of Satellite technology Fundamentals of Satellite technology Prepared by A.Kaviyarasu Assistant Professor Department of Aerospace Engineering Madras Institute Of Technology Chromepet, Chennai Orbital Plane All of the planets,

More information

Advanced Electronic Communication Systems. Lecture 4. Satellite Orbits (2) Dr.Eng. Basem ElHalawany

Advanced Electronic Communication Systems. Lecture 4. Satellite Orbits (2) Dr.Eng. Basem ElHalawany Advanced Electronic Communication Systems Lecture 4 Satellite Orbits (2) Dr.Eng. Basem ElHalawany Orbital (nonsynchronous) Satellites (cont.) Posigrade orbit or Prograde: If the satellite is orbiting in

More information

Satellite Communications

Satellite Communications Satellite Communications Lecture (3) Chapter 2.1 1 Gravitational Force Newton s 2nd Law: r r F = m a Newton s Law Of Universal Gravitation (assuming point masses or spheres): Putting these together: r

More information

Week 02. Assist. Prof. Dr. Himmet KARAMAN

Week 02. Assist. Prof. Dr. Himmet KARAMAN Week 02 Assist. Prof. Dr. Himmet KARAMAN Contents Satellite Orbits Ephemerides GPS Review Accuracy & Usage Limitation Reference Systems GPS Services GPS Segments Satellite Positioning 2 Satellite Orbits

More information

Orbital Satellite: 4) Non synchronous satellites have to be used when available,which may be little 15 minutes

Orbital Satellite: 4) Non synchronous satellites have to be used when available,which may be little 15 minutes Orbital Satellite: 1) Most of the satellites are orbital satellites and also called as Nonsynchronous Satellites. 2) Nonsynchronous Satellites are rotate around the earth in an elliptical or in circular

More information

Winds on Titan: First results from the Huygens Doppler Wind Experiment

Winds on Titan: First results from the Huygens Doppler Wind Experiment 1 Winds on Titan: First results from the Huygens Doppler Wind Experiment Supplementary Discussion. It was realized during the DWE design phase that Earth-based Doppler measurements could be combined with

More information

ESSE Payload Design. 1.2 Introduction to Space Missions

ESSE Payload Design. 1.2 Introduction to Space Missions ESSE4360 - Payload Design 1.2 Introduction to Space Missions Earth, Moon, Mars, and Beyond Department of Earth and Space Science and Engineering Room 255, Petrie Science and Engineering Building Tel: 416-736

More information

Fusion of telescopic and Doppler radar data

Fusion of telescopic and Doppler radar data Fusion of telescopic and Doppler radar data Mirko Navara 1, Martin Matoušek 1, Ondřej Drbohlav 2 1 Czech Technical University in Prague, Czech Institute of Informatics, Robotics, and Cybernetics, Department

More information

Simulation Results of Alternative Methods for Formation Separation Control

Simulation Results of Alternative Methods for Formation Separation Control Simulation Results of Alternative Methods for Formation Separation Control Thomas Heine, Charles Bussy-Virat, Mark Moldwin, Aaron Ridley Department of Climate and Space Sciences and Engineering University

More information

Chapter 2: Orbits and Launching Methods

Chapter 2: Orbits and Launching Methods 9/20/ Chapter 2: Orbits and Launching Methods Prepared by Dr. Mohammed Taha El Astal EELE 6335 Telecom. System Part I: Satellite Communic ations Winter Content Kepler s First, Second, and Third Law Definitions

More information

Vicky Chu, Jer Ling, Tom Lin, Joe Fong, Feng-Tai Huang, Guey-Shin Chang. April 15, 2011

Vicky Chu, Jer Ling, Tom Lin, Joe Fong, Feng-Tai Huang, Guey-Shin Chang. April 15, 2011 FORMOSAT-7/COSMIC-2 Overview Vicky Chu, Jer Ling, Tom Lin, Joe Fong, Feng-Tai Huang, Guey-Shin Chang April 15, 2011 Program Status AIT-TECRO Agreement on FORMOSAT-7/COSMIC-2 joint program has been signed

More information

Celestial Mechanics and Satellite Orbits

Celestial Mechanics and Satellite Orbits Celestial Mechanics and Satellite Orbits Introduction to Space 2017 Slides: Jaan Praks, Hannu Koskinen, Zainab Saleem Lecture: Jaan Praks Assignment Draw Earth, and a satellite orbiting the Earth. Draw

More information

Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws

Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws Craig Lage New York University - Department of Physics craig.lage@nyu.edu February 24, 2014 1 / 21 Tycho Brahe s Equatorial

More information

RECOMMENDATION ITU-R S * Terms and definitions relating to space radiocommunications

RECOMMENDATION ITU-R S * Terms and definitions relating to space radiocommunications Rec. ITU-R S.673-2 1 RECOMMENDATION ITU-R S.673-2 * Terms and definitions relating to space radiocommunications (Question ITU-R 209/4) (1990-2001-2002) The ITU Radiocommunication Assembly, considering

More information

Global Navigation Satellite Systems

Global Navigation Satellite Systems Global Navigation Satellite Systems GPS GLONASS Galileo BeiDou I I (COMPASS)? How Does a GNSS Work? Based on principle of triangulation Also called satellite ranging Signal travels at constant speed (3.0x10

More information

Introduction to Global Navigation Satellite System (GNSS) Module: 2

Introduction to Global Navigation Satellite System (GNSS) Module: 2 Introduction to Global Navigation Satellite System (GNSS) Module: 2 Dinesh Manandhar Center for Spatial Information Science The University of Tokyo Contact Information: dinesh@iis.u-tokyo.ac.jp Slide :

More information

ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS

ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS A1.1. Kepler s laws Johannes Kepler (1571-1630) discovered the laws of orbital motion, now called Kepler's laws.

More information

The Air Force Association 1501 Lee Highway, Arlington, Virginia

The Air Force Association 1501 Lee Highway, Arlington, Virginia The Air Force Association 1501 Lee Highway, Arlington, Virginia 22209-1198 www.afa.org Sample Exercise Synopsis Teams will be required to select a mission orbit for a satellite to measure the height of

More information

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010 Orbit Design Marcelo Suárez Orbit Design Requirements The following Science Requirements provided drivers for Orbit Design: Global Coverage: the entire extent (100%) of the ice-free ocean surface to at

More information

Projectile Motion. Conceptual Physics 11 th Edition. Projectile Motion. Projectile Motion. Projectile Motion. This lecture will help you understand:

Projectile Motion. Conceptual Physics 11 th Edition. Projectile Motion. Projectile Motion. Projectile Motion. This lecture will help you understand: Conceptual Physics 11 th Edition Projectile motion is a combination of a horizontal component, and Chapter 10: PROJECTILE AND SATELLITE MOTION a vertical component. This lecture will help you understand:

More information

Information furnished in conformity with the Convention on Registration of Objects Launched into Outer Space

Information furnished in conformity with the Convention on Registration of Objects Launched into Outer Space United Nations Secretariat Distr.: General 4 August 2008 English Original: [Start1] Committee on the Peaceful Uses of Outer Space Information furnished in conformity with the Convention on Registration

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 10: PROJECTILE AND SATELLITE MOTION This lecture will help you understand: Projectile Motion Fast-Moving Projectiles Satellites Circular Satellite Orbits Elliptical

More information

ORBIT DESIGN AND SIMULATION FOR KUFASAT NANO- SATELLITE

ORBIT DESIGN AND SIMULATION FOR KUFASAT NANO- SATELLITE ARTIFICIAL SATELLITES, Vol. 50, No. 4 2015 DOI: 10.1515/arsa-2015-0013 ORBIT DESIGN AND SIMULATION FOR KUFASAT NANO- SATELLITE Mohammed Chessab Mahdi Al-Furat Al-Awsat Technical University -Iraq mchessab@yahoo.com

More information

SECTION 9 ORBIT DATA - LAUNCH TRAJECTORY

SECTION 9 ORBIT DATA - LAUNCH TRAJECTORY SECTION 9 ORBIT DATA - LAUNCH TRAJECTORY --~'- SECTION 9 LAUNCH TRAJECTORY 9.1 MISSION PROFILE IUE was launched by a three-stage Delta 2914 launch vehicle from Cape Kennedy on January 26, 1978 at l7 h

More information

Comparative Study of LEO, MEO & GEO Satellites

Comparative Study of LEO, MEO & GEO Satellites Comparative Study of LEO, MEO & GEO Satellites Smridhi Malhotra, Vinesh Sangwan, Sarita Rani Department of ECE, Dronacharya College of engineering, Khentawas, Farrukhnagar, Gurgaon-123506, India Email:

More information

Lecture 1d: Satellite Orbits

Lecture 1d: Satellite Orbits Lecture 1d: Satellite Orbits Outline 1. Newton s Laws of Motion 2. Newton s Law of Universal Gravitation 3. Kepler s Laws 4. Putting Newton and Kepler s Laws together and applying them to the Earth-satellite

More information

ASTRIUM. Interplanetary Path Early Design Tools at ASTRIUM Space Transportation. Nathalie DELATTRE ASTRIUM Space Transportation.

ASTRIUM. Interplanetary Path Early Design Tools at ASTRIUM Space Transportation. Nathalie DELATTRE ASTRIUM Space Transportation. Interplanetary Path Early Design Tools at Space Transportation Nathalie DELATTRE Space Transportation Page 1 Interplanetary missions Prime approach: -ST has developed tools for all phases Launch from Earth

More information

MULTI PURPOSE MISSION ANALYSIS DEVELOPMENT FRAMEWORK MUPUMA

MULTI PURPOSE MISSION ANALYSIS DEVELOPMENT FRAMEWORK MUPUMA MULTI PURPOSE MISSION ANALYSIS DEVELOPMENT FRAMEWORK MUPUMA Felipe Jiménez (1), Francisco Javier Atapuerca (2), José María de Juana (3) (1) GMV AD., Isaac Newton 11, 28760 Tres Cantos, Spain, e-mail: fjimenez@gmv.com

More information

Radio occultation mission to Mars using cubesats

Radio occultation mission to Mars using cubesats Radio occultation mission to Mars using cubesats LCPM-12 2017 W. Williamson, A.J. Mannucci, C. Ao 2017 California Institute of Technology. Government sponsorship acknowledged. 1 Radio Occultation Overview

More information

Figure 1. View of ALSAT-2A spacecraft

Figure 1. View of ALSAT-2A spacecraft ALSAT-2A TRANSFER AND FIRST YEAR OPERATIONS M. Kameche (1), A.H. Gicquel (2), D. Joalland (3) (1) CTS/ASAL, 1 Avenue de la Palestine, BP 13, Arzew 31200 Oran, Algérie, email:mo_kameche@netcourrier.com

More information

Chapter 14 Satellite Motion

Chapter 14 Satellite Motion 1 Academic Physics Mechanics Chapter 14 Satellite Motion The Mechanical Universe Kepler's Three Laws (Episode 21) The Kepler Problem (Episode 22) Energy and Eccentricity (Episode 23) Navigating in Space

More information

VELOX-CI: Advanced Application of GPS for Radio Occultation and Satellite Attitude Determination

VELOX-CI: Advanced Application of GPS for Radio Occultation and Satellite Attitude Determination VELOX-CI: Advanced Application of GPS for Radio Occultation and Satellite Attitude Determination Yung-Fu Tsai, Guo Xiong Lee and Kay Soon Low Satellite Research Centre (SaRC) School of Electrical and Electronic

More information

What is scan? Answer key. Space Communications and Navigation Program. Entering the Decade of Light.

What is scan? Answer key. Space Communications and Navigation Program. Entering the Decade of Light. National Aeronautics and Space Administration SCaN Fun Pad www.nasa.gov NP-2018-02-047-GRC 30 1 What is scan? Answer key Page 22 Find the Mars Rover: Space Communications and Navigation Program The Space

More information

Keplerian Elements Tutorial

Keplerian Elements Tutorial Keplerian Elements Tutorial This tutorial is based on the documentation provided with InstantTrack, written by Franklin Antonio, N6NKF. Satellite Orbital Elements are numbers that tell us the orbit of

More information

Toshinori Kuwahara*, Yoshihiro Tomioka, Yuta Tanabe, Masato Fukuyama, Yuji Sakamoto, Kazuya Yoshida, Tohoku University, Japan

Toshinori Kuwahara*, Yoshihiro Tomioka, Yuta Tanabe, Masato Fukuyama, Yuji Sakamoto, Kazuya Yoshida, Tohoku University, Japan Toshinori Kuwahara*, Yoshihiro Tomioka, Yuta Tanabe, Masato Fukuyama, Yuji Sakamoto, Kazuya Yoshida, Tohoku University, Japan The 3 rd Nano-Satellite Symposium Micro/Nano Satellite & Debris Issues December

More information

Introduction to Satellite Orbits

Introduction to Satellite Orbits Introduction to Satellite Orbits Dinesh Manandhar Center for Spatial Information Science The University of Tokyo Contact Information: dinesh@iis.u-tokyo.ac.jp Slide : 1 Basics of Satellite Orbits The speed

More information

BeiDou and Galileo, Two Global Satellite Navigation Systems in Final Phase of the Construction, Visibility and Geometry

BeiDou and Galileo, Two Global Satellite Navigation Systems in Final Phase of the Construction, Visibility and Geometry http://www.transnav.eu the International Journal on Marine Navigation and Safety of Sea Transportation Volume 10 Number 3 September 2016 DOI: 10.12716/1001.10.03.01 BeiDou and Galileo, Two Global Satellite

More information

DESIGN OF SYSTEM LEVEL CONCEPT FOR TERRA 25994

DESIGN OF SYSTEM LEVEL CONCEPT FOR TERRA 25994 DESIGN OF SYSTEM LEVEL CONCEPT FOR TERRA 25994 Prof. S.Peik Group Number : 14 Submitted by: Deepthi Poonacha Machimada : 5007754 Shridhar Reddy : 5007751 1 P a g e Table of Contents 1. Introduction...

More information

Proton Launch System Mission Planner s Guide SECTION 2. LV Performance

Proton Launch System Mission Planner s Guide SECTION 2. LV Performance Proton Launch System Mission Planner s Guide SECTION 2 LV Performance 2. LV PERFORMANCE 2.1 OVERVIEW This section provides the information needed to make preliminary performance estimates for the Proton

More information

AINOA GARCÍA MARTÍ LOW EARTH ORBIT SATELLITE COMMUNICATION NETWORKS. Bachelor of Science thesis

AINOA GARCÍA MARTÍ LOW EARTH ORBIT SATELLITE COMMUNICATION NETWORKS. Bachelor of Science thesis AINOA GARCÍA MARTÍ LOW EARTH ORBIT SATELLITE COMMUNICATION NETWORKS Bachelor of Science thesis Examiner: D.Sc. Taneli Riihonen Examiner and topic approved by the Faculty Council of the Faculty of Computing

More information

History. Geocentric model (Ptolemy) Heliocentric model (Aristarchus of Samos)

History. Geocentric model (Ptolemy) Heliocentric model (Aristarchus of Samos) Orbital Mechanics History Geocentric model (Ptolemy) Heliocentric model (Aristarchus of Samos) Nicholas Copernicus (1473-1543) In De Revolutionibus Orbium Coelestium ("On the Revolutions of the Celestial

More information

Usage of IGS TEC Maps to explain RF Link Degradations by Spread-F, observed on Cluster and other ESA Spacecraft

Usage of IGS TEC Maps to explain RF Link Degradations by Spread-F, observed on Cluster and other ESA Spacecraft Usage of IGS TEC Maps to explain RF Link Degradations by Spread-F, observed on Cluster and other ESA Spacecraft J. Feltens, J. Dow, G. Billig, D. Fornarelli, S. Pallaschke, B. Smeds, H.-J. Volpp, P. Escoubet,

More information

The 2007 CubeSat Developers' Workshop SwissCube Project

The 2007 CubeSat Developers' Workshop SwissCube Project SwissCube Project (http://swisscube.epfl.ch) The 2007 CubeSat Developers' Workshop SwissCube Project Guillaume Roethlisberger Mechanical System Engineer Space Center EPFL guillaume.roethlisberger@epfl.ch

More information

ANALYSIS OF THE EGLIN RADAR DEBRIS FENCE

ANALYSIS OF THE EGLIN RADAR DEBRIS FENCE ANALYSIS OF THE EGLIN RADAR DEBRIS FENCE Thomas J. Settecerri, Alan D. Skillicorn (The MITRE Corporation), Paul C. Spikes (AFMC ESC/Det. 5) BACKGROUND The Eglin FPS-85 space surveillance radar is a bi-static

More information

The NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) Mission

The NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) Mission International Ocean Vector Wind Science Team Meeting Kailua-Kona, Hawaii USA 6-8 May 2013 The NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) Mission Chris Ruf (1) (CYGNSS Principal Investigator),

More information

ROCSAT-3 Constellation Mission

ROCSAT-3 Constellation Mission ROCSAT-3 Constellation Mission, An-Ming Wu, Paul Chen National Space Program Office 8F, 9 Prosperity 1st Road, Science Based Industrial Park, Hsin-Chu, Taiwan vicky@nspo.org.tw, amwu@nspo.org.tw, paulchen@nspo.org.tw

More information

Radial Acceleration. recall, the direction of the instantaneous velocity vector is tangential to the trajectory

Radial Acceleration. recall, the direction of the instantaneous velocity vector is tangential to the trajectory Radial Acceleration recall, the direction of the instantaneous velocity vector is tangential to the trajectory 1 Radial Acceleration recall, the direction of the instantaneous velocity vector is tangential

More information

Available online at International Journal of Current Research Vol. 9, Issue, 07, pp , July, 2017

Available online at   International Journal of Current Research Vol. 9, Issue, 07, pp , July, 2017 z Available online at http://www.journalcra.com International Journal of Current Research Vol. 9, Issue, 07, pp.54547-54551, July, 2017 INTERNATIONAL JOURNAL OF CURRENT RESEARCH ISSN: 0975-833X RESEARCH

More information

14.1 Earth Satellites. The path of an Earth satellite follows the curvature of the Earth.

14.1 Earth Satellites. The path of an Earth satellite follows the curvature of the Earth. The path of an Earth satellite follows the curvature of the Earth. A stone thrown fast enough to go a horizontal distance of 8 kilometers during the time (1 second) it takes to fall 5 meters, will orbit

More information

Updates on CMA FENGYUN Meteorological Satellite Programs

Updates on CMA FENGYUN Meteorological Satellite Programs Updates on CMA FENGYUN Meteorological Satellite Programs Peng ZHANG National Satellite Meteorological Center, China Meteorological Administration (NSMC/CMA) 29 Nov. - 5 Dec. 2017, Darmstadt, Germany 1.

More information

8.11 Satellites. Figure 1 Artifi cial satellites provide valuable monitoring and communication services for humankind.

8.11 Satellites. Figure 1 Artifi cial satellites provide valuable monitoring and communication services for humankind. 8.11 Satellites As you know, Earth has one natural satellite orbiting it the Moon. Earth also has thousands of other satellites circling it at different altitudes and orbits, but these are all made by

More information

Assignment-I and Its Solution

Assignment-I and Its Solution Assignment-I and Its Solution Instructions i. Multiple choices of each questions are marked as A to D. One of the choices is unambiguously correct. Choose the most appropriate one amongst the given choices.

More information

EFFECTIVENESS OF THE DE-ORBITING PRACTICES IN THE MEO REGION

EFFECTIVENESS OF THE DE-ORBITING PRACTICES IN THE MEO REGION EFFECTIVENESS OF THE DE-ORBITING PRACTICES IN THE MEO REGION A. Rossi 1, L. Anselmo 1, C. Pardini 1, and R. Jehn 1 ISTI CNR, Via Moruzzi 1, 5414, Pisa, Italy ESA-ESOC, Robert Bosch Str.5, 6493 Darmstadt,

More information

OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology. 3 rd Mission Idea Contest UNISEC Global

OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology. 3 rd Mission Idea Contest UNISEC Global OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology 3 rd Mission Idea Contest UNISEC Global The Idea We want to take image for the moon phases as seen from Earth Why? Introduction 1.6 billion,23.4%

More information

Orbit Representation

Orbit Representation 7.1 Fundamentals 223 For this purpose, code-pseudorange and carrier observations are made of all visible satellites at all monitor stations. The data are corrected for ionospheric and tropospheric delays,

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 6: GRAVITY, PROJECTILES, AND SATELLITES This lecture will help you understand: The Universal Law of Gravity The Universal Gravitational Constant, G Gravity and Distance:

More information

ACCURACY ASSESSMENT OF GEOSTATIONARY-EARTH-ORBIT WITH SIMPLIFIED PERTURBATIONS MODELS

ACCURACY ASSESSMENT OF GEOSTATIONARY-EARTH-ORBIT WITH SIMPLIFIED PERTURBATIONS MODELS ARTIFICIAL SATELLITES, Vol. 51, No. 2 2016 DOI: 10.1515/arsa-2016-0005 ACCURACY ASSESSMENT OF GEOSTATIONARY-EARTH-ORBIT WITH SIMPLIFIED PERTURBATIONS MODELS Lihua Ma, Xiaojun Xu, Feng Pang National Astronomical

More information

In the previous lecture, we discussed the basics of circular orbits. Mastering even circular orbits

In the previous lecture, we discussed the basics of circular orbits. Mastering even circular orbits In the previous lecture, we discussed the basics of circular orbits. Mastering even circular orbits provides quite a bit of intuitive behavior about the motion of spacecraft about planets. We learned that

More information

Check out and Possible student sat sensors for in-situ in lower...

Check out and Possible student sat sensors for in-situ in lower... Check out and Possible student sat sensors for in-situ in lower... Assoc Profs PhD Jesper A. Larsen & Jens Dalsgaard Nielsen Managers for Student Satellite Programme Aalborg University Denmark QB50/JDN-AAU

More information

LOW-COST ORBIT DETERMINATION SYSTEM FOR A CUBESAT

LOW-COST ORBIT DETERMINATION SYSTEM FOR A CUBESAT he 1st International CubeSat Symposium, okyo, Japan, March 1-11, 3, 1 pages 1st International CubeSat Symposium LOW-COS ORBI DEERMINAION SYSEM FOR A CUBESA Yuji Sakamoto, Yoshitaka Kasahara, and etsuo

More information

Design of a Radar Based Space Situational Awareness System

Design of a Radar Based Space Situational Awareness System Design of a Radar Based Space Situational Awareness System Toni Liebschwager University of Federal Armed Forces, Munich, Germany toniliebschwager@web.de Dr.-Ing. Thomas Neff German Aerospace Center, Oberpfaffenhofen,

More information

Proton Launch System Mission Planner s Guide APPENDIX F. Proton Launch System Options and Enhancements

Proton Launch System Mission Planner s Guide APPENDIX F. Proton Launch System Options and Enhancements Proton Launch System Mission Planner s Guide APPENDIX F Proton Launch System Options and Enhancements F. PROTON LAUNCH SYSTEM OPTIONS AND ENHANCEMENTS The missions presented in the previous sections represent

More information

NGA GNSS Division Precise Ephemeris Parameters

NGA GNSS Division Precise Ephemeris Parameters NGA GNSS Division Precise Ephemeris Parameters Precise Ephemeris Units. Earth-centered, Earth-fixed Coordinate system Position Velocity GPS time Trajectory interval Standard Trajectory Optional Trajectory

More information

Satellite Orbits.

Satellite Orbits. atellite Orbits It was announced few days ago that a 6-ton NAA weather no-longer functioning satellite that was launched in 1991 would crash into arth some time between Thursday, 22 eptember 2011 and aturday,

More information

GPS Results for the Radio Aurora Explorer II CubeSat Mission

GPS Results for the Radio Aurora Explorer II CubeSat Mission GPS Results for the Radio Aurora Explorer II CubeSat Mission Jessica Arlas, Sara Spangelo, This paper presents the performance of the Global Positioning System (GPS) subsystem for the Radio Aurora explorer

More information

Exhaustive strategy for optical survey of geosynchronous region using TAROT telescopes

Exhaustive strategy for optical survey of geosynchronous region using TAROT telescopes Exhaustive strategy for optical survey of geosynchronous region using TAROT telescopes Pascal Richard, Carlos Yanez, Vincent Morand CNES, Toulouse, France Agnès Verzeni CAP GEMINI, Toulouse, France Michel

More information

Planetary Mechanics:

Planetary Mechanics: Planetary Mechanics: Satellites A satellite is an object or a body that revolves around another body due to the gravitational attraction to the greater mass. Ex: The planets are natural satellites of the

More information

COMPARISON OF ANGLES ONLY INITIAL ORBIT DETERMINATION ALGORITHMS FOR SPACE DEBRIS CATALOGUING

COMPARISON OF ANGLES ONLY INITIAL ORBIT DETERMINATION ALGORITHMS FOR SPACE DEBRIS CATALOGUING COMPARISON OF ANGLES ONLY INITIAL ORBIT DETERMINATION ALGORITHMS FOR SPACE DEBRIS CATALOGUING Fran Martinez Fadrique, Alberto Águeda Maté, Joan Jorquera Grau, Jaime Fernández Sánchez, Laura Aivar García

More information

Circular vs. Elliptical Orbits for Persistent Communications

Circular vs. Elliptical Orbits for Persistent Communications 5th Responsive Space Conference RS5-2007-2005 Circular vs. Elliptical Orbits for Persistent Communications James R. Wertz Microcosm, Inc. 5th Responsive Space Conference April 23 26, 2007 Los Angeles,

More information

Enhanced GPS Accuracy using Lunar Transponders

Enhanced GPS Accuracy using Lunar Transponders Enhanced GPS Accuracy using Lunar Transponders G. Konesky SGK NanoStructures, Inc. LEAG - ICEUM - SSR Port Canaveral, FL Oct. 28-31, 2008 GPS Broadcast Ephemeris Error Nov. 1, 1997 Warren, 2002 Warren,

More information

An Optical Survey for Space Debris on Highly Eccentric MEO Orbits

An Optical Survey for Space Debris on Highly Eccentric MEO Orbits An Optical Survey for Space Debris on Highly Eccentric MEO Orbits T. Schildknecht 1), A. Hinze 1), A. Vananti 1), T. Flohrer ) 1) Astronomical Institute, University of Bern, Sidlerstr. 5, CH-31 Bern, Switzerland

More information

MAE 180A: Spacecraft Guidance I, Summer 2009 Homework 2 Due Tuesday, July 14, in class.

MAE 180A: Spacecraft Guidance I, Summer 2009 Homework 2 Due Tuesday, July 14, in class. MAE 180A: Spacecraft Guidance I, Summer 2009 Homework 2 Due Tuesday, July 14, in class. Guidelines: Please turn in a neat and clean homework that gives all the formulae that you have used as well as details

More information

Active microwave systems (2) Satellite Altimetry * the movie * applications

Active microwave systems (2) Satellite Altimetry * the movie * applications Remote Sensing: John Wilkin wilkin@marine.rutgers.edu IMCS Building Room 211C 732-932-6555 ext 251 Active microwave systems (2) Satellite Altimetry * the movie * applications Altimeters (nadir pointing

More information

USA Space Debris Environment, Operations, and Modeling Updates

USA Space Debris Environment, Operations, and Modeling Updates USA Space Debris Environment, Operations, and Modeling Updates Presentation to the 51 st Session of the Scientific and Technical Subcommittee Committee on the Peaceful Uses of Outer Space United Nations

More information

A SIMULATION OF THE MOTION OF AN EARTH BOUND SATELLITE

A SIMULATION OF THE MOTION OF AN EARTH BOUND SATELLITE DOING PHYSICS WITH MATLAB A SIMULATION OF THE MOTION OF AN EARTH BOUND SATELLITE Download Directory: Matlab mscripts mec_satellite_gui.m The [2D] motion of a satellite around the Earth is computed from

More information

- an Operational Radio Occultation System

- an Operational Radio Occultation System - an Operational Radio Occultation System Frans Rubek, Georg Bergeton Larsen, Hans-Henrik Benzon, Kent Bækgaard Lauritsen, Martin Bjært Sørensen Danmarks Meteorologiske Institut (Denmark) Josep M. Aparicio,

More information

CASTOR S SPUTNIK 50 TH ANNIVERSARY SATELLITE TRACKING BONANZA

CASTOR S SPUTNIK 50 TH ANNIVERSARY SATELLITE TRACKING BONANZA CASTOR S SPUTNIK 50 TH ANNIVERSARY SATELLITE TRACKING BONANZA 1957 2007 MICHAEL A. EARL CANADIAN SATELLITE TRACKING & ORBIT RESEARCH 4 OCTOBER 1957 SPUTNIK ORBITING THE EARTH THE FIRST-EVER SOVIET ARTIFICIAL

More information

APPENDIX B SUMMARY OF ORBITAL MECHANICS RELEVANT TO REMOTE SENSING

APPENDIX B SUMMARY OF ORBITAL MECHANICS RELEVANT TO REMOTE SENSING APPENDIX B SUMMARY OF ORBITAL MECHANICS RELEVANT TO REMOTE SENSING Orbit selection and sensor characteristics are closely related to the strategy required to achieve the desired results. Different types

More information

MAE 180A: Spacecraft Guidance I, Summer 2009 Homework 4 Due Thursday, July 30.

MAE 180A: Spacecraft Guidance I, Summer 2009 Homework 4 Due Thursday, July 30. MAE 180A: Spacecraft Guidance I, Summer 2009 Homework 4 Due Thursday, July 30. Guidelines: Please turn in a neat and clean homework that gives all the formulae that you have used as well as details that

More information

1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded

1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded Code No: R05322106 Set No. 1 1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded rocket nozzles. (b) While on its way into orbit a space shuttle with an initial mass

More information

PRELIMINARY DESIGN OF SATELLITE CONSTELLATIONS FOR A BRAZILIAN REGIONAL POSITIONING SYSTEM BY MEANS OF AN EVOLUTIONARY ALGORITHM. Roberto Luiz Galski

PRELIMINARY DESIGN OF SATELLITE CONSTELLATIONS FOR A BRAZILIAN REGIONAL POSITIONING SYSTEM BY MEANS OF AN EVOLUTIONARY ALGORITHM. Roberto Luiz Galski PRELIMINARY DESIGN OF SATELLITE CONSTELLATIONS FOR A BRAZILIAN REGIONAL POSITIONING SYSTEM BY MEANS OF AN EVOLUTIONARY ALGORITHM Roberto Luiz Galski CRC/INPE, Av. Astronautas 175, São José Campos, SP,

More information

DE-ORBITATION STUDIES AND OPERATIONS FOR SPIRALE GTO SATELLITES

DE-ORBITATION STUDIES AND OPERATIONS FOR SPIRALE GTO SATELLITES DE-ORBITATION STUDIES AND OPERATIONS FOR SPIRALE GTO SATELLITES François BONAVENTURE (1), Slim LOCOCHE (2), Anne-Hélène GICQUEL (3) (1) Tel. (+33) (0)5 62 19 74 27, E-mail. francois.bonaventure@astrium.eads.net

More information

A Regional Microsatellite Constellation with Electric Propulsion In Support of Tuscan Agriculture

A Regional Microsatellite Constellation with Electric Propulsion In Support of Tuscan Agriculture Berlin, 20 th - 24 th 2015 University of Pisa 10 th IAA Symposium on Small Satellites for Earth Observation Student Conference A Regional Microsatellite Constellation with Electric Propulsion In Support

More information

1. Around the World in a Hundred Minutes

1. Around the World in a Hundred Minutes 1. Around the World in a Hundred Minutes Even though the first man-made spacecraft was only launched in 1957, satellite orbits had already been already studied two centuries before this. Starting from

More information

Research Article The Impact on Geographic Location Accuracy due to Different Satellite Orbit Ephemerides

Research Article The Impact on Geographic Location Accuracy due to Different Satellite Orbit Ephemerides Mathematical Problems in Engineering Volume 2009, Article ID 856138, 9 pages doi:10.1155/2009/856138 Research Article The Impact on Geographic Location Accuracy due to Different Satellite Orbit Ephemerides

More information

PW-Sat two years on orbit.

PW-Sat two years on orbit. 13th of February 2014 is the second anniversary of launch of the first polish student-made satellite PW-Sat. Currently Students' Space Association on Warsaw University of Technology is working on another

More information

Explain how it is possible for the gravitational force to cause the satellite to accelerate while its speed remains constant.

Explain how it is possible for the gravitational force to cause the satellite to accelerate while its speed remains constant. YEAR 12 PHYSICS: GRAVITATION PAST EXAM QUESTIONS Name: QUESTION 1 (1995 EXAM) (a) State Newton s Universal Law of Gravitation in words (b) A satellite of mass (m) moves in orbit of a planet with mass (M).

More information