New opportunities with X-ray Laser Sources

Size: px
Start display at page:

Download "New opportunities with X-ray Laser Sources"

Transcription

1 WIR SCHAFFEN WISSEN HEUTE FÜR MORGEN Luc Patthey :: SwissFEL Photonics :: Paul Scherrer Institut New opportunities with X-ray Laser Sources Symposium on OLAC 2018: NTB Campus, Buchs:

2 X-ray and light sources X-Ray Source Milestones 1895 Röntgen (Würzburg) 1953 Rotating-anode (Rigaku) 1947 Synchrotron radiation (GE) st generation synchrotron (NBS) - parasitic nd gen. (Daresbury) - dedicated to SR rd gen. (Grenoble) - undulators rd + gen. (SLS, Villigen) - high-brightness th gen. (Stanford) - X-ray Free Electron Laser Bending magnet

3 PSI s newest large-scale research facility: An x-ray free-electron laser (FEL) Synchrotron light, resolution: - spatial: fine - temporal: slow Optical laser, resolution: - spatial: coarse - temporal: fast X-ray free-electron laser excellent spatial (Å) and temporal (fs) resolution Direct insights into physical, chemical and biological processes governing our everyday lives

4 X-ray Free Electron Laser (X-FEL) Experimental station X-ray Pulse length 1-50 fsec Beamline 150 m laser pulse Undulator 50 m LINAC 0.6 km electron gun

5 History of the peak brilliance of x-ray sources Unique properties of x-ray FEL pulses: 1). Shortness 2). Brilliance 3). Coherence Peak brilliance: photons / (s mrad 2 mm 2 0.1% bw)

6 low gain exponential gain (high-gain linear regime) non-linear log (Power) P(z) = P o exp(z/l gain ) gain ~ 10 5 Saturationslength ~ 10 L gain Length Process: self-amplified spontaneous emission (SASE).

7 World map of x-ray free-electron lasers FLASH 2005 Eu-XFEL 2017 LCLS 2009 LCLS-II 2020 SwissFEL 2016 FERMI 2011 SACLA 2011 PAL-XFEL 2016 Hard x-rays Soft x-rays Operational Under construction

8 SwissFEL in a nutshell 1 st construction phase BC1 BC2 Injector Linac 1 Linac 2 2 nd construction phase ATHOS nm GeV Linac GeV 2.0 GeV 3.0 GeV GeV user stations ARAMIS nm Main parameters Wavelength: 1 Å 5 nm Photon energy: kev Pulse duration: 1 20 fs e - Energy 5.8 GeV e - Bunch charge pc Repetition rate 100 Hz ARAMIS Hard x-ray FEL, λ = 1 Å ( kev) Linear polarization, variable gap undulators Operation modes: SASE & self-seeded First users 2018 ATHOS Soft x-ray FEL, λ = nm ( ev) Variable polarization Apple X undulators Operation modes: SASE (CHIC) & self-seeded First users 2021

9 Jan. 13, 2013 SwissFEL Status

10 SwissFEL Status Building Injector & Linac Undulators ARAMIS Beamline

11 SwissFEL Status Building Injector & Linac Feb 16 May 16 first day&night users of game operation crossing established observed (by night shift) Undulators ARAMIS Beamline

12 SwissFEL Progress 2017 Kα from Fe 3 kev measured with Neon Gas intensity monitor FEL beam on YAG screen Kα 1 Kα 2 1eV Dec 16 Inauguration and 1 st lasing E e = 0.35 GeV = 240 Å Lasing E e = 0.91 GeV = 41 Å 15 May 17 Lasing at 41 Å May Lasing E e = 1.62 GeV = 13 Å 1 st Photons in X-ray beamline Aug Lasing E e = 2.45 GeV = 5 Å First user experiment in Bernina Oct Nov Achieved First user experiment in Alvra Dec CDR nominal e - energy 2.7 GeV 5.8 GeV e - pulse charge 200 pc 200 pc FEL wavelength 4 Å 1 Å FEL pulse energy 250 J 150 J Repetition rate 10 Hz 100 Hz

13 Scientific Challenges

14

15 Pump-probe experiments at FELs

16 Non Linear Optics: Time resolved chemistry Canton, Kjær et al., Nat. Commun. 6, 6359 (2015) Canton, Kjær et al., Nat. Commun. 6, 6359 (2015)

17 Measure before destroy R. Neutze, Nature 2000

18 Visualizing dynamics in Biology at PSI Visualizing the motion of an object helps to understand its function Dynamic in vivo X-ray imaging in the mm range with high μsec resolution (Synchtrotron) dynamic processes in biochemistry in atomistic detail with up to picosecond resolution (Free Electron lasers) Extracellular Cytoplasmic Mokso et al., Scie. Rep., 2015 Standfuss et al., Nature, 2011 Nango et al., Science 2016 (SACLA) Nogly et al., Nature Comm 2016 (LCLS)

19 First time resolved Pilot Experiment by SwissFEL: Semiconductor to metal transition in Ti3O5 nanocrystals Collaboration: SwissFEL Bernina team and M. Cammarata et al., Univ. Rennes in collaboration with prof. S. Ohkoshi & H. Tokoro (Tokyo University) Nature Chemistry : /nchem.67 3 rd Harm: ~ KeV (220 1 st harm) Laser: 800nm, 42 mj/cm 2 Jungfrau 1.5 M (average 100 images) Light induced Debye Scherrer ring differences Precisely Mapping Multiscale dynamics from ~1 ps to tens of μs Acoustic expansion precedes phase transition(s) High resolution allowed understanding transformation pathway: β α λ

20 First Pilot Experiment by SwissFEL-Alvra: UV photo-induced charge transfer in OLED system Collaboration SwissFEL Alvra team and J. Szlachetko, J. Czapla-Masztafiak, W. M. Kwiatek (Inst. of Nucl. Phys. PAN (Krakow) and M. Vogt (University of Bremen) [Cu4(PCP)3]+ Jet Jungfrau 4.5M Jungfrau 4.5 M XES P Kα Photon in kev X-ray Kα ev UV Laser Phosphorescence Jet Kα ev

21 Aramis beamline courtesy: U. Flechsig and R. Follath Flat Offset Mirrors from JTEC (2) and Zeiss (4) Size : 770 x 80 x 50 (80) mm 3 Optical surface : 630 x 30 mm 2 Height error : < 6 nm rms ** **) within noise level of PSI metrology Microroughness : < 0.2 nm Coatings : SiC/B 4 C, Si, Mo/B 4 C S. Spielmann-Jäggi by Offset mirror measurements

22 First Mirror for ARAMIS PSI courtesty Rolf Follath & Uwe Flechsig -PV (300mm): 2.6 nm (3) -Figure error: 0.5 nm rms (0.6) (full-length) M-201 and Uwe Flechsig

23 Fluence Beam size r (r) 2 r (0) r ' z 2 Peak fluence ˆ EP ( z) 2 ( z) r ( E p : pulse energy ) Max. dose absorbed by atoms ˆ ( z) Fluence is alway lower than damage threshold of B 4 C Iron or steel critical below 50 m

24 Mirror coatings for Aramis B 4 C / SiC on Si Low-Z materials 10 nm B 4 C 36 nm SiC Si bulk B 4 C / Mo on Si Mo is Mid-Z material 15 nm B 4 C 20 nm Mo Si bulk SiC shifts the cut off to higher energies B 4 C covers absorption edge Mo is well known multilayer material 1 No harmonic rejection in working energy range Extend range to ev (3rd harmonic), 1 M. Störmer, SPIE 7077, (2008)

25 Characterisation of Bilayer Mo / B 4 C bilayer Sample 15 nm B 4 C 20 nm Mo Si bulk

26 Coating of offset mirrors First stripe: SiC + top B 4 C End of June 2016 Run ID T664 coating area above width: mm (or mm) (uncoated silicon below) Label Second stripe: Mo + top B 4 C Beginning of July 2016 Run ID T668 coating area above width: mm (or mm) (first stripe below) Label Courtesy, M. Stoermer, HzG Geesthacht

27 XRR-measurement of Mo/B 4 C T668 Courtesy, M. Stoermer, HzG Geesthacht

28 Reflective optics λ=1 Å Total reflecting mirrors θ small angle ->long mirrors ρ: electron density, r e = m Critical angle c r e Θ = 4 mrad Multilayer Θ = 9 mrad θ large angle ->short mirrors Multilayers only in narrow energy band Incidence angle only a few mrad

29 Graded Multilayer φ θ 1 θ 2 θ 1 Mirror 0 z Bragg equation sin ( z) 2d( z) Multilayer gradient: d( z) d0(1 B1 z B2z 2...) Graded multilayer fills the numerical aperture! (deg) Mirror1 (HFM): B 1 = / mm Mirror2 (VFM): B 1 = / mm

X-ray Free-electron Lasers

X-ray Free-electron Lasers X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/ 2009 Claudio Pellegrini UCLA Department of Physics and Astronomy Outline 1. Present status of X-ray free-electron

More information

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Free-electron laser SACLA and its basic Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Light and Its Wavelength, Sizes of Material Virus Mosquito Protein Bacteria Atom

More information

Short Pulse, Low charge Operation of the LCLS. Josef Frisch for the LCLS Commissioning Team

Short Pulse, Low charge Operation of the LCLS. Josef Frisch for the LCLS Commissioning Team Short Pulse, Low charge Operation of the LCLS Josef Frisch for the LCLS Commissioning Team 1 Normal LCLS Parameters First Lasing in April 10, 2009 Beam to AMO experiment August 18 2009. Expect first user

More information

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013 Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers Zhirong Huang SLAC, Stanford University May 13, 2013 Introduction GE synchrotron (1946) opened a new era of accelerator-based

More information

The MID instrument.

The MID instrument. The MID instrument International Workshop on the Materials Imaging and Dynamics Instrument at the European XFEL Grenoble, Oct 28/29, 2009 Thomas Tschentscher thomas.tschentscher@xfel.eu Outline 2 History

More information

The European XFEL in Hamburg: Status and beamlines design

The European XFEL in Hamburg: Status and beamlines design UVX 2010 (2011) 63 67 DOI: 10.1051/uvx/2011009 C Owned by the authors, published by EDP Sciences, 2011 The European XFEL in Hamburg: Status and beamlines design J. Gaudin, H. Sinn and Th. Tschentscher

More information

Low slice emittance preservation during bunch compression

Low slice emittance preservation during bunch compression Low slice emittance preservation during bunch compression S. Bettoni M. Aiba, B. Beutner, M. Pedrozzi, E. Prat, S. Reiche, T. Schietinger Outline. Introduction. Experimental studies a. Measurement procedure

More information

Research with Synchrotron Radiation. Part I

Research with Synchrotron Radiation. Part I Research with Synchrotron Radiation Part I Ralf Röhlsberger Generation and properties of synchrotron radiation Radiation sources at DESY Synchrotron Radiation Sources at DESY DORIS III 38 beamlines XFEL

More information

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg,

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg, FLASH overview Nikola Stojanovic PIDID collaboration meeting, Hamburg, 16.12.2011 Outline Overview of the FLASH facility Examples of research at FLASH Nikola Stojanovic PIDID: FLASH overview Hamburg, December

More information

Undulator radiation from electrons randomly distributed in a bunch

Undulator radiation from electrons randomly distributed in a bunch Undulator radiation from electrons randomly distributed in a bunch Normally z el >> N u 1 Chaotic light Spectral property is the same as that of a single electron /=1/N u Temporal phase space area z ~(/

More information

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center Linac Based Photon Sources: XFELS Coherence Properties J. B. Hastings Stanford Linear Accelerator Center Coherent Synchrotron Radiation Coherent Synchrotron Radiation coherent power N 6 10 9 incoherent

More information

CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2

CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2 CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2 T. Plath, L. L. Lazzarino, Universität Hamburg, Hamburg, Germany K. E. Hacker, T.U. Dortmund, Dortmund, Germany Abstract We present a conceptual study

More information

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site 1 Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site Sakhorn Rimjaem (on behalf of the PITZ team) Motivation Photo Injector Test Facility at

More information

4 FEL Physics. Technical Synopsis

4 FEL Physics. Technical Synopsis 4 FEL Physics Technical Synopsis This chapter presents an introduction to the Free Electron Laser (FEL) physics and the general requirements on the electron beam parameters in order to support FEL lasing

More information

LCLS Commissioning Status

LCLS Commissioning Status LCLS Commissioning Status Paul Emma (for the LCLS Commissioning Team) June 20, 2008 LCLS ANL LLNL UCLA FEL Principles Electrons slip behind EM wave by λ 1 per undulator period ( (λ u ) x K/γ e λ u v x

More information

Towards a Low Emittance X-ray FEL at PSI

Towards a Low Emittance X-ray FEL at PSI Towards a Low Emittance X-ray FEL at PSI A. Adelmann, A. Anghel, R.J. Bakker, M. Dehler, R. Ganter, C. Gough, S. Ivkovic, F. Jenni, C. Kraus, S.C. Leemann, A. Oppelt, F. Le Pimpec, K. Li, P. Ming, B. Oswald,

More information

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Richard London rlondon@llnl.gov Workshop on Interaction of Free Electron Laser Radiation with Matter Hamburg This work

More information

An Adventure in Marrying Laser Arts and Accelerator Technologies

An Adventure in Marrying Laser Arts and Accelerator Technologies An Adventure in Marrying Laser Arts and Accelerator Technologies Dao Xiang Beam Physics Dept, SLAC, Stanford University Feb-28-2012 An example sample Probe (electron) Pump (laser) Typical pump-probe experiment

More information

PAL LINAC UPGRADE FOR A 1-3 Å XFEL

PAL LINAC UPGRADE FOR A 1-3 Å XFEL PAL LINAC UPGRADE FOR A 1-3 Å XFEL J. S. Oh, W. Namkung, Pohang Accelerator Laboratory, POSTECH, Pohang 790-784, Korea Y. Kim, Deutsches Elektronen-Synchrotron DESY, D-603 Hamburg, Germany Abstract With

More information

Update on and the Issue of Circularly-Polarized On-Axis Harmonics

Update on and the Issue of Circularly-Polarized On-Axis Harmonics Update on FERMI@Elettra and the Issue of Circularly-Polarized On-Axis Harmonics W. Fawley for the FERMI Team Slides courtesy of S. Milton & Collaborators The FERMI@Elettra Project FERMI@Elettra is a single-pass

More information

Two-Stage Chirped-Beam SASE-FEL for High Power Femtosecond X-Ray Pulse Generation

Two-Stage Chirped-Beam SASE-FEL for High Power Femtosecond X-Ray Pulse Generation Two-Stage Chirped-Beam SASE-FEL for High ower Femtosecond X-Ray ulse Generation C. Schroeder*, J. Arthur^,. Emma^, S. Reiche*, and C. ellegrini* ^ Stanford Linear Accelerator Center * UCLA 12-10-2001 LCLS-TAC

More information

SCSS Prototype Accelerator -- Its outline and achieved beam performance --

SCSS Prototype Accelerator -- Its outline and achieved beam performance -- SCSS Prototype Accelerator -- Its outline and achieved beam performance -- Hitoshi TANAKA RIKEN, XFEL Project Office 1 Content 1. Light Quality; SPring-8 v.s. XFEL 2. What are the critical issues? 3. Mission

More information

The peak brilliance of VUV/X-ray free electron lasers (FEL) is by far the highest.

The peak brilliance of VUV/X-ray free electron lasers (FEL) is by far the highest. Free electron lasers The peak brilliance of VUV/X-ray free electron lasers (FEL) is by far the highest. Normal lasers are based on stimulated emission between atomic energy levels, i. e. the radiation

More information

Performance Metrics of Future Light Sources. Robert Hettel, SLAC ICFA FLS 2010 March 1, 2010

Performance Metrics of Future Light Sources. Robert Hettel, SLAC ICFA FLS 2010 March 1, 2010 Performance Metrics of Future Light Sources Robert Hettel, SLAC ICFA FLS 2010 March 1, 2010 http://www-ssrl.slac.stanford.edu/aboutssrl/documents/future-x-rays-09.pdf special acknowledgment to John Corlett,

More information

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

Excitements and Challenges for Future Light Sources Based on X-Ray FELs Excitements and Challenges for Future Light Sources Based on X-Ray FELs 26th ADVANCED ICFA BEAM DYNAMICS WORKSHOP ON NANOMETRE-SIZE COLLIDING BEAMS Kwang-Je Kim Argonne National Laboratory and The University

More information

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

Excitements and Challenges for Future Light Sources Based on X-Ray FELs Excitements and Challenges for Future Light Sources Based on X-Ray FELs 26th ADVANCED ICFA BEAM DYNAMICS WORKSHOP ON NANOMETRE-SIZE COLLIDING BEAMS Kwang-Je Kim Argonne National Laboratory and The University

More information

Liverpool Physics Teachers Conference July

Liverpool Physics Teachers Conference July Elements of a Laser Pump Optics Ex-Director STFC Accelerator Science and Technology Centre (ASTeC) Daresbury Laboratory Gain medium All lasers contain a medium in which optical gain can be induced and

More information

USPAS course on Recirculated and Energy Recovered Linacs Ivan Bazarov, Cornell University Geoff Krafft, JLAB. ERL as a X-ray Light Source

USPAS course on Recirculated and Energy Recovered Linacs Ivan Bazarov, Cornell University Geoff Krafft, JLAB. ERL as a X-ray Light Source USPAS course on Recirculated and Energy Recovered Linacs Ivan Bazarov, Cornell University Geoff Krafft, JLAB ERL as a X-ray Light Source Contents Introduction Light sources landscape General motivation

More information

SLS Symposium on X-Ray Instrumentation

SLS Symposium on X-Ray Instrumentation SLS Symposium on X-Ray Instrumentation Tuesday, December 7, 2010 10:00 to 12:15, WBGB/019 10:00 The optics layout of the PEARL beamline P. Oberta, U. Flechsig and M. Muntwiler 10:30 Instrumentation for

More information

Vertical Polarization Option for LCLS-II. Abstract

Vertical Polarization Option for LCLS-II. Abstract SLAC National Accelerator Lab LCLS-II TN-5-8 March 5 Vertical Polarization Option for LCLS-II G. Marcus, T. Raubenheimer SLAC, Menlo Park, CA 95 G. Penn LBNL, Berkeley, CA 97 Abstract Vertically polarized

More information

Polarization control experiences in single pass seeded FELs. Carlo Spezzani on behalf of

Polarization control experiences in single pass seeded FELs. Carlo Spezzani on behalf of Polarization control experiences in single pass seeded FELs Carlo Spezzani on behalf of the FERMI team & the storage ring FEL group Outline Introduction Storage Ring FEL test facility characterization

More information

Trends in X-ray Synchrotron Radiation Research

Trends in X-ray Synchrotron Radiation Research Trends in X-ray Synchrotron Radiation Research Storage rings Energy Recovery Linacs (ERL) Free Electron Lasers Jochen R. Schneider DESY Development of the brilliance of X-ray sources Since the discovery

More information

Generation and characterization of ultra-short electron and x-ray x pulses

Generation and characterization of ultra-short electron and x-ray x pulses Generation and characterization of ultra-short electron and x-ray x pulses Zhirong Huang (SLAC) Compact XFEL workshop July 19-20, 2010, Shanghai, China Ultra-bright Promise of XFELs Ultra-fast LCLS Methods

More information

Introduction to single-pass FELs for UV X-ray production

Introduction to single-pass FELs for UV X-ray production Introduction to single-pass FELs for UV X-ray production S. Di Mitri, Elettra Sincrotrone Trieste INSC - 08/2014 simone.dimitri@elettra.eu 1 Outlook Motivations Radiation emission in undulator Self-Amplified

More information

MAX IV, NSLS II, PLS II, LCLS, SACLA, European XFEL,

MAX IV, NSLS II, PLS II, LCLS, SACLA, European XFEL, 3 rd rd and 4 th Generation Light Sources Prapong Klysubun March 4, 2014 2014 Accelerator Seminar no. 1 Khao Yai Paradise on Earth, Khao Yai, Nakhon Ratchasima, Thailand P. Klysubun 2014 1 Outline 1. History

More information

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR)

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) Case Study of IR/THz source for Pump-Probe Experiment at the European XFEL Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) Introduction Outline Simulations of High-gain FEL (SASE) Simulation

More information

Length of beam system = 910m. S. Reiche X var = ~50m ~ 650m / Y. Kim FEL-KY ~150m. ~60m. LaserHutch2 (access during operation)

Length of beam system = 910m. S. Reiche X var = ~50m ~ 650m / Y. Kim FEL-KY ~150m. ~60m. LaserHutch2 (access during operation) Laser Laser HHG Diagnostic ATHOS PORTHOS ARAMIS THz-Pump P A U L S C H E R R E R I N S T I T U T Length of beam system = 910m &'!( Test & Commissioning steps (A,B,C) A11 Conv. Gun & Injector A12 LINAC

More information

Simulations of the IR/THz source at PITZ (SASE FEL and CTR)

Simulations of the IR/THz source at PITZ (SASE FEL and CTR) Simulations of the IR/THz source at PITZ (SASE FEL and CTR) Introduction Outline Simulations of SASE FEL Simulations of CTR Summary Issues for Discussion Mini-Workshop on THz Option at PITZ DESY, Zeuthen

More information

Developments for the FEL user facility

Developments for the FEL user facility Developments for the FEL user facility J. Feldhaus HASYLAB at DESY, Hamburg, Germany Design and construction has started for the FEL user facility including the radiation transport to the experimental

More information

First operation of a Harmonic Lasing Self-Seeded FEL

First operation of a Harmonic Lasing Self-Seeded FEL First operation of a Harmonic Lasing Self-Seeded FEL E. Schneidmiller and M. Yurkov ICFA workshop, Arcidosso, Italy, 22.09.2017 Outline Harmonic lasing Harmonic lasing self-seeded (HLSS) FEL Experiments

More information

Electron Linear Accelerators & Free-Electron Lasers

Electron Linear Accelerators & Free-Electron Lasers Electron Linear Accelerators & Free-Electron Lasers Bryant Garcia Wednesday, July 13 2016. SASS Summer Seminar Bryant Garcia Linacs & FELs 1 of 24 Light Sources Why? Synchrotron Radiation discovered in

More information

FLASH/DESY, Hamburg. Jörg Rossbach University of Hamburg & DESY, Germany - For the FLASH Team -

FLASH/DESY, Hamburg. Jörg Rossbach University of Hamburg & DESY, Germany - For the FLASH Team - First Lasing below 7nm Wavelength at FLASH/DESY, Hamburg Jörg Rossbach University of Hamburg & DESY, Germany - For the FLASH Team - email: joerg.rossbach@desy.de FLASH: The first FEL user facility for

More information

Lecture 1 August 29

Lecture 1 August 29 HASYLAB - Facility - Free Electron Laser (FEL) http://www-hasylab.desy.de/facility/fel/main.htm Page 1 of 1 8/23/2006 HASYLAB Facility Free Electron Laser Overview FLASH FLASH User Info Events Job Offers

More information

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration SPARCLAB Source For Plasma Accelerators and Radiation Compton with Laser And Beam On behalf of SPARCLAB collaboration EMITTANCE X X X X X X X X 2 BRIGHTNESS (electrons) B n 2I nx ny A m 2 rad 2 The current

More information

A Review of X-Ray Free Electron Laser Oscillator

A Review of X-Ray Free Electron Laser Oscillator A Review of X-Ray Free Electron Laser Oscillator ERL 2011 Kwang-Je Kim Argonne National Laboratory October 16-21, 2011 KEK Tsukuba Japan FEL Works for Hard X-rays! Self Amplified Spontaneous Emission (SASE)

More information

THz field strength larger than MV/cm generated in organic crystal

THz field strength larger than MV/cm generated in organic crystal SwissFEL Wir schaffen Wissen heute für morgen 1 2 C. Vicario 1, R. Clemens 1 and C. P. Hauri 1,2 THz field strength larger than MV/cm generated in organic crystal 10/16/12 Workshop on High Field THz science

More information

INNOVATIVE IDEAS FOR SINGLE-PASS FELS

INNOVATIVE IDEAS FOR SINGLE-PASS FELS doi:10.18429/jacow-ipac2014- Abstract INNOVATIVE IDEAS FOR SINGLE-PASS FELS Toru Hara #, RIKEN SPring-8 Center, Hyogo, Japan SASE FELs (Self-Amplified Spontaneous Emission Free-Electron Lasers) are a powerful

More information

Echo-Enabled Harmonic Generation

Echo-Enabled Harmonic Generation Echo-Enabled Harmonic Generation G. Stupakov SLAC NAL, Stanford, CA 94309 IPAC 10, Kyoto, Japan, May 23-28, 2010 1/29 Outline of the talk Generation of microbunching in the beam using the echo effect mechanism

More information

Opportunities and Challenges for X

Opportunities and Challenges for X Opportunities and Challenges for X -ray Free Electron Lasers for X-ray Ultrafast Science J. Hastings Stanford Linear Accelerator Center June 22, 2004 European XFEL Laboratory How Short is short? defined

More information

Beam Echo Effect for Generation of Short Wavelength Radiation

Beam Echo Effect for Generation of Short Wavelength Radiation Beam Echo Effect for Generation of Short Wavelength Radiation G. Stupakov SLAC NAL, Stanford, CA 94309 31st International FEL Conference 2009 Liverpool, UK, August 23-28, 2009 1/31 Outline of the talk

More information

Linac Driven Free Electron Lasers (III)

Linac Driven Free Electron Lasers (III) Linac Driven Free Electron Lasers (III) Massimo.Ferrario@lnf.infn.it SASE FEL Electron Beam Requirements: High Brightness B n ( ) 1+ K 2 2 " MIN r #$ % &B! B n 2 n K 2 minimum radiation wavelength energy

More information

Coherence properties of the radiation from SASE FEL

Coherence properties of the radiation from SASE FEL CERN Accelerator School: Free Electron Lasers and Energy Recovery Linacs (FELs and ERLs), 31 May 10 June, 2016 Coherence properties of the radiation from SASE FEL M.V. Yurkov DESY, Hamburg I. Start-up

More information

The MEC endstation at LCLS New opportunities for high energy density science

The MEC endstation at LCLS New opportunities for high energy density science The MEC endstation at LCLS New opportunities for high energy density science Singapore, fttp-5, April 20th, 2011 Bob Nagler BNagler@slac.stanford.edu SLAC national accelerator laboratory 1 Overview Motivation

More information

SPPS: The SLAC Linac Bunch Compressor and Its Relevance to LCLS

SPPS: The SLAC Linac Bunch Compressor and Its Relevance to LCLS LCLS Technical Advisory Committee December 10-11, 2001. SPPS: The SLAC Linac Bunch Compressor and Its Relevance to LCLS Patrick Krejcik LCLS Technical Advisory Committee Report 1: July 14-15, 1999 The

More information

FEL SIMULATION AND PERFORMANCE STUDIES FOR LCLS-II

FEL SIMULATION AND PERFORMANCE STUDIES FOR LCLS-II FEL SIMULATION AND PERFORMANCE STUDIES FOR LCLS-II G. Marcus, Y. Ding, P. Emma, Z. Huang, T. Raubenheimer, L. Wang, J. Wu SLAC, Menlo Park, CA 9, USA Abstract The design and performance of the LCLS-II

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10721 Experimental Methods The experiment was performed at the AMO scientific instrument 31 at the LCLS XFEL at the SLAC National Accelerator Laboratory. The nominal electron bunch charge

More information

Radiation Safety at LCLS: The Photon Beam s Maximum Capability and Material Damage Potential

Radiation Safety at LCLS: The Photon Beam s Maximum Capability and Material Damage Potential SLAC-PUB-15708 August 2013 Radiation Safety at LCLS: The Photon Beam s Maximum Capability and Material Damage Potential J.M. Bauer *1, J.C. Liu 1, A.A. Prinz 2, and S.H. Rokni 1 1 Radiation Protection

More information

Free-electron lasers as sources of extremely brilliant x-ray radiation (Introduction European XFEL)

Free-electron lasers as sources of extremely brilliant x-ray radiation (Introduction European XFEL) Free-electron lasers as sources of extremely brilliant x-ray radiation () Winter School of Synchrotron Radiation, Liptovsky Jan, Slovakia, Feb 01 04, 2011 Thomas Tschentscher thomas.tschentscher@xfel.eu

More information

Part V Undulators for Free Electron Lasers

Part V Undulators for Free Electron Lasers Part V Undulators for Free Electron Lasers Pascal ELLEAUME European Synchrotron Radiation Facility, Grenoble V, 1/22, P. Elleaume, CAS, Brunnen July 2-9, 2003. Oscillator-type Free Electron Laser V, 2/22,

More information

4GLS Status. Susan L Smith ASTeC Daresbury Laboratory

4GLS Status. Susan L Smith ASTeC Daresbury Laboratory 4GLS Status Susan L Smith ASTeC Daresbury Laboratory Contents ERLP Introduction Status (Kit on site ) Plan 4GLS (Conceptual Design) Concept Beam transport Injectors SC RF FELs Combining Sources May 2006

More information

Harmonic Lasing Self-Seeded FEL

Harmonic Lasing Self-Seeded FEL Harmonic Lasing Self-Seeded FEL E. Schneidmiller and M. Yurkov FEL seminar, DESY Hamburg June 21, 2016 In a planar undulator (K ~ 1 or K >1) the odd harmonics can be radiated on-axis (widely used in SR

More information

Detection: from the Dark Ages to the X-ray Detectors for future SR and FEL Photon Sources

Detection: from the Dark Ages to the X-ray Detectors for future SR and FEL Photon Sources Detection: from the Dark Ages to the X-ray Detectors for future SR and FEL Photon Sources Michael Krisch Head of Instrumentation Services and Development Division European Synchrotron Radiation Facility

More information

Imaging & Microscopy

Imaging & Microscopy Coherent X-ray X Imaging & Microscopy => Opportunities Using a Diffraction-Limited Energy Recovery Linac (ERL) Synchrotron Source Q. Shen D. Bilderback, K.D. Finkelstein, E. Fontes, & S. Gruner Cornell

More information

Beam manipulation with high energy laser in accelerator-based light sources

Beam manipulation with high energy laser in accelerator-based light sources Beam manipulation with high energy laser in accelerator-based light sources Ming-Chang Chou High Brightness Injector Group FEL winter school, Jan. 29 ~ Feb. 2, 2018 Outline I. Laser basic II. III. IV.

More information

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ Introduction Outline Optimization of Electron Beams Calculations of CTR/CDR Pulse Energy Summary & Outlook Prach Boonpornprasert

More information

Undulator Commissioning Spectrometer for the European XFEL

Undulator Commissioning Spectrometer for the European XFEL Undulator Commissioning Spectrometer for the European XFEL FEL Beam Dynamics Group meeting DESY, Hamburg, Nov. 9 th 010 Wolfgang Freund, WP74 European XFEL wolfgang.freund@xfel.eu Contents Undulator commissioning

More information

New Electron Source for Energy Recovery Linacs

New Electron Source for Energy Recovery Linacs New Electron Source for Energy Recovery Linacs Ivan Bazarov 20m Cornell s photoinjector: world s brightest electron source 1 Outline Uses of high brightness electron beams Physics of brightness High brightness

More information

Femto-second FEL Generation with Very Low Charge at LCLS

Femto-second FEL Generation with Very Low Charge at LCLS Femto-second FEL Generation with Very Low Charge at LCLS Yuantao Ding, For the LCLS commissioning team X-ray Science at the Femtosecond to Attosecond Frontier workshop May 18-20, 2009, UCLA SLAC-PUB-13525;

More information

Energy Recovery Linac (ERL) Properties. Physics Dept. & Cornell High Energy Synchrotron Source (CHESS) Ithaca, NY Cornell University

Energy Recovery Linac (ERL) Properties. Physics Dept. & Cornell High Energy Synchrotron Source (CHESS) Ithaca, NY Cornell University Energy Recovery Linac (ERL) Properties Sol M. Gruner Physics Dept. & Cornell High Energy Synchrotron Source (CHESS) Cornell University Ithaca, NY 14853-2501 Acknowledgements T. Allen (Special thanks to

More information

Synchrotron Methods in Nanomaterials Research

Synchrotron Methods in Nanomaterials Research Synchrotron Methods in Nanomaterials Research Marcel MiGLiERiNi Slovak University of Technology in Bratislava and Centre for Nanomaterials Research, Olomouc marcel.miglierini@stuba.sk www.nuc.elf.stuba.sk/bruno

More information

Introduction to Synchrotron Radiation

Introduction to Synchrotron Radiation Introduction to Synchrotron Radiation Frederico Alves Lima Centro Nacional de Pesquisa em Energia e Materiais - CNPEM Laboratório Nacional de Luz Síncrotron - LNLS International School on Laser-Beam Interactions

More information

START-TO-END SIMULATIONS FOR IR/THZ UNDULATOR RADIATION AT PITZ

START-TO-END SIMULATIONS FOR IR/THZ UNDULATOR RADIATION AT PITZ Proceedings of FEL2014, Basel, Switzerland MOP055 START-TO-END SIMULATIONS FOR IR/THZ UNDULATOR RADIATION AT PITZ P. Boonpornprasert, M. Khojoyan, M. Krasilnikov, F. Stephan, DESY, Zeuthen, Germany B.

More information

FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE*

FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE* Proceedings of FEL014, Basel, Switzerland FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE* F. Zhou, K. Bane, Y. Ding, Z. Huang, and H. Loos, SLAC, Menlo Park, CA 9405, USA Abstract Coherent optical transition

More information

VARIABLE GAP UNDULATOR FOR KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE

VARIABLE GAP UNDULATOR FOR KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE LCLS-TN-10-1, January, 2010 VARIABLE GAP UNDULATOR FOR 1.5-48 KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE C. Pellegrini, UCLA, Los Angeles, CA, USA J. Wu, SLAC, Menlo Park, CA, USA We study

More information

The VELA and CLARA Test Facilities at Daresbury Laboratory Peter McIntosh, STFC on behalf of the VELA and CLARA Development Teams

The VELA and CLARA Test Facilities at Daresbury Laboratory Peter McIntosh, STFC on behalf of the VELA and CLARA Development Teams The VELA and CLARA Test Facilities at Daresbury Laboratory Peter McIntosh, STFC on behalf of the VELA and CLARA Development Teams Outline VELA & CLARA Accelerators VELA Commissioning VELA Exploitation

More information

Design of an x-ray split- and delay-unit for the European XFEL

Design of an x-ray split- and delay-unit for the European XFEL Invited Paper Design of an x-ray split- and delay-unit for the European XFEL Sebastian Roling 1*, Liubov Samoylova 3, Björn Siemer 1, Harald Sinn 3, Frank Siewert 2, Frank Wahlert 1, Michael Wöstmann 1

More information

Free Electron Laser. Project report: Synchrotron radiation. Sadaf Jamil Rana

Free Electron Laser. Project report: Synchrotron radiation. Sadaf Jamil Rana Free Electron Laser Project report: Synchrotron radiation By Sadaf Jamil Rana History of Free-Electron Laser (FEL) The FEL is the result of many years of theoretical and experimental work on the generation

More information

3. Synchrotrons. Synchrotron Basics

3. Synchrotrons. Synchrotron Basics 1 3. Synchrotrons Synchrotron Basics What you will learn about 2 Overview of a Synchrotron Source Losing & Replenishing Electrons Storage Ring and Magnetic Lattice Synchrotron Radiation Flux, Brilliance

More information

Greenfield FELs. John Galayda, SLAC Kwang-Je Kim, ANL (Presenter) James Murphy, BNL

Greenfield FELs. John Galayda, SLAC Kwang-Je Kim, ANL (Presenter) James Murphy, BNL Greenfield FELs John Galayda, SLAC Kwang-Je Kim, ANL (Presenter) James Murphy, BNL BESAC Subcommittee on BES 20-year Facility Road Map February 22-24, 2003 What is a Greenfield FEL? High-gain FELs are

More information

Cooled-HGHG and Coherent Thomson Sca ering

Cooled-HGHG and Coherent Thomson Sca ering Cooled-HGHG and Coherent Thomson Sca ering using KEK compact ERL beam CHEN Si Institute of Heavy Ion Physics Peking University chensi9@mailsucasaccn Seminar, KEK 213117 Outline 1 Accelerator-based Light

More information

The European X-ray Free- Electron Laser Facility in Hamburg

The European X-ray Free- Electron Laser Facility in Hamburg The European X-ray Free- Electron Laser Facility in Hamburg Massimo Altarelli European X-ray Free-Electron Laser Facility 22607 Hamburg, Germany massimo.altarelli@xfel.eu Some Third Generation Synchrotrons

More information

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012 X-band RF driven hard X-ray FELs Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012 Motivations & Contents Motivations Develop more compact (hopefully cheaper) FEL drivers, L S C X-band (successful

More information

SwissFEL INJECTOR DESIGN: AN AUTOMATIC PROCEDURE

SwissFEL INJECTOR DESIGN: AN AUTOMATIC PROCEDURE Proceedings of FEL03, New York, NY, USA SwissFEL INJECTOR DESIGN: AN AUTOMATIC PROCEDURE S. Bettoni, M. Pedrozzi, S. Reiche, PSI, Villigen, Switzerland Abstract The first section of FEL injectors driven

More information

Layout of the HHG seeding experiment at FLASH

Layout of the HHG seeding experiment at FLASH Layout of the HHG seeding experiment at FLASH V. Miltchev on behalf of the sflash team: A. Azima, J. Bödewadt, H. Delsim-Hashemi, M. Drescher, S. Düsterer, J. Feldhaus, R. Ischebeck, S. Khan, T. Laarmann

More information

Linac optimisation for the New Light Source

Linac optimisation for the New Light Source Linac optimisation for the New Light Source NLS source requirements Electron beam requirements for seeded cascade harmonic generation LINAC optimisation (2BC vs 3 BC) CSR issues energy chirp issues jitter

More information

Development of Cs 2 Te photocathode RF gun system for compact THz SASE-FEL

Development of Cs 2 Te photocathode RF gun system for compact THz SASE-FEL Development of Cs 2 Te photocathode RF gun system for compact THz SASE-FEL R. Kuroda, H. Ogawa, N. Sei, H. Toyokawa, K. Yagi-Watanabe, M. Yasumoto, M. Koike, K. Yamada, T. Yanagida*, T. Nakajyo*, F. Sakai*

More information

Report on the XFEL STI Round Table Workshop

Report on the XFEL STI Round Table Workshop Report on the XFEL STI Round Table Workshop June 22-24th, 2004 background workshop XFEL preparatory phase Jochen R. Schneider DESY Approaching the European XFEL Facility Steering Committee chairman: H.

More information

Laser-driven undulator source

Laser-driven undulator source Laser-driven undulator source Matthias Fuchs, R. Weingartner, A.Maier, B. Zeitler, S. Becker, D. Habs and F. Grüner Ludwig-Maximilians-Universität München A.Popp, Zs. Major, J. Osterhoff, R. Hörlein, G.

More information

Commissioning of the new Injector Laser System for the Short Pulse Project at FLASH

Commissioning of the new Injector Laser System for the Short Pulse Project at FLASH Commissioning of the new Injector Laser System for the Short Pulse Project at FLASH Uni Hamburg tim.plath@desy.de 05.11.2013 Supported by BMBF under contract 05K10GU2 & FS FLASH 301 Motivation short pulses

More information

SPARCLAB. Source For Plasma Accelerators and Radiation Compton with Laser And Beam

SPARCLAB. Source For Plasma Accelerators and Radiation Compton with Laser And Beam SPARCLAB Source For Plasma Accelerators and Radiation Compton with Laser And Beam EMITTANCE X X X X X X X X Introduction to SPARC_LAB 2 BRIGHTNESS (electrons) B n 2I nx ny A m 2 rad 2 The current can be

More information

Introduction to electron and photon beam physics. Zhirong Huang SLAC and Stanford University

Introduction to electron and photon beam physics. Zhirong Huang SLAC and Stanford University Introduction to electron and photon beam physics Zhirong Huang SLAC and Stanford University August 03, 2015 Lecture Plan Electron beams (1.5 hrs) Photon or radiation beams (1 hr) References: 1. J. D. Jackson,

More information

Wir schaffen Wissen heute für morgen

Wir schaffen Wissen heute für morgen Wir schaffen Wissen heute für morgen Paul Scherrer Institut Pavle Juranić, R. Ischebeck, L. Patthey, V. Schlott, C. David, C. P. Hauri, I. Gorgisyan Single Shot Spectrometer and Pulse and Arrival Time

More information

Transverse Coherence Properties of the LCLS X-ray Beam

Transverse Coherence Properties of the LCLS X-ray Beam LCLS-TN-06-13 Transverse Coherence Properties of the LCLS X-ray Beam S. Reiche, UCLA, Los Angeles, CA 90095, USA October 31, 2006 Abstract Self-amplifying spontaneous radiation free-electron lasers, such

More information

MaRIE. MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design

MaRIE. MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design Operated by Los Alamos National Security, LLC, for the U.S. Department of Energy MaRIE (Matter-Radiation Interactions in Extremes) MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design B. Carlsten, C.

More information

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Jyhpyng Wang ( ) Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National

More information

Introduction to Free Electron Lasers and Fourth-Generation Light Sources. 黄志戎 (Zhirong Huang, SLAC)

Introduction to Free Electron Lasers and Fourth-Generation Light Sources. 黄志戎 (Zhirong Huang, SLAC) Introduction to Free Electron Lasers and Fourth-Generation Light Sources 黄志戎 (Zhirong Huang, SLAC) FEL References K.-J. Kim and Z. Huang, FEL lecture note, available electronically upon request Charles

More information

EUV lithography and Source Technology

EUV lithography and Source Technology EUV lithography and Source Technology History and Present Akira Endo Hilase Project 22. September 2017 EXTATIC, Prague Optical wavelength and EUV (Extreme Ultraviolet) VIS 13.5nm 92eV Characteristics of

More information

Check the LCLS Project website to verify 2 of 6 that this is the correct version prior to use.

Check the LCLS Project website to verify 2 of 6 that this is the correct version prior to use. 1. Introduction The XTOD Offset Systems are designed to spatially separate the useful FEL radiation from high-energy spontaneous radiation and Bremsstrahlung γ-rays. These unwanted radiations are generated

More information

Energy Recovery Linac (ERL) Science Workshop

Energy Recovery Linac (ERL) Science Workshop Energy Recovery Linac (ERL) Science Workshop Sol M. Gruner, CHESS & Physics Dept. Objective: Examine science possible with an ERL x-ray source. Ques.: Ans.: Why do this? Need for more and better SR machines.

More information

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland Michael Böge 1 SLS Team at PSI Michael Böge 2 Layout of the SLS Linac, Transferlines Booster Storage Ring (SR) Beamlines and Insertion Devices

More information