Energy Recovery Linac (ERL) Properties. Physics Dept. & Cornell High Energy Synchrotron Source (CHESS) Ithaca, NY Cornell University

Size: px
Start display at page:

Download "Energy Recovery Linac (ERL) Properties. Physics Dept. & Cornell High Energy Synchrotron Source (CHESS) Ithaca, NY Cornell University"

Transcription

1 Energy Recovery Linac (ERL) Properties Sol M. Gruner Physics Dept. & Cornell High Energy Synchrotron Source (CHESS) Cornell University Ithaca, NY

2 Acknowledgements T. Allen (Special thanks to Qun Shen for help w/ slides) S. Belomestnyhk D. Douglas S. Gray A. Kazimirov L. Merminga V. Shemlin D. Smilgies M. Tigner B. Barstow D. Bilderback K. Finkelstein R. Helmke G. A. Krafft H. Padamsee Q. Shen K. Smolenski V. Veshcherevich I. Bazarov J. Brock E. Fontes G. Hoffstaetter M. Liepe J. Rogers C. Sinclair R. Talman J. Welch (now SLAC) Key: Red = Cornell; Blue = Jlab CHESS is supported by the NSF & NIH LEPP is supported by the NSF The Cornell ERL project is supported by Cornell University

3 What do we ideally want from a SR source for coherence applications? 1. High average and high peak Brilliance (phot/s/0.1% bw/mrad 2 /mm 2 ) Flux (phot/s/0.1% bw) 2. Flexible pulse structure. Programmable pulse trains (interval, bunch size) Adjustable pulse lengths down to the femtosecond regime 3. Small x-ray source size of desired shape, e.g., circular. 4. Flexibility of source operation. No fill decay Stability & robustness Easily upgraded (reset the point of diminishing returns)

4 These desirable characteristics depend on fundamental facts of SR Flux I (current) Brilliance I ( ε is emittance) εε Peak Brilliance I ( τ is bunch length) εετ Coherent Flux x y Photon Degeneracy I εε x y x y I εετ x y Thus, are fundamental. I, ε x, ε y, τ

5 Storage Ring Limitations Transverse effects of magnetic focusing, SR & RF equilibrium emittance, ε, after ~10 4 revolutions. Longitudinal effects of phase focusing, stochastic SR mission & energy loss, and RF equilibrium bunch length, τ. Interparticle effects (e.g., Touschek effect) & population of tails of cross-sectional distribution Limit current, I, lifetime. So ε, τ, I are all affected!!

6 Linacs present an alternative Advantages: Injector determines emittances, pulse length, current. Complete flexibility of pulse timing, structure. No fill decay. Disadvantage: You d go broke!! (7 GeV) x (100 ma) = 700 MW!!

7

8 Energy Recovery Linac idea Accelerating bunch Returning bunch

9 Proof of principle First demonstrated at Stanford SCA/FEL [Smith et al., NIM A 259, p. 1-7 (1987)] IR FEL Project at JLAB I ave = 5 ma E max = 48 MeV ε n 7 µm σ l > 330 fs *G. R. Neil, et al., Physical Review Letters, 84, 622 (2000) 10 ma, 210 MeV upgrade is in the works

10 Two key technologies for ERL Superconducting RF cavities (Want Q ~ MV/m) Laser-driven photoinjector (Want ε n ~ 100 ma) First TESLA 5-cell cavity undergoing chemical processing at Cornell s SRF development facility DC photogun at JLAB IR FEL (courtesy of JLAB)

11 ERL Development Efforts ERL development intentions (including low photon energy ERLs) have been announced by Russia U.S. (several labs) Japan England Germany (several labs) The challenge will be to develop hard x-ray, high flux, high brilliance ERLs. Cornell, in collaboration with Jlab, has preformed a study of ERLs and developed a strawman model of what may be expected, using reasonable assumptions of attainable technology. Following properties based on the model (see

12 Preliminary Design Parameters of ERL ERL high-flux ERL high-coherence Energy E G (GeV) Current I (ma) Charge q (nc/bunch) εx (nm-rad) εy (nm-rad) Bunch fwhm τ (ps) * * Machine design # of bunches f (Hz) Undulator L (m) Period λu (cm) # of period N u Horizontal βx (m) Vertical βy (m) Undulator E Accelerating bunch Decelerating bunch Insertion device 1 st harmonic E 1 (kev) * Assuming emittance scales with photocathode area illuminated.

13 Expected Brilliance LCLS SASE Sp8 25m APS 4.8m APS 2.4m LCLS spont. ERL 25m 0.015nm 10mA ESRF U35 Sp8 5m 0.15nm 100mA CHESS 49p wiggler nm 100mA 4.7ps Sp8 25m ESRF U35 CHESS 49-pole G/A-wiggler τ=153ps, f=17.6mhz (9x5) ERL 25m 0.015nm 10mA 0.3ps Sp8 5m APS 2.4m 0.15nm 100mA 0.3ps Average Brilliance (ph/s/0.1%/mm 2 /mr 2 ) Peak Brilliance (ph/s/0.1%/mm 2 /mr 2 ) CHESS 24p wiggler CHESS 24-pole F-wiggler Photon Energy (kev) Photon Energy (kev)

14 Spatial (Transverse) Coherence 2σ 2σ θ l = θ 2σ = λ/2 2σ' => 2θ 2σ ~ λ θ σ' => X-ray beam is spatially coherent if phase-space area 2πσ σ < λ/2 Diffraction limited source: 2πσ'σ = λ/2 or ε = λ/4π Almost diffraction limited: 2πσ'σ ~ λ or ε ~ λ/2π

15 Transverse Coherence from Undulator d θ L Example: APS, L =2.4m, λ =1.5Å σ r' = 13.1 µrad d y = 2.35x21µm, σ y' = 6.9 µrad θ = 1.5 µrad, Θ = 2.35x14.8 µrad => p c (vertical) = 4.3% d x = 2.35x350µm, σ x' = 23.1 µrad θ = µrad, Θ = 2.35x26.6 µrad => p c (horizontal) = 0.15% => p c (overall) = 0.006% ERL: p c ~ 20% (45% in x or y) θ = λ/2d Θ = 2.35 σ r ' = σ 2 ' r λ 2 L A portion, θ/θ in each direction, of undulator radiation is spatially coherent within central cone + σ ' Coherent fraction p c : depends only on total emittances p c = F F c n = ( λ /2) F n 2 B = (4 π λ 2 2 ) ε x ε y 2

16 ERL Transversely Coherent Flux Time-averaged coherent flux comparable to LCLS XFEL Coherent fraction ~100x greater than 3rd SR sources Peak coherent flux (coherent flux per pulse) ~1000x greater than 3rd SR sources, if brilliance can be preserved with short pulses.

17 ERL Transverse Coherence 1 Brilliance goes as α ( εxεy ), so the emittance product needs to be small. ESRF emittance (4nm x 0.01nm) i.e., α = 25 nm -2 Diffraction 8keV ERL emittance (0.015nm), i.e., α =4400 nm -2 Diffraction limited source: 2πσ'σ = λ/2 or ε = λ/4π Almost diffraction limited: 2πσ'σ ~ λ or ε ~ λ/2π Cornell ERL: : diffraction-limited source E < 6.6 kev almost diffraction-limited to 13 kev

18 ERL: Source Size and Pulse Length ERL / 10 ma ESRF ma ε x = ε y = 0.2 / 0.02 nm mrad ε x = 4 nm mrad ε y = 0.01 nm mrad ERL (no compression) ESRF ERL (w/ compression). ~ 100 fsec pulses Normalized flux time

19 ERL Science parameters in new regimes

20 Source Size & Divergence

21 Brilliance vs. Source Size parameters in new regimes

22 Storage Ring Beam pwr dribbled in Low bunch charge Multi-pass Energy stored in beam High rep rate Many simul. beamlines Full x-ray pulse to ~ 30ps Little coherence Flat beams Expts like storage ring ESRF Basic Comparison of ERL, Storage Rings, XFEL ERL XFEL Beam pwr in one pass Beam pwr in one pass Low/high bunch charge High bunch charge Single/few-passes Single-pass Energy stored in linac Energy not stored High rep rate Low rep rate Many simul. Beamlines One beamline/bunch Full x-ray pulse to ~ 100 fs Full x-ray pulse to ~100 fs Mostly transverse coherent Fully coherent Round or flat beams Round beams Expts like storage ring Expts unlike storage ring m

23 THREE REASONS TO DEVELOP ERL TECHNOLOGY 1. ERLs can do essentially everything now possible at the most advanced 3 rd gen SR sources, thus meeting growth in demand for SR in a different way than for XFELs. XFELs are more likely to spur growth in wholly new areas. 2. ERLs additionally enable SR experiments not now possible due to high ERL brilliance, coherence, short pulses and flexible bunch structure. These include new regimes of Microbeam diffraction and fluorescence High pressure diffraction and spectroscopy Femtosecond x-ray studies of solids, molecules and proteins Coherent imaging and microscopy Photon correlation spectroscopy Nuclear resonant scattering Inelastic x-ray scattering Normal diffraction, x-ray metrology, and x-ray interferometry Polarized x-ray beam studies, resonant scattering and circular magnetic dichrosim studies 3. The inherent limits of ERLs are not yet known. In particular, injector improvements may be expected, providing a relatively low cost upgrade pathway. World-wide ERL plans are progressing.

24 END

25 X-ray Imaging is Increasingly Used Not all SR x-ray imaging applications require coherence, but many of the newest and most exciting ones do. These are constrained by coherent flux available from storage rings INSPEC Search

26 Storage Ring Summary Question: What determines bunch properties in a storage ring? Answer: The dynamical equilibrium of the beam in the machine lattice. Equilibrium dynamics determine Minimum emittances, ε Minimum bunch length, τ Bunch size & fill decay, I i.e., all fundamental factors!! But The equilibration times are very long (thousands of revolutions around the ring)

What is an Energy Recovery Linac and Why is there one in your Future?

What is an Energy Recovery Linac and Why is there one in your Future? What is an Energy Recovery Linac and Why is there one in your Future? Sol M. Gruner CHESS, Physics Dept. Cornell University Ithaca, NY 14853 Outline 1. Who needs another synchrotron source? 2. What is

More information

Imaging & Microscopy

Imaging & Microscopy Coherent X-ray X Imaging & Microscopy => Opportunities Using a Diffraction-Limited Energy Recovery Linac (ERL) Synchrotron Source Q. Shen D. Bilderback, K.D. Finkelstein, E. Fontes, & S. Gruner Cornell

More information

Energy Recovery Linac (ERL) Science Workshop

Energy Recovery Linac (ERL) Science Workshop Energy Recovery Linac (ERL) Science Workshop Sol M. Gruner, CHESS & Physics Dept. Objective: Examine science possible with an ERL x-ray source. Ques.: Ans.: Why do this? Need for more and better SR machines.

More information

Energy Recovery Linac (ERL): Properties and Prospects

Energy Recovery Linac (ERL): Properties and Prospects Energy Recovery Linac (ERL): Properties and Prospects Q. Shen, D. Bilderback, K. Finkelstein, E. Fontes, S. Gruner, R. Headrick, A. Kazimirov, D. Smilgies, C.-S. Zha Cornell High Energy Synchrotron Source,

More information

Lecture Plan CHESS. 1. Present and Future Synchrotron X-ray X. 2. Solving the X-ray X. Phase Problem. 3. Strain Fields in Thin-film and Nanostructures

Lecture Plan CHESS. 1. Present and Future Synchrotron X-ray X. 2. Solving the X-ray X. Phase Problem. 3. Strain Fields in Thin-film and Nanostructures Lecture Plan Qun Shen Cornell High Energy Synchrotron Source () and Department of Materials Science and Engineering Cornell University, Ithaca, New York 14853, USA 1. Present and Future Synchrotron X-ray

More information

Applications of High Brightness Beams: Energy Recovered Linacs

Applications of High Brightness Beams: Energy Recovered Linacs Applications of High Brightness Beams: Energy Recovered Linacs G. A. Krafft Jefferson Lab Schematic Representation of Accelerator Types RF Installation Beam injector and dump Beamline Ring Linac Recirculating

More information

Optics considerations for

Optics considerations for Optics considerations for ERL x-ray x sources Georg H. Hoffstaetter* Physics Department Cornell University Ithaca / NY Georg.Hoffstaetter@cornell.edu 1. Overview of Parameters 2. Critical Topics 3. Phase

More information

X-ray Free-electron Lasers

X-ray Free-electron Lasers X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/ 2009 Claudio Pellegrini UCLA Department of Physics and Astronomy Outline 1. Present status of X-ray free-electron

More information

USPAS course on Recirculated and Energy Recovered Linacs Ivan Bazarov, Cornell University Geoff Krafft, JLAB. ERL as a X-ray Light Source

USPAS course on Recirculated and Energy Recovered Linacs Ivan Bazarov, Cornell University Geoff Krafft, JLAB. ERL as a X-ray Light Source USPAS course on Recirculated and Energy Recovered Linacs Ivan Bazarov, Cornell University Geoff Krafft, JLAB ERL as a X-ray Light Source Contents Introduction Light sources landscape General motivation

More information

Overview of Energy Recovery Linacs

Overview of Energy Recovery Linacs Overview of Energy Recovery Linacs Ivan Bazarov Cornell High Energy Synchrotron Source Talk Outline: Historical Perspective Parameter Space Operational ERLs & Funded Projects Challenges ERL Concept: conventional

More information

Research with Synchrotron Radiation. Part I

Research with Synchrotron Radiation. Part I Research with Synchrotron Radiation Part I Ralf Röhlsberger Generation and properties of synchrotron radiation Radiation sources at DESY Synchrotron Radiation Sources at DESY DORIS III 38 beamlines XFEL

More information

Study. Phase I Energy Recovery Linac (ERL) Synchrotron Light Source at Cornell University

Study. Phase I Energy Recovery Linac (ERL) Synchrotron Light Source at Cornell University CHESS Technical Memo 01-003 JLAB-ACT-01-04 Study for a proposed Phase I Energy Recovery Linac (ERL) Synchrotron Light Source at Cornell University 4 July 001 Sol M. Gruner & Maury Tigner, eds. Cornell

More information

New Electron Source for Energy Recovery Linacs

New Electron Source for Energy Recovery Linacs New Electron Source for Energy Recovery Linacs Ivan Bazarov 20m Cornell s photoinjector: world s brightest electron source 1 Outline Uses of high brightness electron beams Physics of brightness High brightness

More information

ERL upgrade of an existing X-ray facility: CHESS at CESR

ERL upgrade of an existing X-ray facility: CHESS at CESR ERL-5-8 ERL upgrade of an existing X-ray facility: CHESS at CESR G.H. Hoffstaetter Abstract Cornell University has proposed an Energy-Recovery Linac (ERL) based synchrotron-light facility which uses 5GeV,

More information

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center Linac Based Photon Sources: XFELS Coherence Properties J. B. Hastings Stanford Linear Accelerator Center Coherent Synchrotron Radiation Coherent Synchrotron Radiation coherent power N 6 10 9 incoherent

More information

Coherent X-Ray Sources: Synchrotron, ERL, XFEL

Coherent X-Ray Sources: Synchrotron, ERL, XFEL Coherent X-Ray Sources: Synchrotron, ERL, XFEL John Arthur SSRL/SLAC Energy Recovery Linac Science Workshop Cornell University 2 December 2000 Supported by the US Dept. of Energy, Office of Basic Energy

More information

PAL LINAC UPGRADE FOR A 1-3 Å XFEL

PAL LINAC UPGRADE FOR A 1-3 Å XFEL PAL LINAC UPGRADE FOR A 1-3 Å XFEL J. S. Oh, W. Namkung, Pohang Accelerator Laboratory, POSTECH, Pohang 790-784, Korea Y. Kim, Deutsches Elektronen-Synchrotron DESY, D-603 Hamburg, Germany Abstract With

More information

3. Synchrotrons. Synchrotron Basics

3. Synchrotrons. Synchrotron Basics 1 3. Synchrotrons Synchrotron Basics What you will learn about 2 Overview of a Synchrotron Source Losing & Replenishing Electrons Storage Ring and Magnetic Lattice Synchrotron Radiation Flux, Brilliance

More information

ERL & Coherent X-ray X. applications. Talk Outline. Introduction to x-ray x. coherence. Desired ERL properties Options and improvements Conclusions

ERL & Coherent X-ray X. applications. Talk Outline. Introduction to x-ray x. coherence. Desired ERL properties Options and improvements Conclusions ERL & Coherent X-ray X Applications Qun Shen Cornell High Energy Synchrotron Source (CHESS) Cornell University Talk Outline Introduction to x-ray x coherence Coherent x-ray x applications Desired ERL properties

More information

Electron Linear Accelerators & Free-Electron Lasers

Electron Linear Accelerators & Free-Electron Lasers Electron Linear Accelerators & Free-Electron Lasers Bryant Garcia Wednesday, July 13 2016. SASS Summer Seminar Bryant Garcia Linacs & FELs 1 of 24 Light Sources Why? Synchrotron Radiation discovered in

More information

WG2 on ERL light sources CHESS & LEPP

WG2 on ERL light sources CHESS & LEPP Charge: WG2 on ERL light sources Address and try to answer a list of critical questions for ERL light sources. Session leaders can approach each question by means of (a) (Very) short presentations (b)

More information

RADIATION SOURCES AT SIBERIA-2 STORAGE RING

RADIATION SOURCES AT SIBERIA-2 STORAGE RING RADIATION SOURCES AT SIBERIA-2 STORAGE RING V.N. Korchuganov, N.Yu. Svechnikov, N.V. Smolyakov, S.I. Tomin RRC «Kurchatov Institute», Moscow, Russia Kurchatov Center Synchrotron Radiation undulator undulator

More information

Toward an Energy Recovery Linac x-ray source at Cornell University

Toward an Energy Recovery Linac x-ray source at Cornell University 1 Toward an Energy Recovery Linac x-ray source at Cornell University Georg Hoffstaetter Cornell Physics Dept. / LEPP The ERL principle Limits of ERLs Studies for an x-ray ERL Ivan Bazarov LEPP / CHESS

More information

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013 Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers Zhirong Huang SLAC, Stanford University May 13, 2013 Introduction GE synchrotron (1946) opened a new era of accelerator-based

More information

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division First propositions of a lattice for the future upgrade of SOLEIL A. Nadji On behalf of the Accelerators and Engineering Division 1 SOLEIL : A 3 rd generation synchrotron light source 29 beamlines operational

More information

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Free-electron laser SACLA and its basic Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Light and Its Wavelength, Sizes of Material Virus Mosquito Protein Bacteria Atom

More information

Greenfield FELs. John Galayda, SLAC Kwang-Je Kim, ANL (Presenter) James Murphy, BNL

Greenfield FELs. John Galayda, SLAC Kwang-Je Kim, ANL (Presenter) James Murphy, BNL Greenfield FELs John Galayda, SLAC Kwang-Je Kim, ANL (Presenter) James Murphy, BNL BESAC Subcommittee on BES 20-year Facility Road Map February 22-24, 2003 What is a Greenfield FEL? High-gain FELs are

More information

The Status of the Energy Recovery Linac Source of Coherent Hard X-rays at Cornell University

The Status of the Energy Recovery Linac Source of Coherent Hard X-rays at Cornell University The Status of the Energy Recovery Linac Source of Coherent Hard X-rays at Cornell University DONALD H. BILDERBACK, CHARLES SINCLAIR, AND SOL M. GRUNER Cornell University, Ithaca, NY, USA Synchrotron radiation

More information

ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF

ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF Lia Merminga and Yaroslav Derbenev Center for Advanced Studies of Accelerators, Jefferson Laboratory,

More information

Using IMPACT T to perform an optimization of a DC gun system Including merger

Using IMPACT T to perform an optimization of a DC gun system Including merger Using IMPACT T to perform an optimization of a DC gun system Including merger Xiaowei Dong and Michael Borland Argonne National Laboratory Presented at ERL09 workshop June 10th, 2009 Introduction An energy

More information

Potential use of erhic s ERL for FELs and light sources ERL: Main-stream GeV e - Up-gradable to 20 + GeV e -

Potential use of erhic s ERL for FELs and light sources ERL: Main-stream GeV e - Up-gradable to 20 + GeV e - Potential use of erhic s ERL for FELs and light sources Place for doubling energy linac ERL: Main-stream - 5-10 GeV e - Up-gradable to 20 + GeV e - RHIC Electron cooling Vladimir N. Litvinenko and Ilan

More information

OVERVIEW OF ENERGY RECOVERY LINACS

OVERVIEW OF ENERGY RECOVERY LINACS OVERVIEW OF ENERGY RECOVERY LINACS Ivan V. Bazarov, LEPP/CHESS, Cornell University, Ithaca, NY 14853, USA Abstract Existing Energy Recovery Linacs (ERLs) are successfully operated as kw-class average power

More information

MaRIE. MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design

MaRIE. MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design Operated by Los Alamos National Security, LLC, for the U.S. Department of Energy MaRIE (Matter-Radiation Interactions in Extremes) MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design B. Carlsten, C.

More information

Liverpool Physics Teachers Conference July

Liverpool Physics Teachers Conference July Elements of a Laser Pump Optics Ex-Director STFC Accelerator Science and Technology Centre (ASTeC) Daresbury Laboratory Gain medium All lasers contain a medium in which optical gain can be induced and

More information

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration SPARCLAB Source For Plasma Accelerators and Radiation Compton with Laser And Beam On behalf of SPARCLAB collaboration EMITTANCE X X X X X X X X 2 BRIGHTNESS (electrons) B n 2I nx ny A m 2 rad 2 The current

More information

Agenda for a Workshop On Energy Recovery Linac as a Driver for Synchrotron Radiation Sources

Agenda for a Workshop On Energy Recovery Linac as a Driver for Synchrotron Radiation Sources Agenda for a Workshop On Energy Recovery Linac as a Driver for Synchrotron Radiation Sources 380 Wilson Lab, Cornell University, August 11 and 12, 2000 Objective: Examine the feasibility and R&D issues

More information

SCSS Prototype Accelerator -- Its outline and achieved beam performance --

SCSS Prototype Accelerator -- Its outline and achieved beam performance -- SCSS Prototype Accelerator -- Its outline and achieved beam performance -- Hitoshi TANAKA RIKEN, XFEL Project Office 1 Content 1. Light Quality; SPring-8 v.s. XFEL 2. What are the critical issues? 3. Mission

More information

Trends in X-ray Synchrotron Radiation Research

Trends in X-ray Synchrotron Radiation Research Trends in X-ray Synchrotron Radiation Research Storage rings Energy Recovery Linacs (ERL) Free Electron Lasers Jochen R. Schneider DESY Development of the brilliance of X-ray sources Since the discovery

More information

Lattice Design and Performance for PEP-X Light Source

Lattice Design and Performance for PEP-X Light Source Lattice Design and Performance for PEP-X Light Source Yuri Nosochkov SLAC National Accelerator Laboratory With contributions by M-H. Wang, Y. Cai, X. Huang, K. Bane 48th ICFA Advanced Beam Dynamics Workshop

More information

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site 1 Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site Sakhorn Rimjaem (on behalf of the PITZ team) Motivation Photo Injector Test Facility at

More information

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC Lattice Design for the Taiwan Photon Source (TPS) at NSRRC Chin-Cheng Kuo On behalf of the TPS Lattice Design Team Ambient Ground Motion and Civil Engineering for Low Emittance Electron Storage Ring Workshop

More information

Performance Metrics of Future Light Sources. Robert Hettel, SLAC ICFA FLS 2010 March 1, 2010

Performance Metrics of Future Light Sources. Robert Hettel, SLAC ICFA FLS 2010 March 1, 2010 Performance Metrics of Future Light Sources Robert Hettel, SLAC ICFA FLS 2010 March 1, 2010 http://www-ssrl.slac.stanford.edu/aboutssrl/documents/future-x-rays-09.pdf special acknowledgment to John Corlett,

More information

Two-Stage Chirped-Beam SASE-FEL for High Power Femtosecond X-Ray Pulse Generation

Two-Stage Chirped-Beam SASE-FEL for High Power Femtosecond X-Ray Pulse Generation Two-Stage Chirped-Beam SASE-FEL for High ower Femtosecond X-Ray ulse Generation C. Schroeder*, J. Arthur^,. Emma^, S. Reiche*, and C. ellegrini* ^ Stanford Linear Accelerator Center * UCLA 12-10-2001 LCLS-TAC

More information

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

Excitements and Challenges for Future Light Sources Based on X-Ray FELs Excitements and Challenges for Future Light Sources Based on X-Ray FELs 26th ADVANCED ICFA BEAM DYNAMICS WORKSHOP ON NANOMETRE-SIZE COLLIDING BEAMS Kwang-Je Kim Argonne National Laboratory and The University

More information

Introduction to Synchrotron Radiation

Introduction to Synchrotron Radiation Introduction to Synchrotron Radiation Frederico Alves Lima Centro Nacional de Pesquisa em Energia e Materiais - CNPEM Laboratório Nacional de Luz Síncrotron - LNLS International School on Laser-Beam Interactions

More information

Comparison of the APS Upgrade to

Comparison of the APS Upgrade to Comparison of the APS Upgrade to ERL@APS Michael Borland Argonne National Laboratory March 2010 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory

More information

Georg Hoffstaetter Cornell Physics Dept. / CLASSE Cornell s ERL team

Georg Hoffstaetter Cornell Physics Dept. / CLASSE Cornell s ERL team 1 R&D toward an ERL Georg Hoffstaetter Cornell Physics Dept. / Cornell s ERL team DC-gun R&D CW linac R&D SRF injector R&D Undulator R&D 2 Cornell history: The ERL principle Energy recovery needs continuously

More information

Linac Ring Colliders

Linac Ring Colliders Linac Ring Colliders L. Merminga and G. Krafft, Jefferson Lab V. Lebedev, FNAL and I. Ben-Zvi, BNL The Future of Particle Physics Snowmass 2001 July 4 2001, Snowmass Village, CO Outline ΠPhysics Requirements

More information

Compton Scattering Effect and Physics of Compton Photon Beams. Compton Photon Sources around the World, Present and Future

Compton Scattering Effect and Physics of Compton Photon Beams. Compton Photon Sources around the World, Present and Future !!! #! ! # Compton Scattering Effect and Physics of Compton Photon Beams Compton Photon Sources around the World, Present and Future Compton X-ray Sources: Facilities, Projects and Experiments Compton

More information

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR)

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) Case Study of IR/THz source for Pump-Probe Experiment at the European XFEL Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) Introduction Outline Simulations of High-gain FEL (SASE) Simulation

More information

Linacs. Susan Smith. Daresbury Laboratory Mami and Beyond

Linacs. Susan Smith. Daresbury Laboratory Mami and Beyond Energy Recovery Linacs Susan Smith ASTeC/Cockcroft Daresbury Laboratory Mami and Beyond Introduction to ERLs Contents Operational ERLs Applications Challenges ERL Prototypes and R&D Summary 2 Introduction

More information

Opportunities and Challenges for X

Opportunities and Challenges for X Opportunities and Challenges for X -ray Free Electron Lasers for X-ray Ultrafast Science J. Hastings Stanford Linear Accelerator Center June 22, 2004 European XFEL Laboratory How Short is short? defined

More information

Undulator radiation from electrons randomly distributed in a bunch

Undulator radiation from electrons randomly distributed in a bunch Undulator radiation from electrons randomly distributed in a bunch Normally z el >> N u 1 Chaotic light Spectral property is the same as that of a single electron /=1/N u Temporal phase space area z ~(/

More information

Synchrotron Radiation Sources for the Future

Synchrotron Radiation Sources for the Future White Paper Synchrotron Radiation Sources for the Future Sol Gruner 1,2,3, Don Bilderback 1,4, Maury Tigner 2,5 1 Cornell High Energy Synchrotron Source (CHESS) 2 Department of Physics 3 Laboratory of

More information

Accelerator Physics Issues of ERL Prototype

Accelerator Physics Issues of ERL Prototype Accelerator Physics Issues of ERL Prototype Ivan Bazarov, Geoffrey Krafft Cornell University TJNAF ERL site visit (Mar 7-8, ) Part I (Bazarov). Optics. Space Charge Emittance Compensation in the Injector

More information

FLASH/DESY, Hamburg. Jörg Rossbach University of Hamburg & DESY, Germany - For the FLASH Team -

FLASH/DESY, Hamburg. Jörg Rossbach University of Hamburg & DESY, Germany - For the FLASH Team - First Lasing below 7nm Wavelength at FLASH/DESY, Hamburg Jörg Rossbach University of Hamburg & DESY, Germany - For the FLASH Team - email: joerg.rossbach@desy.de FLASH: The first FEL user facility for

More information

Simulations of the IR/THz source at PITZ (SASE FEL and CTR)

Simulations of the IR/THz source at PITZ (SASE FEL and CTR) Simulations of the IR/THz source at PITZ (SASE FEL and CTR) Introduction Outline Simulations of SASE FEL Simulations of CTR Summary Issues for Discussion Mini-Workshop on THz Option at PITZ DESY, Zeuthen

More information

THE TESLA FREE ELECTRON LASER

THE TESLA FREE ELECTRON LASER THE TESLA FREE ELECTRON LASER J. Rossbach, for the TESLA FEL collaboration DESY, Notkestrasse 85, D22603 Hamburg, Germany Abstract The TESLA Free Electron Laser (FEL) makes use of the high electron beam

More information

VARIABLE GAP UNDULATOR FOR KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE

VARIABLE GAP UNDULATOR FOR KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE LCLS-TN-10-1, January, 2010 VARIABLE GAP UNDULATOR FOR 1.5-48 KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE C. Pellegrini, UCLA, Los Angeles, CA, USA J. Wu, SLAC, Menlo Park, CA, USA We study

More information

On-axis injection into small dynamic aperture

On-axis injection into small dynamic aperture On-axis injection into small dynamic aperture L. Emery Accelerator Systems Division Argonne National Laboratory Future Light Source Workshop 2010 Tuesday March 2nd, 2010 On-Axis (Swap-Out) injection for

More information

Femto-second FEL Generation with Very Low Charge at LCLS

Femto-second FEL Generation with Very Low Charge at LCLS Femto-second FEL Generation with Very Low Charge at LCLS Yuantao Ding, For the LCLS commissioning team X-ray Science at the Femtosecond to Attosecond Frontier workshop May 18-20, 2009, UCLA SLAC-PUB-13525;

More information

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

Excitements and Challenges for Future Light Sources Based on X-Ray FELs Excitements and Challenges for Future Light Sources Based on X-Ray FELs 26th ADVANCED ICFA BEAM DYNAMICS WORKSHOP ON NANOMETRE-SIZE COLLIDING BEAMS Kwang-Je Kim Argonne National Laboratory and The University

More information

LCLS-II SCRF start-to-end simulations and global optimization as of September Abstract

LCLS-II SCRF start-to-end simulations and global optimization as of September Abstract SLAC National Accelerator Lab LCLS-II TN-17-4 February 217 LCLS-II SCRF start-to-end simulations and global optimization as of September 216 G. Marcus SLAC, Menlo Park, CA 9425 J. Qiang LBNL, Berkeley,

More information

4 FEL Physics. Technical Synopsis

4 FEL Physics. Technical Synopsis 4 FEL Physics Technical Synopsis This chapter presents an introduction to the Free Electron Laser (FEL) physics and the general requirements on the electron beam parameters in order to support FEL lasing

More information

4GLS Status. Susan L Smith ASTeC Daresbury Laboratory

4GLS Status. Susan L Smith ASTeC Daresbury Laboratory 4GLS Status Susan L Smith ASTeC Daresbury Laboratory Contents ERLP Introduction Status (Kit on site ) Plan 4GLS (Conceptual Design) Concept Beam transport Injectors SC RF FELs Combining Sources May 2006

More information

SLAC Summer School on Electron and Photon Beams. Tor Raubenheimer Lecture #2: Inverse Compton and FEL s

SLAC Summer School on Electron and Photon Beams. Tor Raubenheimer Lecture #2: Inverse Compton and FEL s SLAC Summer School on Electron and Photon Beams Tor Raubenheimer Lecture #: Inverse Compton and FEL s Outline Synchrotron radiation Bending magnets Wigglers and undulators Inverse Compton scattering Free

More information

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012 X-band RF driven hard X-ray FELs Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012 Motivations & Contents Motivations Develop more compact (hopefully cheaper) FEL drivers, L S C X-band (successful

More information

Diagnostics Needs for Energy Recovery Linacs

Diagnostics Needs for Energy Recovery Linacs Diagnostics Needs for Energy Recovery Linacs Georg H. Hoffstaetter Cornell Laboratory for Accelerator-based Sciences and Education & Physics Department Cornell University, Ithaca New York 14853-2501 gh77@cornell.edu

More information

Linac optimisation for the New Light Source

Linac optimisation for the New Light Source Linac optimisation for the New Light Source NLS source requirements Electron beam requirements for seeded cascade harmonic generation LINAC optimisation (2BC vs 3 BC) CSR issues energy chirp issues jitter

More information

(From the SLAC Beamline, Vol. 32, Spring The full issue may be downloaded from

(From the SLAC Beamline, Vol. 32, Spring The full issue may be downloaded from Energy Recovery Linacs as Synchrotron Light Sources Sol M. Gruner & Donald H. Bilderback (From the SLAC Beamline, Vol. 32, Spring 2002. The full issue may be downloaded from www.slac.stanford.edu/pubs/beamline)

More information

What is? How is produced? Which are its properties? Where is produced? How and why is used? What is foreseen for the future?

What is? How is produced? Which are its properties? Where is produced? How and why is used? What is foreseen for the future? What is? How is produced? Which are its properties? Where is produced? How and why is used? What is foreseen for the future? Prof. Settimio Mobilio Department of Physics E. Amaldi University Roma TRE -

More information

HIGH CURRENT AND HIGH BRIGHTNESS ELECTRON SOURCES

HIGH CURRENT AND HIGH BRIGHTNESS ELECTRON SOURCES HIGH CURRENT AND HIGH BRIGHTNESS ELECTRON SOURCES F. Loehl, I. Bazarov, S. Belomestnykh, M. Billing, E. Chojnacki, Z. Conway, J. Dobbins, B. Dunham, R. Ehrlich, M. Forster, S. M. Gruner, C. Gulliford,

More information

MAX IV, NSLS II, PLS II, LCLS, SACLA, European XFEL,

MAX IV, NSLS II, PLS II, LCLS, SACLA, European XFEL, 3 rd rd and 4 th Generation Light Sources Prapong Klysubun March 4, 2014 2014 Accelerator Seminar no. 1 Khao Yai Paradise on Earth, Khao Yai, Nakhon Ratchasima, Thailand P. Klysubun 2014 1 Outline 1. History

More information

Linac Driven Free Electron Lasers (III)

Linac Driven Free Electron Lasers (III) Linac Driven Free Electron Lasers (III) Massimo.Ferrario@lnf.infn.it SASE FEL Electron Beam Requirements: High Brightness B n ( ) 1+ K 2 2 " MIN r #$ % &B! B n 2 n K 2 minimum radiation wavelength energy

More information

Femto second X ray Pulse Generation by Electron Beam Slicing. F. Willeke, L.H. Yu, NSLSII, BNL, Upton, NY 11973, USA

Femto second X ray Pulse Generation by Electron Beam Slicing. F. Willeke, L.H. Yu, NSLSII, BNL, Upton, NY 11973, USA Femto second X ray Pulse Generation by Electron Beam Slicing F. Willeke, L.H. Yu, NSLSII, BNL, Upton, NY 11973, USA r 2 r 1 y d x z v Basic Idea: When short electron bunch from linac (5MeV, 50pC,100fs)

More information

Linac-based light sources. Ivan Bazarov Cornell University

Linac-based light sources. Ivan Bazarov Cornell University Linac-based light sources Ivan Bazarov Cornell University Talking points Synchrotron radiation sources of today Motivation for a linac based source Physics of high-brightness electron injectors Energy

More information

Longitudinal Top-up Injection for Small Aperture Storage Rings

Longitudinal Top-up Injection for Small Aperture Storage Rings Longitudinal Top-up Injection for Small Aperture Storage Rings M. Aiba, M. Böge, Á. Saá Hernández, F. Marcellini and A. Streun Paul Scherrer Institut Introduction Lower and lower horizontal emittances

More information

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg,

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg, FLASH overview Nikola Stojanovic PIDID collaboration meeting, Hamburg, 16.12.2011 Outline Overview of the FLASH facility Examples of research at FLASH Nikola Stojanovic PIDID: FLASH overview Hamburg, December

More information

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ Orlova Ksenia Lomonosov Moscow State University GSP-, Leninskie Gory, Moscow, 11999, Russian Federation Email: ks13orl@list.ru

More information

Toward Fourier-limited X-ray Science

Toward Fourier-limited X-ray Science XDL2011 RPCC, Cornell Univ. June 20-21, 2011 GRC X-ray Science 2009 Colby College August 2-7, 2009 Toward Fourier-limited X-ray Science Photon Factory, KEK & PREST, JST Shin-ichi Adachi outline Time-domain

More information

JSPS Asien Science Seminar Synchrotron Radiation Science

JSPS Asien Science Seminar Synchrotron Radiation Science SESAME Synchrotron Light for Experimental Science and Applications in the Middle East JSPS Asien Science Seminar Synchrotron Radiation Science Dieter Einfeld Amman, October 2002 Introduction Based on the

More information

Delta undulator magnet: concept and project status

Delta undulator magnet: concept and project status Delta undulator magnet: concept and project status Part I: concept and model construction* Alexander Temnykh, CLASSE, Cornell University, Ithaca, New York, USA Part - II: beam test at ATF in BNL + M. Babzien,

More information

ELIC Design. Center for Advanced Studies of Accelerators. Jefferson Lab. Second Electron-Ion Collider Workshop Jefferson Lab March 15-17, 2004

ELIC Design. Center for Advanced Studies of Accelerators. Jefferson Lab. Second Electron-Ion Collider Workshop Jefferson Lab March 15-17, 2004 ELIC Design Ya. Derbenev, K. Beard, S. Chattopadhyay, J. Delayen, J. Grames, A. Hutton, G. Krafft, R. Li, L. Merminga, M. Poelker, E. Pozdeyev, B. Yunn, Y. Zhang Center for Advanced Studies of Accelerators

More information

Accelerator Physics at Cornell. Jeff Smith October 6th, 2006

Accelerator Physics at Cornell. Jeff Smith October 6th, 2006 Accelerator Physics at Cornell Jeff Smith October 6th, 2006 What do Accelerator Physicists do? We design and build Particle Accelerators! Particle accelerators are CENTRAL to numerous scientific endeavors

More information

Accelerator R&D Opportunities: Sources and Linac. Developing expertise. D. Rubin, Cornell University

Accelerator R&D Opportunities: Sources and Linac. Developing expertise. D. Rubin, Cornell University Accelerator R&D Opportunities: Sources and Linac D. Rubin, Cornell University Electron and positron sources Requirements Status of R&D Linac Modeling of beam dynamics Development of diagnostic and tuning

More information

An Adventure in Marrying Laser Arts and Accelerator Technologies

An Adventure in Marrying Laser Arts and Accelerator Technologies An Adventure in Marrying Laser Arts and Accelerator Technologies Dao Xiang Beam Physics Dept, SLAC, Stanford University Feb-28-2012 An example sample Probe (electron) Pump (laser) Typical pump-probe experiment

More information

PEP-X Light Source at SLAC

PEP-X Light Source at SLAC PEP-X Light Source at SLAC Status Report Revision 0 June 10, 2008 PEP-X Study Group: Karl Bane, Lynn Bentson, Kirk Bertsche, Sean Brennan, Yunhai Cai, Alex Chao, Scott DeBarger, Valery Dolgashev, Robert

More information

Synchrotron radiation: A charged particle constrained to move in curved path experiences a centripetal acceleration. Due to it, the particle radiates

Synchrotron radiation: A charged particle constrained to move in curved path experiences a centripetal acceleration. Due to it, the particle radiates Synchrotron radiation: A charged particle constrained to move in curved path experiences a centripetal acceleration. Due to it, the particle radiates energy according to Maxwell equations. A non-relativistic

More information

Shaping Electrostatic Conditions in the Stalk of the ERL -750 kv Electron Gun

Shaping Electrostatic Conditions in the Stalk of the ERL -750 kv Electron Gun Shaping Electrostatic Conditions in the Stalk of the ERL -750 kv Electron Gun David Stone Carnegie Mellon University Advisors: Karl Smolenski and Bruce Dunham Cornell University Laboratory for Elementary-Particle

More information

INITIAL BEAM RESULTS FROM THE CORNELL HIGH-CURRENT ERL INJECTOR PROTOTYPE

INITIAL BEAM RESULTS FROM THE CORNELL HIGH-CURRENT ERL INJECTOR PROTOTYPE INITIAL BEAM RESULTS FROM THE CORNELL HIGH-CURRENT ERL INJECTOR PROTOTYPE I. Bazarov, S. Belomestnykh, E. Chojnacki, J. Dobbins, B. Dunham, R. Ehrlich, M. Forster, C. Gulliford, G. Hoffstaetter, H. Li,

More information

Emittance and photocathodes

Emittance and photocathodes Cornell Laboratory for Accelerator-based ScienceS and Education () Emittance and photocathodes Ivan Bazarov Where we are today Injector performance Ongoing work Venues for improvements Next generation

More information

Superconducting RF Accelerators: Why all the interest?

Superconducting RF Accelerators: Why all the interest? Superconducting RF Accelerators: Why all the interest? William A. Barletta Director, United States Particle Accelerator School Dept. of Physics, MIT The HEP prespective ILC PROJECT X Why do we need RF

More information

SPARCLAB. Source For Plasma Accelerators and Radiation Compton with Laser And Beam

SPARCLAB. Source For Plasma Accelerators and Radiation Compton with Laser And Beam SPARCLAB Source For Plasma Accelerators and Radiation Compton with Laser And Beam EMITTANCE X X X X X X X X Introduction to SPARC_LAB 2 BRIGHTNESS (electrons) B n 2I nx ny A m 2 rad 2 The current can be

More information

Light Source I. Takashi TANAKA (RIKEN SPring-8 Center) Cheiron 2012: Light Source I

Light Source I. Takashi TANAKA (RIKEN SPring-8 Center) Cheiron 2012: Light Source I Light Source I Takashi TANAKA (RIKEN SPring-8 Center) Light Source I Light Source II CONTENTS Introduction Fundamentals of Light and SR Overview of SR Light Source Characteristics of SR (1) Characteristics

More information

VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab.

VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab. VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab. Yuri Saveliev on behalf of VELA and CLARA teams STFC, ASTeC, Cockcroft Institute Daresbury Lab., UK Outline VELA (Versatile Electron

More information

ERL FACILITY AT CERN FOR APPLICATIONS

ERL FACILITY AT CERN FOR APPLICATIONS ERL FACILITY AT CERN FOR APPLICATIONS Erk Jensen (CERN) Big thanks to contributors: A. Bogacz (JLAB), O. Brüning, R. Calaga, V. Chetvertkova, E. Cormier (CELIA), R. Jones, M. Klein, A. Valloni, D. Pellegrini,

More information

Echo-Enabled Harmonic Generation

Echo-Enabled Harmonic Generation Echo-Enabled Harmonic Generation G. Stupakov SLAC NAL, Stanford, CA 94309 IPAC 10, Kyoto, Japan, May 23-28, 2010 1/29 Outline of the talk Generation of microbunching in the beam using the echo effect mechanism

More information

X-ray applications and accelerator physics for the Cornell ERL

X-ray applications and accelerator physics for the Cornell ERL 1 X-ray applications and accelerator physics for the Cornell ERL Georg H. Hoffstaetter Cornell Physics Dep. / 6 3 7 1 4 8 2 5 2 Overview Principle and history of ERLs How good of an X-ray source could

More information

Part V Undulators for Free Electron Lasers

Part V Undulators for Free Electron Lasers Part V Undulators for Free Electron Lasers Pascal ELLEAUME European Synchrotron Radiation Facility, Grenoble V, 1/22, P. Elleaume, CAS, Brunnen July 2-9, 2003. Oscillator-type Free Electron Laser V, 2/22,

More information

Advanced Storage Photon Ring Source Upgrade Project:

Advanced Storage Photon Ring Source Upgrade Project: Advanced Storage Photon Ring Source Upgrade Project: The Shielding World s for Leading the Hard X-ray Light Source Advanced Photon Source - Upgrade Bradley J. Micklich Radiation Physicist Argonne National

More information