Dynamics of the Atmosphere 11:670:324. Class Time: Tuesdays and Fridays 9:15-10:35

Size: px
Start display at page:

Download "Dynamics of the Atmosphere 11:670:324. Class Time: Tuesdays and Fridays 9:15-10:35"

Transcription

1 Dnamics o the Atmosphere 11:67:34 Class Time: Tesdas and Fridas 9:15-1:35 Instrctors: Dr. Anthon J. Broccoli (ENR 9) broccoli@ensci.rtgers.ed Dr. Benjamin Lintner (ENR 5) lintner@ensci.rtgers.ed TA: Anthon DeAngelis (ENR 1) deangelis@ensci.rtgers.ed Website: Tetbook: Martin, Mid-Latitde Atmospheric Dnamics, Wile. Grading Qiz (mathematical methods, inclding ector analsis): 5% Homework problems: 15% GEMPAK eercises: 15% First horl eam: % Second horl eam: % Final eam: 5% 1

2 What Are Dnamics? Deinition: The std o atmospheric and oceanic motions, with emphasis on the phsical laws that goern sch motions. Corse Objecties To la a mathematical and theoretical ondation to be sed in later applications. To appl the laws goerning lid motion (laws o hdrodnamics and thermodnamics) to the atmosphere in order to nderstand and predict its behaior. To share with o the ecitement o how mathematics can be sed to describe what occrs in the real world.

3 Basic Laws Conseration o mass (continit eqation) Conseration o energ (1 st law o thermodnamics) Newton s 1 st Law (no resltant orce no change in motion) Newton s nd Law (rate o change o motion o a bod is proportional to resltant orce acting on it) Conseration o anglar momentm Newton s Law o Graitation Ideal Gas Law (eqation o state) Coordinate Sstems To describe the location in space o a point in a lid, a coordinate sstem is sed. A commonl sed coordinate sstem is the rectanglar, or,,z sstem (also known as Cartesian). z (,,z ) z 3

4 Rectanglar coordinates are oten sed to describe motions o the atmosphere or ocean, een thogh the earth is a sphere. In so doing, one assmes that the - plane is tangent to the srace o the spherical earth. General conention or se o rectanglar coordinates: is a measre o distance rom some origin and increases toward the east. is a measre o distance rom some origin and increases toward the north. z is zero at srace o earth and increases pward. Fndamental Mathematical Concepts and Operations Fndamental state ariables sch as wind speed, temperatre and pressre are nctions o (i.e., depend pon) the independent ariables (,, t). For eample, atmospheric pressre can be epressed as a nction o space and time: P P (,, t ) 4

5 Assme Δ The qotient Deriaties represents a small distance in the direction. Δ Δ The deriatie o a nction Δ represents the slope. d d lim Δ ( ) is deined as ( Δ) Δ ( ) In the limit (as goes to ), this becomes the slope at a point and this is the deriatie ( ), or the gradient or rate o change. d d Partial Deriaties With standard deriaties, or nction aried in one dimension. Howeer, some ariables sch as temperatre ar not onl in time, bt also in space: T (,, t ) The partial deriatie o T with respect to will tell s how ast T changes as we moe in the direction and is deined as ollows: T lim Δ T ( Δ,, t) T (,, t) Δ Similarl, T T lim Δ (, Δ, t) T (,, t) Δ 5

6 6 Chain Rle O Dierentiation Assme: Then: ), ( ), ( (, ) More Identities ( ) Order o partial dierentiation does not matter. ( ) ln 1

7 Epansion o Total Deriatie I (,,t) then d t d d z dz Bt d, d, w dz west-east component o lid elocit soth-north component o lid elocit w ertical component o lid elocit w d t d d z dz Eler s relation (epansion o total deriatie): d t A w t z d w z B C D E Term A: Local rate o change o at a ied location Term B: Total rate o change o ollowing the lid motion Term C: Adection o in direction b the -component low Term D: Adection o in direction b the -component low Term E: Adection o in z direction b the z-component low 7

8 Total Deriatie s. Local Deriatie Total deriatie is the temporal rate o change ollowing the lid motion. Eample: A thermometer measring changes as a balloon loats throgh the atmosphere. dt Local deriatie is the temporal rate o change at a ied point. Eample: An obserer measres changes in temperatre at a weather station. T t Adection Terms Assme that thin lines are contors o a scalar qantit and thick arrows indicate the lid motion. We wish to ealate the adection term low A B C high At point A: At point B: At point C: >, > <, > <, > > Transport rom low to high: negatie adection o netral adection o Transport rom high to low: positie adection o 8

9 9 Talor Series A nction () can be compted b Talor epansion gien the ales o the nction and its deriaties at a point : ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) n n n n!...!! p A trncated Talor series can be sed to approimate ().

Atmospheric Dynamics 11:670:324. Class Time: Tuesdays and Fridays 9:15-10:35

Atmospheric Dynamics 11:670:324. Class Time: Tuesdays and Fridays 9:15-10:35 Amospheric Dnamics 11:67:324 Class ime: esdas and Fridas 9:15-1:35 Insrcors: Dr. Anhon J. Broccoli (ENR 229 broccoli@ensci.rgers.ed 848-932-5749 Dr. Benjamin Linner (ENR 25 linner@ensci.rgers.ed 848-932-5731

More information

Primary dependent variable is fluid velocity vector V = V ( r ); where r is the position vector

Primary dependent variable is fluid velocity vector V = V ( r ); where r is the position vector Chapter 4: Flids Kinematics 4. Velocit and Description Methods Primar dependent ariable is flid elocit ector V V ( r ); where r is the position ector If V is known then pressre and forces can be determined

More information

Chapter 6 Momentum Transfer in an External Laminar Boundary Layer

Chapter 6 Momentum Transfer in an External Laminar Boundary Layer 6. Similarit Soltions Chapter 6 Momentm Transfer in an Eternal Laminar Bondar Laer Consider a laminar incompressible bondar laer with constant properties. Assme the flow is stead and two-dimensional aligned

More information

EE2 Mathematics : Functions of Multiple Variables

EE2 Mathematics : Functions of Multiple Variables EE2 Mathematics : Fnctions of Mltiple Variables http://www2.imperial.ac.k/ nsjones These notes are not identical word-for-word with m lectres which will be gien on the blackboard. Some of these notes ma

More information

11.6 Directional Derivative & The Gradient Vector. Working Definitions

11.6 Directional Derivative & The Gradient Vector. Working Definitions 1 Ma 016 1 Kidogchi Kenneth The directional derivative o at 0 0 ) in the direction o the nit vector is the scalar nction deined b: where q is angle between the two vectors placed tail-to-tail and 0 < q

More information

The Vorticity Equation

The Vorticity Equation The Vorticit Eqation Potential orticit Circlation theorem is reall good Circlation theorem imlies a consered qantit dp dt 0 P g 2 PV or barotroic lid General orm o Ertel s otential orticit: P g const Consider

More information

Concept of Stress at a Point

Concept of Stress at a Point Washkeic College of Engineering Section : STRONG FORMULATION Concept of Stress at a Point Consider a point ithin an arbitraril loaded deformable bod Define Normal Stress Shear Stress lim A Fn A lim A FS

More information

Rossby waves (waves in vorticity)

Rossby waves (waves in vorticity) Rossb waes (waes in orticit) Stationar (toograhicall orced) waes NCEP Reanalsis Z500 Janar mean 2 3 Vorticit eqation z w z w z w t 2 1 Change in relatie (ertical comonent o) orticit at a oint, Adection

More information

Turbulence and boundary layers

Turbulence and boundary layers Trblence and bondary layers Weather and trblence Big whorls hae little whorls which feed on the elocity; and little whorls hae lesser whorls and so on to iscosity Lewis Fry Richardson Momentm eqations

More information

SUBJECT:ENGINEERING MATHEMATICS-I SUBJECT CODE :SMT1101 UNIT III FUNCTIONS OF SEVERAL VARIABLES. Jacobians

SUBJECT:ENGINEERING MATHEMATICS-I SUBJECT CODE :SMT1101 UNIT III FUNCTIONS OF SEVERAL VARIABLES. Jacobians SUBJECT:ENGINEERING MATHEMATICS-I SUBJECT CODE :SMT0 UNIT III FUNCTIONS OF SEVERAL VARIABLES Jacobians Changing ariable is something e come across er oten in Integration There are man reasons or changing

More information

SIMULATION OF TURBULENT FLOW AND HEAT TRANSFER OVER A BACKWARD-FACING STEP WITH RIBS TURBULATORS

SIMULATION OF TURBULENT FLOW AND HEAT TRANSFER OVER A BACKWARD-FACING STEP WITH RIBS TURBULATORS THERMAL SCIENCE, Year 011, Vol. 15, No. 1, pp. 45-55 45 SIMULATION OF TURBULENT FLOW AND HEAT TRANSFER OVER A BACKWARD-FACING STEP WITH RIBS TURBULATORS b Khdheer S. MUSHATET Mechanical Engineering Department,

More information

Complex Variables. For ECON 397 Macroeconometrics Steve Cunningham

Complex Variables. For ECON 397 Macroeconometrics Steve Cunningham Comple Variables For ECON 397 Macroeconometrics Steve Cnningham Open Disks or Neighborhoods Deinition. The set o all points which satis the ineqalit

More information

m = Average Rate of Change (Secant Slope) Example:

m = Average Rate of Change (Secant Slope) Example: Average Rate o Change Secant Slope Deinition: The average change secant slope o a nction over a particlar interval [a, b] or [a, ]. Eample: What is the average rate o change o the nction over the interval

More information

Linear Strain Triangle and other types of 2D elements. By S. Ziaei Rad

Linear Strain Triangle and other types of 2D elements. By S. Ziaei Rad Linear Strain Triangle and other tpes o D elements B S. Ziaei Rad Linear Strain Triangle (LST or T6 This element is also called qadratic trianglar element. Qadratic Trianglar Element Linear Strain Triangle

More information

Chapter 2 Section 3. Partial Derivatives

Chapter 2 Section 3. Partial Derivatives Chapter Section 3 Partial Derivatives Deinition. Let be a unction o two variables and. The partial derivative o with respect to is the unction, denoted b D1 1 such that its value at an point (,) in the

More information

Department of Physics PHY 111 GENERAL PHYSICS I

Department of Physics PHY 111 GENERAL PHYSICS I EDO UNIVERSITY IYAMHO Department o Physics PHY 111 GENERAL PHYSICS I Instructors: 1. Olayinka, S. A. (Ph.D.) Email: akinola.olayinka@edouniersity.edu.ng Phone: (+234) 8062447411 2. Adekoya, M. A Email:

More information

4 Primitive Equations

4 Primitive Equations 4 Primitive Eqations 4.1 Spherical coordinates 4.1.1 Usefl identities We now introdce the special case of spherical coordinates: (,, r) (longitde, latitde, radial distance from Earth s center), with 0

More information

Numerical Investigation of Natural Convection Heat Transfer from Square Cylinder in an Enclosed Enclosure Filled with Nanofluids

Numerical Investigation of Natural Convection Heat Transfer from Square Cylinder in an Enclosed Enclosure Filled with Nanofluids Rochester Institte o echnolog RI Scholar Works Articles 0-3-0 Nmerical Inestigation o Natral Conection Heat ranser rom Sqare Clinder in an Enclosed Enclosre Filled with Nanolids Ghalib Kahwaji Rochester

More information

BLOOM S TAXONOMY. Following Bloom s Taxonomy to Assess Students

BLOOM S TAXONOMY. Following Bloom s Taxonomy to Assess Students BLOOM S TAXONOMY Topic Following Bloom s Taonomy to Assess Stdents Smmary A handot for stdents to eplain Bloom s taonomy that is sed for item writing and test constrction to test stdents to see if they

More information

1 Differential Equations for Solid Mechanics

1 Differential Equations for Solid Mechanics 1 Differential Eqations for Solid Mechanics Simple problems involving homogeneos stress states have been considered so far, wherein the stress is the same throghot the component nder std. An eception to

More information

u P(t) = P(x,y) r v t=0 4/4/2006 Motion ( F.Robilliard) 1

u P(t) = P(x,y) r v t=0 4/4/2006 Motion ( F.Robilliard) 1 y g j P(t) P(,y) r t0 i 4/4/006 Motion ( F.Robilliard) 1 Motion: We stdy in detail three cases of motion: 1. Motion in one dimension with constant acceleration niform linear motion.. Motion in two dimensions

More information

Ch.1: Basics of Shallow Water Fluid

Ch.1: Basics of Shallow Water Fluid AOS611Chapter1,/16/16,Z.Li 1 Sec. 1.1: Basic Eqations 1. Shallow Water Eqations on a Sphere Ch.1: Basics of Shallow Water Flid We start with the shallow water flid of a homogeneos densit and focs on the

More information

Numerical Model for Studying Cloud Formation Processes in the Tropics

Numerical Model for Studying Cloud Formation Processes in the Tropics Astralian Jornal of Basic and Applied Sciences, 5(2): 189-193, 211 ISSN 1991-8178 Nmerical Model for Stdying Clod Formation Processes in the Tropics Chantawan Noisri, Dsadee Skawat Department of Mathematics

More information

Derivation of 2D Power-Law Velocity Distribution Using Entropy Theory

Derivation of 2D Power-Law Velocity Distribution Using Entropy Theory Entrop 3, 5, -3; doi:.339/e54 Article OPEN ACCESS entrop ISSN 99-43 www.mdpi.com/jornal/entrop Deriation of D Power-Law Velocit Distribtion Using Entrop Theor Vija P. Singh,, *, stao Marini 3 and Nicola

More information

Work and Kinetic Energy

Work and Kinetic Energy Work Work an Kinetic Energy Work (W) the prouct of the force eerte on an object an the istance the object moes in the irection of the force (constant force only). W = " = cos" (N " m = J)! is the angle

More information

Section 7.4: Integration of Rational Functions by Partial Fractions

Section 7.4: Integration of Rational Functions by Partial Fractions Section 7.4: Integration of Rational Fnctions by Partial Fractions This is abot as complicated as it gets. The Method of Partial Fractions Ecept for a few very special cases, crrently we have no way to

More information

A Proposed Method for Reliability Analysis in Higher Dimension

A Proposed Method for Reliability Analysis in Higher Dimension A Proposed Method or Reliabilit Analsis in Higher Dimension S Kadr Abstract In this paper a new method is proposed to ealate the reliabilit o stochastic mechanical sstems This techniqe is based on the

More information

Baroclinic Buoyancy-Inertia Joint Stability Parameter

Baroclinic Buoyancy-Inertia Joint Stability Parameter Jornal of Oceanography, Vol. 6, pp. 35 to 46, 5 Baroclinic Boyancy-Inertia Joint Stability Parameter HIDEO KAWAI* 3-8 Shibagahara, Kse, Joyo, Kyoto Pref. 6-, Japan (Receied 9 September 3; in reised form

More information

. This is the Basic Chain Rule. x dt y dt z dt Chain Rule in this context.

. This is the Basic Chain Rule. x dt y dt z dt Chain Rule in this context. Math 18.0A Gradients, Chain Rule, Implicit Dierentiation, igher Order Derivatives These notes ocus on our things: (a) the application o gradients to ind normal vectors to curves suraces; (b) the generaliation

More information

Lecture 5. Differential Analysis of Fluid Flow Navier-Stockes equation

Lecture 5. Differential Analysis of Fluid Flow Navier-Stockes equation Lectre 5 Differential Analsis of Flid Flo Naier-Stockes eqation Differential analsis of Flid Flo The aim: to rodce differential eqation describing the motion of flid in detail Flid Element Kinematics An

More information

Derivation of the basic equations of fluid flows. No. Conservation of mass of a solute (applies to non-sinking particles at low concentration).

Derivation of the basic equations of fluid flows. No. Conservation of mass of a solute (applies to non-sinking particles at low concentration). Deriation of the basic eqations of flid flos. No article in the flid at this stage (net eek). Conseration of mass of the flid. Conseration of mass of a solte (alies to non-sinking articles at lo concentration).

More information

y,z the subscript y, z indicating that the variables y and z are kept constant. The second partial differential with respect to x is written x 2 y,z

y,z the subscript y, z indicating that the variables y and z are kept constant. The second partial differential with respect to x is written x 2 y,z 8 Partial dierentials I a unction depends on more than one variable, its rate o change with respect to one o the variables can be determined keeping the others ied The dierential is then a partial dierential

More information

Geostrophy & Thermal wind

Geostrophy & Thermal wind Lecture 10 Geostrophy & Thermal wind 10.1 f and β planes These are planes that are tangent to the earth (taken to be spherical) at a point of interest. The z ais is perpendicular to the plane (anti-parallel

More information

Chapter 8: MULTIPLE CONTINUOUS RANDOM VARIABLES

Chapter 8: MULTIPLE CONTINUOUS RANDOM VARIABLES Charles Boncelet Probabilit Statistics and Random Signals" Oord Uniersit Press 06. ISBN: 978-0-9-0005-0 Chapter 8: MULTIPLE CONTINUOUS RANDOM VARIABLES Sections 8. Joint Densities and Distribution unctions

More information

ME 425: Aerodynamics

ME 425: Aerodynamics ME 45: Aerodnamics Dr. A.B.M. Toiqe Hasan Proessor Deparmen o Mechanical Engineering Bangladesh Uniersi o Engineering & Technolog BUET, Dhaka Lecre-7 Fndamenals so Aerodnamics oiqehasan.be.ac.bd oiqehasan@me.be.ac.bd

More information

27 ft 3 adequately describes the volume of a cube with side 3. ft F adequately describes the temperature of a person.

27 ft 3 adequately describes the volume of a cube with side 3. ft F adequately describes the temperature of a person. VECTORS The stud of ectors is closel related to the stud of such phsical properties as force, motion, elocit, and other related topics. Vectors allow us to model certain characteristics of these phenomena

More information

Momentum Equation. Necessary because body is not made up of a fixed assembly of particles Its volume is the same however Imaginary

Momentum Equation. Necessary because body is not made up of a fixed assembly of particles Its volume is the same however Imaginary Momentm Eqation Interest in the momentm eqation: Qantification of proplsion rates esign strctres for power generation esign of pipeline systems to withstand forces at bends and other places where the flow

More information

1 The space of linear transformations from R n to R m :

1 The space of linear transformations from R n to R m : Math 540 Spring 20 Notes #4 Higher deriaties, Taylor s theorem The space of linear transformations from R n to R m We hae discssed linear transformations mapping R n to R m We can add sch linear transformations

More information

Extreme Values of Functions

Extreme Values of Functions Extreme Values o Functions When we are using mathematics to model the physical world in which we live, we oten express observed physical quantities in terms o variables. Then, unctions are used to describe

More information

a by a factor of = 294 requires 1/T, so to increase 1.4 h 294 = h

a by a factor of = 294 requires 1/T, so to increase 1.4 h 294 = h IDENTIFY: If the centripetal acceleration matches g, no contact force is required to support an object on the spinning earth s surface. Calculate the centripetal (radial) acceleration /R using = πr/t to

More information

Differential Equations

Differential Equations LOCUS Dierential Equations CONCEPT NOTES 0. Motiation 0. Soling Dierential Equations LOCUS Dierential Equations Section - MOTIVATION A dierential equation can simpl be said to be an equation inoling deriaties

More information

5.6. Differential equations

5.6. Differential equations 5.6. Differential equations The relationship between cause and effect in phsical phenomena can often be formulated using differential equations which describe how a phsical measure () and its derivative

More information

MAT389 Fall 2016, Problem Set 6

MAT389 Fall 2016, Problem Set 6 MAT389 Fall 016, Problem Set 6 Trigonometric and hperbolic fnctions 6.1 Show that e iz = cos z + i sin z for eer comple nmber z. Hint: start from the right-hand side and work or wa towards the left-hand

More information

Lesson 6: Apparent weight, Radial acceleration (sections 4:9-5.2)

Lesson 6: Apparent weight, Radial acceleration (sections 4:9-5.2) Beore we start the new material we will do another Newton s second law problem. A bloc is being pulled by a rope as shown in the picture. The coeicient o static riction is 0.7 and the coeicient o inetic

More information

Geometry of Span (continued) The Plane Spanned by u and v

Geometry of Span (continued) The Plane Spanned by u and v Geometric Description of Span Geometr of Span (contined) 2 Geometr of Span (contined) 2 Span {} Span {, } 2 Span {} 2 Geometr of Span (contined) 2 b + 2 The Plane Spanned b and If a plane is spanned b

More information

Study of MHD Oblique Stagnation Point Assisting Flow on Vertical Plate with Uniform Surface Heat Flux

Study of MHD Oblique Stagnation Point Assisting Flow on Vertical Plate with Uniform Surface Heat Flux World Academ of Science Engineering and echnolog International Jornal of Mechanical and Mechatronics Engineering Vol:5 No: 011 Std of MHD Obliqe Stagnation Point Assisting Flow on Vertical Plate with Uniform

More information

Lesson 3: Free fall, Vectors, Motion in a plane (sections )

Lesson 3: Free fall, Vectors, Motion in a plane (sections ) Lesson 3: Free fall, Vectors, Motion in a plane (sections.6-3.5) Last time we looked at position s. time and acceleration s. time graphs. Since the instantaneous elocit is lim t 0 t the (instantaneous)

More information

Introducing Ideal Flow

Introducing Ideal Flow D f f f p D p D p D f T k p D e The Continit eqation The Naier Stokes eqations The iscos Flo Energ Eqation These form a closed set hen to thermodnamic relations are specified Introdcing Ideal Flo Getting

More information

Differentiation. The main problem of differential calculus deals with finding the slope of the tangent line at a point on a curve.

Differentiation. The main problem of differential calculus deals with finding the slope of the tangent line at a point on a curve. Dierentiation The main problem o dierential calculus deals with inding the slope o the tangent line at a point on a curve. deinition() : The slope o a curve at a point p is the slope, i it eists, o the

More information

Chapter 8 Laminar Flows with Dependence on One Dimension

Chapter 8 Laminar Flows with Dependence on One Dimension Chapter 8 Laminar Flows with Dependence on One Dimension Couette low Planar Couette low Cylindrical Couette low Planer rotational Couette low Hele-Shaw low Poiseuille low Friction actor and Reynolds number

More information

Interest Point Detection. Lecture-4

Interest Point Detection. Lecture-4 nterest Point Detection Lectre-4 Contents Harris Corner Detector Sm o Sqares Dierences (SSD Corrleation Talor Series Eigen Vectors and Eigen Vales nariance and co-ariance What is an interest point Epressie

More information

The New (2+1)-Dimensional Integrable Coupling of the KdV Equation: Auto-Bäcklund Transformation and Non-Travelling Wave Profiles

The New (2+1)-Dimensional Integrable Coupling of the KdV Equation: Auto-Bäcklund Transformation and Non-Travelling Wave Profiles MM Research Preprints, 36 3 MMRC, AMSS, Academia Sinica No. 3, December The New (+)-Dimensional Integrable Copling of the KdV Eqation: Ato-Bäcklnd Transformation and Non-Traelling Wae Profiles Zhena Yan

More information

Integration of Basic Functions. Session 7 : 9/23 1

Integration of Basic Functions. Session 7 : 9/23 1 Integration o Basic Fnctions Session 7 : 9/3 Antiderivation Integration Deinition: Taking the antiderivative, or integral, o some nction F(), reslts in the nction () i ()F() Pt simply: i yo take the integral

More information

Math 263 Assignment #3 Solutions. 1. A function z = f(x, y) is called harmonic if it satisfies Laplace s equation:

Math 263 Assignment #3 Solutions. 1. A function z = f(x, y) is called harmonic if it satisfies Laplace s equation: Math 263 Assignment #3 Soltions 1. A fnction z f(x, ) is called harmonic if it satisfies Laplace s eqation: 2 + 2 z 2 0 Determine whether or not the following are harmonic. (a) z x 2 + 2. We se the one-variable

More information

INTRODUCTORY MATHEMATICAL ANALYSIS

INTRODUCTORY MATHEMATICAL ANALYSIS INTRODUCTORY MATHEMATICAL ANALYSIS For Business, Economics, and the Lie and Social Sciences Chapter 11 Dierentiation 011 Pearson Education, Inc. Chapter 11: Dierentiation Chapter Objectives To compute

More information

8. THEOREM If the partial derivatives f x. and f y exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b).

8. THEOREM If the partial derivatives f x. and f y exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b). 8. THEOREM I the partial derivatives and eist near (a b) and are continuous at (a b) then is dierentiable at (a b). For a dierentiable unction o two variables z= ( ) we deine the dierentials d and d to

More information

Change of Variables. (f T) JT. f = U

Change of Variables. (f T) JT. f = U Change of Variables 4-5-8 The change of ariables formla for mltiple integrals is like -sbstittion for single-ariable integrals. I ll gie the general change of ariables formla first, and consider specific

More information

Chapter 1: Differential Form of Basic Equations

Chapter 1: Differential Form of Basic Equations MEG 74 Energ and Variational Methods in Mechanics I Brendan J. O Toole, Ph.D. Associate Professor of Mechanical Engineering Howard R. Hghes College of Engineering Universit of Nevada Las Vegas TBE B- (7)

More information

Unfortunately the derivative of a product is not the product of the derivatives. For example, if

Unfortunately the derivative of a product is not the product of the derivatives. For example, if Prodct Rle Unortnately te deriatie o a prodct is not te prodct o te deriaties. For eample, i Ten p So is p bt 11 1, and tey are not eal in general. Tat [ is not ] in general To compte te deriatie o a prodct

More information

DIFFERENTIATION. 3.1 Approximate Value and Error (page 151)

DIFFERENTIATION. 3.1 Approximate Value and Error (page 151) CHAPTER APPLICATIONS OF DIFFERENTIATION.1 Approimate Value and Error (page 151) f '( lim 0 f ( f ( f ( f ( f '( or f ( f ( f '( f ( f ( f '( (.) f ( f '( (.) where f ( f ( f ( Eample.1 (page 15): Find

More information

Relativity II. The laws of physics are identical in all inertial frames of reference. equivalently

Relativity II. The laws of physics are identical in all inertial frames of reference. equivalently Relatiity II I. Henri Poincare's Relatiity Principle In the late 1800's, Henri Poincare proposed that the principle of Galilean relatiity be expanded to inclde all physical phenomena and not jst mechanics.

More information

y2 = 0. Show that u = e2xsin(2y) satisfies Laplace's equation.

y2 = 0. Show that u = e2xsin(2y) satisfies Laplace's equation. Review 1 1) State the largest possible domain o deinition or the unction (, ) = 3 - ) Determine the largest set o points in the -plane on which (, ) = sin-1( - ) deines a continuous unction 3) Find the

More information

PHASE PLANE DIAGRAMS OF DIFFERENCE EQUATIONS. 1. Introduction

PHASE PLANE DIAGRAMS OF DIFFERENCE EQUATIONS. 1. Introduction PHASE PLANE DIAGRAMS OF DIFFERENCE EQUATIONS TANYA DEWLAND, JEROME WESTON, AND RACHEL WEYRENS Abstract. We will be determining qalitatie featres of a discrete dynamical system of homogeneos difference

More information

Lecture 3. (2) Last time: 3D space. The dot product. Dan Nichols January 30, 2018

Lecture 3. (2) Last time: 3D space. The dot product. Dan Nichols January 30, 2018 Lectre 3 The dot prodct Dan Nichols nichols@math.mass.ed MATH 33, Spring 018 Uniersity of Massachsetts Janary 30, 018 () Last time: 3D space Right-hand rle, the three coordinate planes 3D coordinate system:

More information

Space Coordinates and Vectors in Space. Coordinates in Space

Space Coordinates and Vectors in Space. Coordinates in Space 0_110.qd 11//0 : PM Page 77 SECTION 11. Space Coordinates and Vectors in Space 77 -plane Section 11. -plane -plane The three-dimensional coordinate sstem Figure 11.1 Space Coordinates and Vectors in Space

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , PK K I N E M A T I C S Syllabs : Frame of reference. Motion in a straight line : Position-time graph, speed and velocity. Uniform and non-niform motion, average speed and instantaneos velocity. Uniformly

More information

1. THE MOMENTUM EQUATIONS FOR SYNOPTIC-SCALE FLOW IN THE ROTATING COORDINATE SYSTEM

1. THE MOMENTUM EQUATIONS FOR SYNOPTIC-SCALE FLOW IN THE ROTATING COORDINATE SYSTEM NOTES FO THE THEOY OF WKD 35. THE MOMENTUM EQUATIONS FO SYNOPTIC-SCALE FLOW IN THE OTATING COODINATE SYSTEM Scalin o the momentm eqations or snotic scale circlation (>000km dimension) reslted in the elimination

More information

Numerical Simulation of Density Currents over a Slope under the Condition of Cooling Period in Lake Biwa

Numerical Simulation of Density Currents over a Slope under the Condition of Cooling Period in Lake Biwa Nmerical Simlation of Densit Crrents oer a Slope nder the Condition of Cooling Period in Lake Bia Takashi Hosoda Professor, Department of Urban Management, Koto Uniersit, C1-3-65, Kotodai-Katsra, Nishiko-k,

More information

and ( x, y) in a domain D R a unique real number denoted x y and b) = x y = {(, ) + 36} that is all points inside and on

and ( x, y) in a domain D R a unique real number denoted x y and b) = x y = {(, ) + 36} that is all points inside and on Mat 7 Calculus III Updated on 10/4/07 Dr. Firoz Chapter 14 Partial Derivatives Section 14.1 Functions o Several Variables Deinition: A unction o two variables is a rule that assigns to each ordered pair

More information

1.1 The Equations of Motion

1.1 The Equations of Motion 1.1 The Equations of Motion In Book I, balance of forces and moments acting on an component was enforced in order to ensure that the component was in equilibrium. Here, allowance is made for stresses which

More information

Evaluation of the Lattice-Boltzmann Equation Solver PowerFLOW for Aerodynamic Applications

Evaluation of the Lattice-Boltzmann Equation Solver PowerFLOW for Aerodynamic Applications NASA/CR-2-255 ICASE Report No. 2-4 Ealation of the Lattice-Boltzmann Eqation Soler for Aerodnamic Applications Daid P. Lockard NASA Langle Research Center, Hampton, Virginia Li-Shi Lo ICASE, Hampton, Virginia

More information

3 2D Elastostatic Problems in Cartesian Coordinates

3 2D Elastostatic Problems in Cartesian Coordinates D lastostatic Problems in Cartesian Coordinates Two dimensional elastostatic problems are discssed in this Chapter, that is, static problems of either plane stress or plane strain. Cartesian coordinates

More information

Example: When describing where a function is increasing, decreasing or constant we use the x- axis values.

Example: When describing where a function is increasing, decreasing or constant we use the x- axis values. Business Calculus Lecture Notes (also Calculus With Applications or Business Math II) Chapter 3 Applications o Derivatives 31 Increasing and Decreasing Functions Inormal Deinition: A unction is increasing

More information

This is only a list of questions use a separate sheet to work out the problems. 1. (1.2 and 1.4) Use the given graph to answer each question.

This is only a list of questions use a separate sheet to work out the problems. 1. (1.2 and 1.4) Use the given graph to answer each question. Mth Calculus Practice Eam Questions NOTE: These questions should not be taken as a complete list o possible problems. The are merel intended to be eamples o the diicult level o the regular eam questions.

More information

Chapter 2 Motion Along a Straight Line

Chapter 2 Motion Along a Straight Line Chapter Motion Along a Straight Line In this chapter we will study how objects moe along a straight line The following parameters will be defined: (1) Displacement () Aerage elocity (3) Aerage speed (4)

More information

Numerical investigation of natural convection of air in vertical divergent channels

Numerical investigation of natural convection of air in vertical divergent channels Adanced Comptational Methods in Heat ransfer X 13 Nmerical inestigation of natral conection of air in ertical diergent channels O. Manca, S. Nardini, D. Ricci & S. ambrrino Dipartimento di Ingegneria Aerospaziale

More information

Effects of MHD Laminar Flow Between a Fixed Impermeable Disk and a Porous Rotating Disk

Effects of MHD Laminar Flow Between a Fixed Impermeable Disk and a Porous Rotating Disk Effects of MHD Laminar Flow Between a Fixed Impermeable Disk and a Poros otating Disk Hemant Poonia * * Asstt. Prof., Deptt. of Math, Stat & Physics, CCSHAU, Hisar-54.. C. Chadhary etd. Professor, Deptt.

More information

A NOVEL METHOD OF INTERPOLATION AND EXTRAPOLATION OF FUNCTIONS BY A LINEAR INITIAL VALUE PROBLEM

A NOVEL METHOD OF INTERPOLATION AND EXTRAPOLATION OF FUNCTIONS BY A LINEAR INITIAL VALUE PROBLEM A OVEL METHOD OF ITERPOLATIO AD EXTRAPOLATIO OF FUCTIOS BY A LIEAR IITIAL VALUE PROBLEM Michael Shatalov Sensor Science and Technolog o CSIR Manuacturing and Materials, P.O.Bo 395, Pretoria, CSIR and Department

More information

6.4 VECTORS AND DOT PRODUCTS

6.4 VECTORS AND DOT PRODUCTS 458 Chapter 6 Additional Topics in Trigonometry 6.4 VECTORS AND DOT PRODUCTS What yo shold learn ind the dot prodct of two ectors and se the properties of the dot prodct. ind the angle between two ectors

More information

The Faraday Induction Law and Field Transformations in Special Relativity

The Faraday Induction Law and Field Transformations in Special Relativity Apeiron, ol. 10, No., April 003 118 The Farada Indction Law and Field Transformations in Special Relatiit Aleander L. Kholmetskii Department of Phsics, elars State Uniersit, 4, F. Skorina Aene, 0080 Minsk

More information

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS SUBAREA I. COMPETENCY 1.0 UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS MECHANICS Skill 1.1 Calculating displacement, aerage elocity, instantaneous elocity, and acceleration in a gien frame of reference

More information

Section 3.4: Concavity and the second Derivative Test. Find any points of inflection of the graph of a function.

Section 3.4: Concavity and the second Derivative Test. Find any points of inflection of the graph of a function. Unit 3: Applications o Dierentiation Section 3.4: Concavity and the second Derivative Test Determine intervals on which a unction is concave upward or concave downward. Find any points o inlection o the

More information

EVALUATE: If the angle 40 is replaces by (cable B is vertical), then T = mg and

EVALUATE: If the angle 40 is replaces by (cable B is vertical), then T = mg and 58 IDENTIY: ppl Newton s 1st law to the wrecing ball Each cable eerts a force on the ball, directed along the cable SET UP: The force diagram for the wrecing ball is setched in igure 58 (a) T cos 40 mg

More information

ENVIRONMENTAL FLUID MECHANICS

ENVIRONMENTAL FLUID MECHANICS ENVIRONMENTAL FLUID MECHANICS Partial Differential Eqations goerning the motion of enironmental flids Benoit Cshman-Roisin Thaer Shool of Engineering Dartmoth College Proedre The theor proeeds ith the

More information

Q2. The velocity field in a fluid flow is given by

Q2. The velocity field in a fluid flow is given by Kinematics of Flid Q. Choose the correct anser (i) streamline is a line (a) hich is along the path of a particle (b) dran normal to the elocit ector at an point (c) sch that the streamlines diide the passage

More information

Increasing and Decreasing Functions and the First Derivative Test. Increasing and Decreasing Functions. Video

Increasing and Decreasing Functions and the First Derivative Test. Increasing and Decreasing Functions. Video SECTION and Decreasing Functions and the First Derivative Test 79 Section and Decreasing Functions and the First Derivative Test Determine intervals on which a unction is increasing or decreasing Appl

More information

Correlations for Nusselt Number in Free Convection from an Isothermal Inclined Square Plate by a Numerical Simulation

Correlations for Nusselt Number in Free Convection from an Isothermal Inclined Square Plate by a Numerical Simulation American Jornal of Mechanics and Applications 5; : 8-8 Pblished online Ma 4, 5 http://sciencepblishinggropcom/j/ajma doi: 648/jajma5 ISSN: 76-65 Print; ISSN: 76-6 Online Correlations for Nsselt Nmber in

More information

Mat 267 Engineering Calculus III Updated on 9/19/2010

Mat 267 Engineering Calculus III Updated on 9/19/2010 Chapter 11 Partial Derivatives Section 11.1 Functions o Several Variables Deinition: A unction o two variables is a rule that assigns to each ordered pair o real numbers (, ) in a set D a unique real number

More information

Computer Animation. Rick Parent

Computer Animation. Rick Parent Algorithms and Techniqes Flids Sperficial models. Deep models comes p throghot graphics, bt particlarl releant here OR Directl model isible properties Water waes Wrinkles in skin and cloth Hi Hair Clods

More information

Session R4F Methods to Formulate and to Solve Problems in Mechanical Engineering

Session R4F Methods to Formulate and to Solve Problems in Mechanical Engineering Methods to Formulate and to Sole Problems in Mechanical Engineering Eusebio Jiménez López, Luis Rees Áila, Francisco Jaier Ochoa Estrella 3, Francisco Galindo Gutiérrez 4, Jaier Ruiz Galán 5, and Esteban

More information

Math 4A03: Practice problems on Multivariable Calculus

Math 4A03: Practice problems on Multivariable Calculus Mat 4A0: Practice problems on Mltiariable Calcls Problem Consider te mapping f, ) : R R defined by fx, y) e y + x, e x y) x, y) R a) Is it possible to express x, y) as a differentiable fnction of, ) near

More information

Fluid Physics 8.292J/12.330J

Fluid Physics 8.292J/12.330J Fluid Phsics 8.292J/12.0J Problem Set 4 Solutions 1. Consider the problem of a two-dimensional (infinitel long) airplane wing traeling in the negatie x direction at a speed c through an Euler fluid. In

More information

Euclidean Vector Spaces

Euclidean Vector Spaces CHAPTER 3 Eclidean Vector Spaces CHAPTER CONTENTS 3.1 Vectors in 2-Space, 3-Space, and n-space 131 3.2 Norm, Dot Prodct, and Distance in R n 142 3.3 Orthogonalit 155 3.4 The Geometr of Linear Sstems 164

More information

whose domain D is a set of n-tuples in is defined. The range of f is the set of all values f x1,..., x n

whose domain D is a set of n-tuples in is defined. The range of f is the set of all values f x1,..., x n Grade (MCV4UE) - AP Calculus Etended Page o A unction o n-variales is a real-valued unction... n whose domain D is a set o n-tuples... n in which... n is deined. The range o is the set o all values...

More information

Optical Flow, KLT Feature Tracker.

Optical Flow, KLT Feature Tracker. Optical Flow, KL Feature racker E-mail: hogijung@hanang.ac.kr Motion in Computer Vision Motion Structure rom motion Detection/segmentation with direction [1] E-mail: hogijung@hanang.ac.kr Motion Field.s..

More information

An example of Lagrangian for a non-holonomic system

An example of Lagrangian for a non-holonomic system Uniersit of North Georgia Nighthaks Open Institutional Repositor Facult Publications Department of Mathematics 9-9-05 An eample of Lagrangian for a non-holonomic sstem Piotr W. Hebda Uniersit of North

More information

Homotopy Perturbation Method for Solving Linear Boundary Value Problems

Homotopy Perturbation Method for Solving Linear Boundary Value Problems International Jornal of Crrent Engineering and Technolog E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/categor/ijcet Research Article Homotop

More information

MOTION IN 2-DIMENSION (Projectile & Circular motion And Vectors)

MOTION IN 2-DIMENSION (Projectile & Circular motion And Vectors) MOTION IN -DIMENSION (Projectile & Circular motion nd Vectors) INTRODUCTION The motion of an object is called two dimensional, if two of the three co-ordinates required to specif the position of the object

More information

FLUID MECHANICS EQUATIONS

FLUID MECHANICS EQUATIONS FLUID MECHANIC EQUATION M. Ragheb 11/2/2017 INTRODUCTION The early part of the 18 th -century saw the burgeoning of the field of theoretical fluid mechanics pioneered by Leonhard Euler and the father and

More information

A Decomposition Method for Volume Flux. and Average Velocity of Thin Film Flow. of a Third Grade Fluid Down an Inclined Plane

A Decomposition Method for Volume Flux. and Average Velocity of Thin Film Flow. of a Third Grade Fluid Down an Inclined Plane Adv. Theor. Appl. Mech., Vol. 1, 8, no. 1, 9 A Decomposition Method for Volme Flx and Average Velocit of Thin Film Flow of a Third Grade Flid Down an Inclined Plane A. Sadighi, D.D. Ganji,. Sabzehmeidani

More information